Quiz 2	Name:	
MATH 3150, Section 004		January 25, 2017

For all the following multiple-choice questions, circle your answers clearly. No partial credit will be awarded; any scratch work will be ignored.

1. Consider the heat equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ (along with some boundary conditions). The function u(x) that satisfies the heat equation after setting $\frac{\partial u}{\partial t} = 0$ is

- (a) the unique solution
- (b) the homogeneous solution
- (c) the equilibrium or steady-state solution
- (d) the Dirichlet/Neumann solution
- (e) the trivial solution

2. Given an operator $L(\cdot)$ and a known function f(x,t), then suppose that L(u) = f is a linear and homogeneous PDE for the unknown u. Which of the following is true?

- (a) The unique solution to the PDE is $u(x,t) = \exp(-t)\cos x$.
- (b) For any L and f, the only solution is the trivial solution L(u) = 0.
- (c) It must be true that $f(x,t) = \exp(x+t)$
- (d) If u_1 and u_2 individually solve the PDE, the $u_1 + u_2$ also solves the PDE.
- (e) It must be true that $L(u) = \frac{\partial u}{\partial t} k \frac{\partial^2 u}{\partial x^2}$

3. Which of the following PDEs is linear and homogeneous?

(a)
$$\frac{\partial}{\partial t} (u^2) = \sin(x)$$

(b) $\frac{\partial u}{\partial t} = 3 \frac{\partial^2 u}{\partial x^2}$
(c) $u \frac{\partial u}{\partial x} = 0$

- (d) $\sin u + \frac{\partial u}{\partial x} = 0$
- (e) $\frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial}{\partial x} (u^2) = 0$