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L03-S01First-order DE’s

To focus investigations, we’ll begin with a general first-order ODE:

dy

dx
“ fpx, yq,

where f is arbitrary but given.

The bad news: we don’t know how to solve this equation for general f .

The good news: we can gain understanding of the character of the solutions
fairly easily.
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L03-S02Slope fields
A slope field or direction field gives a visual depiction of how solutions to a
differential equation behave.

dy

dx
“ fpx, yq

Example
Draw slope field for

y1 “ 2y

Example
Draw slope field for

y1 “ x´ y
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L03-S03Solution curves

Slope fields give us a way to approximate solution curves:
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L03-S04Demo

See slopefield.ipynb
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L03-S05Existence and uniquness
When computing particular solutions, we want to make sure that we are
computing the solution.

But in general, solutions to initial value problems need not exist, and they
need not be unique.

Example
Compute the solution to

y1 “
1

x
, yp0q “ 1.

Example
Verify that both y1pxq “ 0 and y2pxq “ x2 solve the problem

y1 “ 2
?
y, yp0q “ 0.

Both of the situations above cause practical and philosophical problems.
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L03-S06Existence and uniqueness guarantees
Theorem
For the initial value problem,

dy

dx
“ fpx, yq, ypx0q “ y0,

if both fpx, yq and fypx, yq “
B

Byfpx, yq are continuous in an px, yq region
containing px0, y0q, then this problem has a unique solution on an interval I
containing x0.

Note: the interval I may be very small.

1.3 Slope Fields and Solution Curves 23

THEOREM 1 Existence and Uniqueness of Solutions

Suppose that both the function f .x; y/ and its partial derivative Dyf .x; y/ are
continuous on some rectangle R in the xy-plane that contains the point .a; b/
in its interior. Then, for some open interval I containing the point a, the initial
value problem

dy

dx
D f .x; y/; y.a/ D b (9)

has one and only one solution that is defined on the interval I. (As illustrated in
Fig. 1.3.11, the solution interval I may not be as “wide” as the original rectangle
R of continuity; see Remark 3 below.)

Remark 1 In the case of the differential equation dy=dx D !y of Example 1 and

y

b

R

x a
I

y = y(x)

(a, b)

FIGURE 1.3.11. The rectangle R

and x-interval I of Theorem 1, and the
solution curve y D y.x/ through the
point .a; b/.

Fig. 1.3.2(c), both the function f .x; y/ D !y and the partial derivative @f=@y D !1 are con-
tinuous everywhere, so Theorem 1 implies the existence of a unique solution for any initial
data .a; b/. Although the theorem ensures existence only on some open interval containing
x D a, each solution y.x/ D Ce!x actually is defined for all x.

Remark 2 In the case of the differential equation dy=dx D 2
p
y of Example 5(b) and

Eq. (8), the function f .x; y/ D 2
p
y is continuous wherever y > 0, but the partial derivative

@f=@y D 1=
p
y is discontinuous when y D 0, and hence at the point .0; 0/. This is why it is

possible for there to exist two different solutions y1.x/ D x2 and y2.x/ " 0, each of which
satisfies the initial condition y.0/ D 0.

Remark 3 In Example 7 of Section 1.1 we examined the especially simple differential
equation dy=dx D y2. Here we have f .x; y/ D y2 and @f=@y D 2y. Both of these functions
are continuous everywhere in the xy-plane, and in particular on the rectangle !2 < x < 2,
0 < y < 2. Because the point .0; 1/ lies in the interior of this rectangle, Theorem 1 guarantees
a unique solution—necessarily a continuous function—of the initial value problem

dy

dx
D y2; y.0/ D 1 (10)

on some open x-interval containing a D 0. Indeed this is the solution

y.x/ D
1

1 ! x

that we discussed in Example 7. But y.x/D 1=.1!x/ is discontinuous at x D 1, so our unique
continuous solution does not exist on the entire interval !2 < x < 2. Thus the solution interval
I of Theorem 1 may not be as wide as the rectangle R where f and @f=@y are continuous.
Geometrically, the reason is that the solution curve provided by the theorem may leave the
rectangle—wherein solutions of the differential equation are guaranteed to exist—before it
reaches the one or both ends of the interval (see Fig. 1.3.12).

0 2 4

0

2

4

6

(0, 1)
R

x

y

–2
–2–4

y = 1/(1 – x)

FIGURE 1.3.12. The solution curve
through the initial point .0; 1/ leaves
the rectangle R before it reaches the
right side of R.

The following example shows that, if the function f .x; y/ and/or its partial
derivative @f=@y fail to satisfy the continuity hypothesis of Theorem 1, then the
initial value problem in (9) may have either no solution or many—even infinitely
many—solutions.

Example 6 Consider the first-order differential equation

x
dy

dx
D 2y: (11)

Applying Theorem 1 with f .x; y/ D 2y=x and @f=@y D 2=x, we conclude that Eq. (11) must
have a unique solution near any point in the xy-plane where x 6D 0. Indeed, we see immedi-
ately by substitution in (11) that

y.x/ D Cx2 (12)

In practice we can easily verify that the
right-hand side function and its y-derivative
are continuous near the initial data.

The interval I where a unique solution exists
can be very large or very small – this theorem
does not give insight into this.
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L03-S07Existence and uniqueness examples

Example
Verify that the initial value problem

y1 “
1

x
, yp0q “ 1.

does not satisfy the assumptions of the existeince-uniqueness theorem, and
thus that we cannot guarantee a unique solution to this problem.

Example
Verify that the initial value problem

y1 “ 2
?
y, yp0q “ 0,

does not satisfy the assumptions of the existeince-uniqueness theorem, and
thus that we cannot guarantee a unique solution to this problem.
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L03-S08Existence and uniqueness examples

Example
Does the initial value problem

y1 “
x

x2 ` y2
, yp´1q “ 3,

have a unique solution in a neighborhood around x “ ´1?
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