First-order linear differential equations

MATH 2250 Lecture 05 Book section 1.5

August 27, 2019

Linear equations

A general first-order differential equation,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x, y)
$$

is too difficult for us to solve in general.
However, a special class of first-order equations can always be solved explicitly.

Linear equations

A general first-order differential equation,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x, y)
$$

is too difficult for us to solve in general.
However, a special class of first-order equations can always be solved explicitly.

A first-order equation is a linear DE if it has the form,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+P(x) y=Q(x)
$$

for some functions P and Q
If P and Q are continuous, we can explicitly solve for unique solutions.

The "trick"

We can always solve first-order linear DE's explicitly.
The idea revolves around generalizing the following example:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2}{x} y=Q(x)
$$

This DE appears difficult to solve, although linear.

The "trick"

We can always solve first-order linear DE's explicitly.
The idea revolves around generalizing the following example:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2}{x} y=Q(x)
$$

This DE appears difficult to solve, although linear.
But notice that if we multiply by x^{2} :

$$
\begin{aligned}
x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 x y & =x^{2} Q(x), \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2} y\right) & =x^{2} Q(x),
\end{aligned}
$$

where we have used the ("reverse") product rule in the second line.

The "trick"

We can always solve first-order linear DE's explicitly.
The idea revolves around generalizing the following example:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2}{x} y=Q(x)
$$

This DE appears difficult to solve, although linear.
But notice that if we multiply by x^{2} :

$$
\begin{aligned}
x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 x y & =x^{2} Q(x), \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2} y\right) & =x^{2} Q(x),
\end{aligned}
$$

where we have used the ("reverse") product rule in the second line.
We can now simply integrate both sides of the equation wrt x :

$$
\begin{aligned}
\int \frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2} y\right) \mathrm{d} x & =\int x^{2} Q(x) \mathrm{d} x \\
x^{2} y(x) & =\int x^{2} Q(x) \mathrm{d} x
\end{aligned}
$$

Assuming we can evaluate the right-hand side integral, we can then easily solve for $y(x)$.

Integrating factors

Previous example: we had to "notice" that multiplying by x^{2} is advantageous. There is a way to generalize this procedure.

Integrating factors

Previous example: we had to "notice" that multiplying by x^{2} is advantageous.
There is a way to generalize this procedure.
Given a first-order linear DE in "standard" form:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+P(x) y=Q(x)
$$

we need to multiply by something so that the left-hand side can be expressed as a derivative of something.

Integrating factors

Previous example: we had to "notice" that multiplying by x^{2} is advantageous.
There is a way to generalize this procedure.
Given a first-order linear DE in "standard" form:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+P(x) y=Q(x)
$$

we need to multiply by something so that the left-hand side can be expressed as a derivative of something.
It turns out that the "correct" multiplication factor is $\rho(x)$, given by

$$
\rho(x)=\exp \left(\int P(x) \mathrm{d} x\right)
$$

Note: The constant of integration after computing $\int P(x) \mathrm{d} x$ can be ignored (and hence set to 0). (Why?)
The function $\rho(x)$ above is called an integrating factor.

Solutions to first-order linear DE's

Our DE is

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+P(x) y=Q(x)
$$

and after multiplying by $\rho(x)$ and using the "reverse" product rule, we obtain

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(\rho(x) y(x))=\rho(x) Q(x) .
$$

Solutions to first-order linear DE's

Our DE is

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+P(x) y=Q(x)
$$

and after multiplying by $\rho(x)$ and using the "reverse" product rule, we obtain

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(\rho(x) y(x))=\rho(x) Q(x)
$$

Thus, the full solution is

$$
y(x)=\frac{C}{\rho(x)}+\frac{1}{\rho(x)} \int \rho(x) Q(x) \mathrm{d} x
$$

where C is determined from initial data.
Note: This formula should not be memorized.

An "algorithm" for solving first-order linear DE's L05-S05

The overall procedure for solving a first-order linear DE is as follows:

1. Ensure the DE is first-order linear. Write in standard form.
2. Compute the integrating factor $\rho(x)$
3. Multiply both sides by $\rho(x)$.
4. If the previous steps are done correctly, the left-hand side can and should be written as the derivative of a product.
5. Integrate both sides wrt x, and solve for $y(x)$.
6. Apply available initial data to determine the unknown constant.

Examples

Example

Solve the initial value problem

$$
y^{\prime}+4 y=\exp (-3 x), \quad y(0)=1
$$

Examples

Example

Solve the initial value problem

$$
y^{\prime}+4 y=\exp (-3 x), \quad y(0)=1
$$

Example

Solve the initial value problem

$$
y^{\prime}+\frac{2}{x} y=x^{3}, \quad y(1)=0
$$

Examples

Example

Solve the initial value problem

$$
y^{\prime}+4 y=\exp (-3 x), \quad y(0)=1
$$

Example

Solve the initial value problem

$$
y^{\prime}+\frac{2}{x} y=x^{3}, \quad y(1)=0
$$

Example

Solve the initial value problem

$$
\left(x^{2}+1\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+3 x y=6 x, \quad y(1)=4
$$

Existence and uniqueness

Linear equations are very convenient: we have existence and uniqueness theory that is stronger than the general case:
Theorem
Given a first-order linear IVP in standard form:

$$
y^{\prime}+P(x) y=Q(x), \quad y\left(x_{0}\right)=y_{0}
$$

assume that P and Q are both continuous in an interval I containing x_{0}. Then there is a unique solution to the IVP on the interval I.

