Math 2250: Chapter 4 Glossary of Terms for Vector Spaces

Vector space

A vector space V is a collection of vectors such that:
(i) V is closed under addition; that is, given the vectors \mathbf{v}_{1} and \mathbf{v}_{2} in V, the vector $\mathbf{v}_{1}+\mathbf{v}_{2}$ is also in V.
(ii) V is closed under scalar multiplication; that is, given a number c in \mathbb{R} and a vector \mathbf{v} in V, we have the vector $c \mathbf{v}$ is in V. ${ }^{1}$

Ex1. \mathbb{R}^{n} and \mathbb{C}^{n} are vector spaces.
Ex2. Solutions to homogeneous linear differential equations form a vector space.
Vector spaces are infinite sets, excepting a few trivial examples.

Subspace

W is a subspace of a given a vector space V if W is contained in V and W is itself a vector space.
To test if a set W a subspace of V, it must be that
(i) The sum of any two vectors in W is also in W
(ii) Any scalar multiple of a vector in W is also in W.

Ex1. Any plane in \mathbb{R}^{3} passing through $\overrightarrow{0}$ is a subspace.
Ex2. The trivial subspace contains only the $\mathbf{0}$ vector.
Ex4. Any vector space is a subspace of itself.
Ex4. A subspace of \mathbb{R}^{2} is the set of all vectors of the form $\left[\begin{array}{ll}0 & a\end{array}\right]^{T}$ where a is any real number. This subspace is all vectors where the x -component is 0 .

Linear combination

Given a set of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ and a set of scalars $c_{1}, c_{2}, \ldots, c_{k}$ a linear combination of these vectors and scalars is:

$$
c_{1} \mathbf{v}+c_{2} \mathbf{v}_{2}+\ldots+c_{k} \mathbf{v}_{k}
$$

Linear combinations allow the creation of new vectors from a given set of vectors using the vector algebra of summation and scalar multiplication.
Ex. We can express the vector $\left[\begin{array}{ll}2 & 3\end{array}\right]^{T}$ as a linear combination of the standard basis of \mathbb{R}^{2} with $c_{1}=2$ and $c_{2}=3$. That is:

$$
2\left[\begin{array}{l}
0 \\
1
\end{array}\right]+3\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

Linear independence and dependence

Linear independence and dependence is a property that describes sets of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, . ., \mathbf{v}_{k}\right\}$.
A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, . ., \mathbf{v}_{k}\right\}$ is linearly independent if the only solution to the equation

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{k} \mathbf{v}_{k}=\mathbf{0}
$$

is trivial, that is, $c_{1}=c_{2}=\ldots=c_{k}=0$.
The set of vectors is linearly dependent if it is not linearly independent.
Ex. The following set of vectors

$$
\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right\}
$$

is linearly independent because the only c_{1} and c_{2} values that satisfy the equation

$$
c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

are $c_{1}=0$ and $c_{2}=0$.
Conversely, the vectors

$$
\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
-2 \\
-2
\end{array}\right]\right\}
$$

[^0]are linearly dependent because the equation
\[

c_{1}\left[$$
\begin{array}{l}
1 \\
1
\end{array}
$$\right]+c_{2}\left[$$
\begin{array}{l}
-2 \\
-2
\end{array}
$$\right]=\left[$$
\begin{array}{l}
0 \\
0
\end{array}
$$\right]
\]

can be solved by setting $c_{1}=2$ and $c_{2}=1$, which are non-zero. Note the above can also be solved by setting $c_{1}=0$ and $c_{2}=0$, but it is the existence of other non-zero solutions that define the set of vectors as dependent.

Span

Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, . ., \mathbf{v}_{k}\right\}$ be a set vectors in a vector space V, then the set W of all linear combinations of $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, . ., \mathbf{v}_{k}\right\}$ is their span.
Ex. The span of the set of vectors

$$
S=\left\{\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\}
$$

is \mathbb{R}^{2}. That is, we write $\operatorname{span}(S)=\mathbb{R}^{2}$.
Note that the span is an infinite set generated from a set of discrete vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, . ., \mathbf{v}_{k}\right\}$. Note that "span" is used as a noun and also sometimes as a verb. One might say the "span of the vectors is ..." (noun) as above, or one could say "the vectors span $\mathbb{R}^{2 "}$ (verb).

Basis

A basis for a vector space V, is a set of S vectors $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ that are (i) linearly independent and (ii) span V; that is $\operatorname{span}(S)=V$.
Ex. The following vectors form a basis for \mathbb{R}^{2} :

$$
S=\left\{\left[\begin{array}{l}
0 \\
5
\end{array}\right],\left[\begin{array}{l}
6 \\
0
\end{array}\right]\right\}
$$

Note that a basis is a special type of a discrete set of vectors S that generates a given vector space - an infinite set. The set S generates (i.e., spans) V with a minimal number of vectors due to the fact that S is linearly independent.

Dimension

The number n of vectors in a basis for a vector space V is the dimension of V, written $\operatorname{dim}(V)=n$. ex. \mathbb{R}^{2} is 2-dimensional because every basis of \mathbb{R}^{2} contains only $n=2$ vectors.

Standard basis of \mathbb{R}^{n}

The standard basis of \mathbb{R}^{n} is the set of unit vectors pointing in the direction of axes on a Cartesian coordinate system. That is, the set of vectors \mathbf{v}_{i} where there is a 1 in the $\mathrm{i}^{\text {th }}$ entry and 0 's everywhere else.
Ex. The standard basis for \mathbb{R}^{2} is:

$$
\left\{\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\}
$$

[^0]: ${ }^{1} c$ could be a complex number

