\qquad
MATH 3150, Section 004
For all the following multiple-choice questions, circle your answers clearly. No partial credit will be awarded; any scratch work will be ignored.

1. Which of the following is an appropriate "guess" for the solution $u(x, t)$ that one uses in the first step of the method of separation of variables?
(a) $u(x, t)=T(t)$
(b) $u(x, t)=0$
(c) $u(x, t)=\phi(x) T(t)$
(d) $u(x, t)=G(x)$
2. We have seen an integral condition of the form

$$
\int_{0}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) \mathrm{d} x= \begin{cases}0, & m \neq n \\ L / 2, & m=n\end{cases}
$$

What is the mathematical name given to a relation of this form?
(a) Separation of variables
(b) An orthogonality condition
(c) The equilibrium or steady-state solution
(d) An ordinary differential equation
3. Consider the ordinary differential equation (ODE) for $\phi(x)$ for $0<x<L$:

$$
\phi^{\prime \prime}(x)+\lambda \phi(x)=0, \quad \phi(0)=0, \quad \phi(L)=0,
$$

where λ is a scalar. Suppose we find a particular λ that is an eigenvalue and a corresponding ϕ that is an eigenfunction. What does this mean?
(a) $\phi(x)$ is the unique solution to the ODE
(b) $\phi(x) \neq 0$ is a solution to the ODE for the given λ
(c) $\phi(x)=0$ is a solution to the ODE with $\lambda \neq 0$.
(d) $\lambda=0$
(e) $\lambda=0$ and $\phi(x)=0$

