Department of Mathematics, University of Utah
 Analysis of Numerical Methods I
 MTH6610 - Section 001 - Fall 2017
 Lecture notes - Quadrature
 Monday November 27, 2017

These notes are not a substitute for class attendance. Their main purpose is to provide a lecture overview summarizing the topics covered.

Reading: Isaacson \& Keller, Section 7.1
Quadrature is the numerical approximation of definite integrals. The prototypical example is a one-dimensional integral over a compact interval:

$$
\int_{a}^{b} f(x) \mathrm{d} x, \quad-\infty<a<b<\infty .
$$

Perhaps the most common type of quadrature uses N point evaluations of f to approximate this integral:

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx \sum_{j=1}^{N} w_{j} f\left(x_{j}\right)
$$

where the x_{j} are the quadrature abscissae or nodes and the w_{j} are the quadrature weights, both of which must be prescribed or determined.
A popular approach to constructing such quadrature rules is to use polynomial interpolation to construct interpolatory quadrature rules. I.e., if one prescribes x_{1}, \ldots, x_{N} as distinct points in $[a, b]$, then the unique degree- $(N-1)$ polynomial that interpolates $f(x)$ at these points is given by

$$
p_{N-1}(x)=\sum_{j=1}^{N} f\left(x_{j}\right) \ell_{j}(x),
$$

where ℓ_{j} are the N cardinal Lagrange interpolating polynomials associated with the points x_{1}, \ldots, x_{N}. An interpolatory quadrature rule constructs a quadrature rule via the approximation

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx \int_{a}^{b} p_{N-1}(x) \mathrm{d} x=\sum_{j=1}^{N} f\left(x_{j}\right) \int_{a}^{b} \ell_{j}(x) \mathrm{d} x
$$

which shows that we can define the quadrature weights as

$$
w_{j}=\int_{a}^{b} \ell_{j}(x) \mathrm{d} x .
$$

This provides a formulaic procedure for computing interpolatory quadrature rules once x_{1}, \ldots, x_{N} are prescribed.

There is a different, equivalent procedure for computing the weights w_{j} of an interpolatory quadrature rule for the given nodes x_{1}, \ldots, x_{N}. We note that

$$
f \in \operatorname{span}\left\{1, x, x^{2}, \ldots, x^{N-1}\right\} \quad \Rightarrow \quad f(x)=p_{N-1}(x),
$$

so that an interpolatory quadrature rule with the weights w_{j} satisfies

$$
\int_{a}^{b} p(x) \mathrm{d} x=\sum_{j=1}^{N} p\left(x_{j}\right) w_{j}, \quad p \in \operatorname{span}\left\{1, x, x^{2}, \ldots, x^{N-1}\right\} .
$$

Noting that the above constraint is linear in the unknowns w_{j}, then let q_{1}, \ldots, q_{N} be any basis for span $\left\{1, x, \ldots, x^{N-1}\right\}$, so that the vector solution $\boldsymbol{w} \in \mathbb{R}^{N}$ to the linear system

$$
\boldsymbol{V} \boldsymbol{w}=\boldsymbol{b}, \quad(V)_{k, j}=q_{k}\left(x_{j}\right), \quad(b)_{k}=\int_{a}^{b} q_{k}(x) \mathrm{d} x
$$

contains the interpolatory quadrature rule weights w_{j}. Solving the above linear system is an equivalent way of computing weights w_{j} for an interpolatory rule.
The error committed by an interpolatory quadrature rule can be understood by considering the error committed by the interpolation. The following is a standard error formula committed by polynomial interpolation on an interval $[a, b]$:

$$
f(x)-p_{N-1}(x)=\prod_{j=1}^{N}\left(x-x_{j}\right) \frac{f^{(N)}(\xi)}{N!}, \quad \xi=\xi(x) \in[a, b]
$$

The number ξ is usually not computable. However, noting that

$$
\left|\prod_{j=1}^{N}\left(x-x_{j}\right)\right| \leq(b-a)^{N}
$$

then

$$
\max _{x \in[a, b]}\left|f(x)-p_{N-1}(x)\right| \leq \frac{(b-a)^{N}}{N!} \max _{x \in[a, b]}\left|f^{(N)}(x)\right|,
$$

so that the error committed by the interpolatory quadrature rule is
$\left|\int_{a}^{b} f(x) \mathrm{d} x-\int_{a}^{b} p_{N-1}(x) \mathrm{d} x\right| \leq(b-a) \max _{x \in[a, b]}\left|f(x)-p_{N-1}(x)\right| \leq \frac{(b-a)^{N+1}}{N!} \max _{x \in[a, b]}\left|f^{(N)}(x)\right|$.
One frequently uses interpolatory quadrature rules in a composite (i.e,. piecewise) form, so that the interval length $(b-a)$ is usually small, $(b-a)<1$. Under this assumption, one then sees that this provides a convergent interpolatory estimate, so long as the N th derivative of f does not become too large. In particular, the error scales as $(b-a)^{N+1}$ as $(b-a) \rightarrow 0$. We say that the order of the quadrature rule is $N+1$.
A special family of interpolatory quadrature rules is given by the Newton-Cotes rules. These are N-point ($N \geq 2$) rules using equidistant points on $[a, b]$. If the nodes include the endpoints, these are called closed Newton-Cotes rules. If they do not include the endpoints, they are open Newton-Cotes rules.
Finally, we recall that interpolation on equidistant nodes is usually a bad idea for highdegree polynomial interpolation. Therefore, the Newton-Cotes rules are only viable when $N \lesssim 10$.

