Applications: mixtures and populations

MATH 2250 Lecture 06
Book sections 1.5 \& 2.1

August 28, 2019

Mixture examples

Example (Example 5, section 1.5)

A 120-gallon tank initially contains 90 lb of salt dissolved in 90 gallons of water. Brine containing $2 \mathrm{lb} / \mathrm{gal}$ of salt flows into the tank at the rate of 4 $\mathrm{gal} / \mathrm{min}$, and the well-stirred mixture flows out of the tank at the rate of 3 $\mathrm{gal} / \mathrm{min}$. How much salt does the tank contain when it is full?

Mixture examples

Example (Section 1.5, problem 39)

Suppose that in the cascade shown in the figure, tank 1 initially contains 100 gal of pure ethanol and tank 2 initially contains 100 gal of pure water. Pure water flows into tank 1 at $10 \mathrm{gal} / \mathrm{min}$, and th eother two flow rates are also $10 \mathrm{gal} / \mathrm{min}$. (a) Find the amounts $x(t)$ and $y(t)$ of ethanol in the two tanks at time $t \geqslant 0$. (b) Find the maximum amount of ethanol ever in tank 2 .

Population models

If $P(t)$ is a population (of people, animal species, bacteria, etc.) as a function of time t, then a model for the evolution of this population is

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=\beta P-\delta P
$$

where β and δ are the non-negative birth and death rates, respectively. Both β and δ can be functions of time t and/or the population P.

Unbounded populations

If the death rate is zero, populations become unbounded.

Example (Section 2.1, problem 9)

The time rate of change of a rabbit population P is proportional to the square root of P. At time $t=0$ (months) the population numbers 100 rabbits and is increasing at the rate of 20 rabbits per month. How many rabbits will there be one year later? What is the population as $t \rightarrow \infty$?

Bounded populations

With non-zero death rates, we can model populations with bounds. A (very) popular model for this is called logistic growth, where the birth and death rates are

$$
\beta=\beta_{0}-\beta_{1} P, \quad \delta=\delta_{0},
$$

where β_{0}, β_{1}, and δ_{0} are all constants. This results in the differential equation

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=a P-b P^{2}
$$

for some constants a and b that depend on β_{0}, β_{1}, and δ_{0}. This is called the logistic equation.

Bounded populations

With non-zero death rates, we can model populations with bounds. A (very) popular model for this is called logistic growth, where the birth and death rates are

$$
\beta=\beta_{0}-\beta_{1} P, \quad \delta=\delta_{0},
$$

where β_{0}, β_{1}, and δ_{0} are all constants. This results in the differential equation

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=a P-b P^{2}
$$

for some constants a and b that depend on β_{0}, β_{1}, and δ_{0}. This is called the logistic equation.

Example (Section 2.1, problem 21)

Suppose that the population $P(t)$ of a contry satisfies the differential equation $\frac{\mathrm{d} P}{\mathrm{~d} t}=k P(200-P)$ with k constant. Its population in 1960 was 100 million and was then growing at the rate of 1 million per year. Predict this country's population for the year 2020. What is the population as $P \rightarrow \infty$?

With non-zero death rates, we can model populations with bounds. A (very) popular model for this is called logistic growth, where the birth and death rates are

$$
\beta=\beta_{0}-\beta_{1} P, \quad \delta=\delta_{0},
$$

where β_{0}, β_{1}, and δ_{0} are all constants. This results in the differential equation

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=a P-b P^{2}
$$

for some constants a and b that depend on β_{0}, β_{1}, and δ_{0}. This is called the logistic equation.

Example (Section 2.1, problem 21)

Suppose that the population $P(t)$ of a contry satisfies the differential equation $\frac{\mathrm{d} P}{\mathrm{~d} t}=k P(200-P)$ with k constant. Its population in 1960 was 100 million and was then growing at the rate of 1 million per year. Predict this country's population for the year 2020. What is the population as $P \rightarrow \infty$? In logistic models, this finite limiting population is sometimes called the carrying capacity.

