Acceleration and Velocity Models

MATH 2250 Lecture 08 Book section 2.3

Septebmer 9, 2019

Models for drag
We have seen that in free fall near the Earth's surface, the vertical position $x(t)$ of an object obeys the DE

$$
x^{\prime \prime}(t)=-g
$$

where g is the acceleration of gravity.
We seek to make this model more realistic.

We have seen that in free fall near the Earth's surface, the vertical position $x(t)$ of an object obeys the DE

$$
x^{\prime \prime}(t)=-g
$$

where g is the acceleration of gravity.
We seek to make this model more realistic.
The atmosphere (the air) imparts a force that counteracts motion through air resistance or "drag".
Basic principle: the faster an object moves, the more air resistance encountered.

A simple model: the force of resistance is given by

$$
F_{R}=-k v^{p}, \quad \Longrightarrow \quad x^{\prime \prime}(t)=-g-k v^{p},
$$

where $v(t)=x^{\prime}(t)$, and k and p are positive constants.

- Usually $1 \leqslant p \leqslant 2$, the value of which depends on whether something moves very quickly or very slowly.
- The value of k is determined by shape and size of the object.

Examples

Example

Compute the solution to the IVP

$$
x^{\prime \prime}(t)=-g-k v, \quad x(0)=x_{0}, \quad x^{\prime}(0)=v_{0}
$$

Show that v appoaches a constant, the terminal velocity, for large t.

Examples

Example

Compute the solution to the IVP

$$
x^{\prime \prime}(t)=-g-k v, \quad x(0)=x_{0}, \quad x^{\prime}(0)=v_{0}
$$

Show that v appoaches a constant, the terminal velocity, for large t.

Example

Suppose that a body moves through a resisting medium with resistance proportional to its velocity v, so that $v^{\prime}(t)=-k v$. (a) Show that its velocity and position at time t are given by $v(t)=v_{0} e^{-k t}$ and,

$$
x(t)=x_{0}+\left(\frac{v_{0}}{k}\right)\left(1-e^{-k t}\right)
$$

(b) Conclude that the body travels only a finite distance, and find that distance.

