\qquad
For all the following multiple-choice questions, circle your answers clearly. No partial credit will be awarded; any scratch work will be ignored.

1. Consider the heat equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ (along with some boundary conditions). The function $u(x)$ that satisfies the heat equation after setting $\frac{\partial u}{\partial t}=0$ is
(a) the unique solution
(b) the homogeneous solution
(c) the equilibrium or steady-state solution
(d) the Dirichlet/Neumann solution
(e) the trivial solution
2. Given an operator $L(\cdot)$ and a known function $f(x, t)$, then suppose that $L(u)=f$ is a linear and homogeneous PDE for the unknown u. Which of the following is true?
(a) The unique solution to the PDE is $u(x, t)=\exp (-t) \cos x$.
(b) For any L and f, the only solution is the trivial solution $L(u)=0$.
(c) It must be true that $f(x, t)=\exp (x+t)$
(d) If u_{1} and u_{2} individually solve the PDE , the $u_{1}+u_{2}$ also solves the PDE.
(e) It must be true that $L(u)=\frac{\partial u}{\partial t}-k \frac{\partial^{2} u}{\partial x^{2}}$
3. Which of the following PDEs is linear and homogeneous?
(a) $\frac{\partial}{\partial t}\left(u^{2}\right)=\sin (x)$
(b) $\frac{\partial u}{\partial t}=3 \frac{\partial^{2} u}{\partial x^{2}}$
(c) $u \frac{\partial u}{\partial x}=0$
(d) $\sin u+\frac{\partial u}{\partial x}=0$
(e) $\frac{\partial u}{\partial t}+\frac{1}{2} \frac{\partial}{\partial x}\left(u^{2}\right)=0$
