Reduced row-echelon form

MATH 2250 Lecture 12
Book section 3.3

September 17, 2019

Echelon matrices

We've seen that Echelon matrices are those of the form

$$
\left(\begin{array}{cc}
* & * \\
0 & *
\end{array}\right), \quad\left(\begin{array}{ccc}
* & * & * \\
0 & 0 & *
\end{array}\right), \quad\left(\begin{array}{ccc}
* & * & * \\
0 & 0 & 0
\end{array}\right)
$$

These are matrices such that

- All zero-rows are located below any non-zero row
- A leading nonzero entry in row j lies to the right of all leading nonzero entries in previous rows.

We've seen that Echelon matrices are those of the form

$$
\left(\begin{array}{cc}
* & * \\
0 & *
\end{array}\right), \quad\left(\begin{array}{ccc}
* & * & * \\
0 & 0 & *
\end{array}\right), \quad\left(\begin{array}{ccc}
* & * & * \\
0 & 0 & 0
\end{array}\right)
$$

These are matrices such that

- All zero-rows are located below any non-zero row
- A leading nonzero entry in row j lies to the right of all leading nonzero entries in previous rows.
We add two additional properties to arrive at reduced Echelon matrices
- A leading nonzero entry in a row equals 1.
- A leading nonzero entry in a row is the only nonzero entry in its column.

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & * & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & * & * \\
0 & 0 & 0
\end{array}\right),
$$

Reduced Echelon matrices are very helpful in computing solutions to linear systems.

Reduced Echelon matrices

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & * & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & * & * \\
0 & 0 & 0
\end{array}\right)
$$

Reduced Echelon matrices are very helpful in computing solutions to linear systems.
To obtain a reduced Echelon matrix from an Echelon one:

- Divide each row by the leading entry.
- Use each leading entry to eliminate entries in the rows above it.

Reduced Echelon matrices

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & * & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & * & * \\
0 & 0 & 0
\end{array}\right)
$$

Reduced Echelon matrices are very helpful in computing solutions to linear systems.
To obtain a reduced Echelon matrix from an Echelon one:

- Divide each row by the leading entry.
- Use each leading entry to eliminate entries in the rows above it. We recall that all linear systems have either 1,0 , or infinitely many solutions.

Reduced Echelon matrices help us determine which of these possibilities occur.

Examples

Example (Problem 3.3.7)
Compute the reduced Echelon form for

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 4 & 1 \\
2 & 1 & 0
\end{array}\right)
$$

Examples

Example (Problem 3.3.7)

Compute the reduced Echelon form for

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 4 & 1 \\
2 & 1 & 0
\end{array}\right)
$$

Example (Problem 3.3.8)

Compute the reduced Echelon form for

$$
\left(\begin{array}{ccc}
1 & -4 & -5 \\
3 & -9 & 3 \\
1 & -2 & 3
\end{array}\right)
$$

Examples

Example (Problem 3.3.13)
Compute the reduced Echelon form for

$$
\left(\begin{array}{llll}
2 & 7 & 4 & 0 \\
1 & 3 & 2 & 1 \\
2 & 6 & 5 & 4
\end{array}\right)
$$

Examples

Example (Problem 3.3.13)

Compute the reduced Echelon form for

$$
\left(\begin{array}{llll}
2 & 7 & 4 & 0 \\
1 & 3 & 2 & 1 \\
2 & 6 & 5 & 4
\end{array}\right)
$$

Example (Problem 3.3.14)

Compute the reduced Echelon form for

$$
\left(\begin{array}{cccc}
1 & 3 & 2 & 5 \\
2 & 5 & 2 & 3 \\
2 & 7 & 7 & 22
\end{array}\right)
$$

