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These notes are not a substitute for class attendance. Their main purpose is to
provide a lecture overview summarizing the topics covered.

Recall from last time that we sought to develop approximate formulas for computing deriva-
tives of functions:

f (q)(x) ≈
N∑
j=1

wjf(xj), x, x1, . . . , xN ∈ [a, b], (1)

for q = 0, . . . , N − 1. By using Taylor’s Theorem evaluated at xj expanding around the
point x, we determined that the weights wj are given by solutions to the linear system


1 1 1 · · · 1

(x1 − x) (x2 − x) (x3 − x) · · · (xN − x)
(x1 − x)2 (x2 − x)2 (x3 − x)2 · · · (xN − x)2

...
...

...
. . .

...
(x1 − x)N−1 (x2 − x)N−1 (x3 − x)N−1 · · · (xN − x)N−1




w1

w2

w3
...
wN

 =



0
...
0
q!
0
...
0


,

(2)

where the non-zero entry on the right-hand side is in the (q + 1)st entry. In this way we
obtain a finite difference rule that is accurate to order N − q.
However, we could use an alternative approach: instead we could form a polynomial inter-
polant of f on the points x1, . . . , xN , differentiate it, and finally evaluate it at x. In other
words, if `j(x) are the cardinal Lagrange interpolating polynomials associated to the points
x1, . . . , xN , then we could form the approximation

f (q)(x) ≈ p(q)N−1(x) =
dq

dxq

N∑
j=1

f(xj)`j(x) =

n∑
j=1

f(xj)`
(q)
j (x) =

n∑
j=1

vnf(xj),

vj = `
(q)
j (x)

Since the polynomial interpolant pN−1 is accurate to order (b− a)N , we expect that, after
taking q derivatives, we obtain a finite difference formula with the weights vj that is accurate
to order N−q, the same as for the wj . We will show here that these two approaches generate
exactly the same rule.
Recall our notation: x and xj are all fixed points on [a, b]. In the following we will use y as
the independent variable of approximation. We first compute an expansion of the cardinal

1



Lecture notes – Numerical differentiation 2
MATH6610 Analysis of Numerical Methods I University of Utah

Lagrange interpolants in the basis (y − x)k:

PN−1 = span
{

1, y − x, (y − x)2, . . . , (y − x)N−1
}

=⇒ `j(x) =
N∑
k=1

dj,k(y − x)k−1.

The existence and uniqueness of the coefficients dj,k is guaranteed by unisolvence of polyno-
mial interpolation since `j ∈ PN−1. We can explicitly construct these coefficients by solving
the interpolation problem using the basis (y − x)k−1:

V dj =


1 (x1 − x) (x1 − x)2 · · · (x1 − x)N−1

1 (x2 − x) (x2 − x)2 · · · (x2 − x)N−1

1 (x3 − x) (x3 − x)2 · · · (x3 − x)N−1

...
...

...
. . .

...
1 (xN − x) (xN − x)2 · · · (xN − x)N−1




dj,1
dj,2
dj,3

...
dj,N

 = ej ,

where ej the cardinal unit vector in the jth direction. (Recall that `j(xk) = δj,k.) The
collection of systems above for j = 1, . . . , N , implies that the vector dj is simply the jth
column of V −1:

(d1 d2 · · · dN ) = V −1.

The weights vj are computed as

vj = `
(q)
j (x) =

(
dq

dyq

N∑
k=1

dj,k(y − k)k−1

)∣∣∣∣∣
y=x

= dj,q+1q!

This shows that

vj = eTq+1djq! =⇒ vT = (v1, . . . , vN ) = eTq+1V
−1q!,

Or:

v = V −Teq+1q!.

Note that the matrix in (2) is V T and the right-hand side is eq+1q!, so that we also have

w = V −Teq+1q!.

Thus, as claimed, the weights produced via a Taylor series approach are the same as those
produced via a polynomial interpolation approach.
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