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These notes are not a substitute for class attendance. Their main purpose is to
provide a lecture overview summarizing the topics covered.

Recall from last time that we sought to develop approximate formulas for computing deriva-
tives of functions:
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for ¢ = 0,...,N — 1. By using Taylor’s Theorem evaluated at z; expanding around the

point z, we determined that the weights w; are given by solutions to the linear system

0
1 1 1 1 wy
(r1 — ) (x9 —x) (x3—x) -+ (zy—x) wo
(21 — z)? (w2 — x)? (x3 —2)> - (an —x)? wy | =| ¢ |,
: : : : : 0
(x1 — )Vt (22 — )V (23— )N (xy — )Nt wN :
0

(2)

where the non-zero entry on the right-hand side is in the (¢ 4+ 1)st entry. In this way we
obtain a finite difference rule that is accurate to order N — q.
However, we could use an alternative approach: instead we could form a polynomial inter-

polant of f on the points z1,...,zy, differentiate it, and finally evaluate it at . In other
words, if £;(z) are the cardinal Lagrange interpolating polynomials associated to the points
z1,...,TN, then we could form the approximation
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Since the polynomial interpolant px_1 is accurate to order (b — a)N , we expect that, after
taking ¢ derivatives, we obtain a finite difference formula with the weights v; that is accurate
to order N —g, the same as for the w;. We will show here that these two approaches generate
exactly the same rule.

Recall our notation: z and x; are all fixed points on [a,b]. In the following we will use y as
the independent variable of approximation. We first compute an expansion of the cardinal
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Lagrange interpolants in the basis (y — z)*:
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The existence and uniqueness of the coefficients d; . is guaranteed by unisolvence of polyno-
mial interpolation since £; € Py_1. We can explicitly construct these coefficients by solving

the interpolation problem using the basis (y — x)¥~1:
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where e; the cardinal unit vector in the jth direction. (Recall that ¢;(z)) = d;%.) The
collection of systems above for j = 1,..., N, implies that the vector d; is simply the jth
column of V1

(dy dy -+ dy)=V1

The weights v; are computed as

N
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This shows that

T T T -1
vj =e,djq! = v = (v,...,on) =e 1V g,

v = V*Teqﬂq!.
Note that the matrix in (2) is VT and the right-hand side is e,11¢!, so that we also have
w = V*Teqﬂq!.

Thus, as claimed, the weights produced via a Taylor series approach are the same as those
produced via a polynomial interpolation approach.




