Department of Mathematics, University of Utah
 Analysis of Numerical Methods I
 MTH6610 - Section 001 - Fall 2017

Lecture notes - Numerical differentiation 2

Friday, December 1, 2017

These notes are not a substitute for class attendance. Their main purpose is to provide a lecture overview summarizing the topics covered.

Recall from last time that we sought to develop approximate formulas for computing derivatives of functions:

$$
\begin{equation*}
f^{(q)}(x) \approx \sum_{j=1}^{N} w_{j} f\left(x_{j}\right), \quad x, x_{1}, \ldots, x_{N} \in[a, b] \tag{1}
\end{equation*}
$$

for $q=0, \ldots, N-1$. By using Taylor's Theorem evaluated at x_{j} expanding around the point x, we determined that the weights w_{j} are given by solutions to the linear system

$$
\left(\begin{array}{ccccc}
1 & & & \tag{2}\\
\left(x_{1}-x\right) & \left(x_{2}-x\right) & \left(x_{3}-x\right) & \cdots & \left(x_{N}-x\right) \\
\left(x_{1}-x\right)^{2} & \left(x_{2}-x\right)^{2} & \left(x_{3}-x\right)^{2} & \cdots & \left(x_{N}-x\right)^{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\left(x_{1}-x\right)^{N-1} & \left(x_{2}-x\right)^{N-1} & \left(x_{3}-x\right)^{N-1} & \cdots & \left(x_{N}-x\right)^{N-1}
\end{array}\right)\left(\begin{array}{c}
w_{1} \\
w_{2} \\
w_{3} \\
\vdots \\
w_{N}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
q! \\
0 \\
\vdots \\
0
\end{array}\right)
$$

where the non-zero entry on the right-hand side is in the $(q+1)$ st entry. In this way we obtain a finite difference rule that is accurate to order $N-q$.
However, we could use an alternative approach: instead we could form a polynomial interpolant of f on the points x_{1}, \ldots, x_{N}, differentiate it, and finally evaluate it at x. In other words, if $\ell_{j}(x)$ are the cardinal Lagrange interpolating polynomials associated to the points x_{1}, \ldots, x_{N}, then we could form the approximation

$$
\begin{aligned}
f^{(q)}(x) & \approx p_{N-1}^{(q)}(x)=\frac{\mathrm{d}^{q}}{\mathrm{~d} x^{q}} \sum_{j=1}^{N} f\left(x_{j}\right) \ell_{j}(x)=\sum_{j=1}^{n} f\left(x_{j}\right) \ell_{j}^{(q)}(x)=\sum_{j=1}^{n} v_{n} f\left(x_{j}\right), \\
v_{j} & =\ell_{j}^{(q)}(x)
\end{aligned}
$$

Since the polynomial interpolant p_{N-1} is accurate to order $(b-a)^{N}$, we expect that, after taking q derivatives, we obtain a finite difference formula with the weights v_{j} that is accurate to order $N-q$, the same as for the w_{j}. We will show here that these two approaches generate exactly the same rule.
Recall our notation: x and x_{j} are all fixed points on $[a, b]$. In the following we will use y as the independent variable of approximation. We first compute an expansion of the cardinal

Lagrange interpolants in the basis $(y-x)^{k}$:

$$
P_{N-1}=\operatorname{span}\left\{1, y-x,(y-x)^{2}, \ldots,(y-x)^{N-1}\right\} \quad \Longrightarrow \quad \ell_{j}(x)=\sum_{k=1}^{N} d_{j, k}(y-x)^{k-1}
$$

The existence and uniqueness of the coefficients $d_{j, k}$ is guaranteed by unisolvence of polynomial interpolation since $\ell_{j} \in P_{N-1}$. We can explicitly construct these coefficients by solving the interpolation problem using the basis $(y-x)^{k-1}$:

$$
\boldsymbol{V} \boldsymbol{d}_{j}=\left(\begin{array}{ccccc}
1 & \left(x_{1}-x\right) & \left(x_{1}-x\right)^{2} & \cdots & \left(x_{1}-x\right)^{N-1} \\
1 & \left(x_{2}-x\right) & \left(x_{2}-x\right)^{2} & \cdots & \left(x_{2}-x\right)^{N-1} \\
1 & \left(x_{3}-x\right) & \left(x_{3}-x\right)^{2} & \cdots & \left(x_{3}-x\right)^{N-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \left(x_{N}-x\right) & \left(x_{N}-x\right)^{2} & \cdots & \left(x_{N}-x\right)^{N-1}
\end{array}\right)\left(\begin{array}{c}
d_{j, 1} \\
d_{j, 2} \\
d_{j, 3} \\
\vdots \\
d_{j, N}
\end{array}\right)=\boldsymbol{e}_{j},
$$

where \boldsymbol{e}_{j} the cardinal unit vector in the j th direction. (Recall that $\ell_{j}\left(x_{k}\right)=\delta_{j, k}$.) The collection of systems above for $j=1, \ldots, N$, implies that the vector \boldsymbol{d}_{j} is simply the j th column of \boldsymbol{V}^{-1} :

$$
\left(\begin{array}{llll}
\boldsymbol{d}_{1} & \boldsymbol{d}_{2} & \cdots & \boldsymbol{d}_{N}
\end{array}\right)=\boldsymbol{V}^{-1}
$$

The weights v_{j} are computed as

$$
v_{j}=\ell_{j}^{(q)}(x)=\left.\left(\frac{d^{q}}{d y^{q}} \sum_{k=1}^{N} d_{j, k}(y-k)^{k-1}\right)\right|_{y=x}=d_{j, q+1} q!
$$

This shows that

$$
v_{j}=\boldsymbol{e}_{q+1}^{T} \boldsymbol{d}_{j} q!\quad \Longrightarrow \quad \boldsymbol{v}^{T}=\left(v_{1}, \ldots, v_{N}\right)=\boldsymbol{e}_{q+1}^{T} \boldsymbol{V}^{-1} q!
$$

Or:

$$
\boldsymbol{v}=\boldsymbol{V}^{-T} \boldsymbol{e}_{q+1} q!.
$$

Note that the matrix in (2) is \boldsymbol{V}^{T} and the right-hand side is $\boldsymbol{e}_{q+1} q$!, so that we also have

$$
\boldsymbol{w}=\boldsymbol{V}^{-T} \boldsymbol{e}_{q+1} q!
$$

Thus, as claimed, the weights produced via a Taylor series approach are the same as those produced via a polynomial interpolation approach.

