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These notes are not a substitute for class attendance. Their main purpose is to
provide a lecture overview summarizing the topics covered.

Reading: Isaacson & Keller, Section 7.1

Quadrature is the numerical approximation of definite integrals. The prototypical example
is a one-dimensional integral over a compact interval:∫ b

a
f(x) dx, −∞ < a < b <∞.

Perhaps the most common type of quadrature uses N point evaluations of f to approximate
this integral: ∫ b

a
f(x) dx ≈

N∑
j=1

wjf(xj),

where the xj are the quadrature abscissae or nodes and the wj are the quadrature weights,
both of which must be prescribed or determined.
A popular approach to constructing such quadrature rules is to use polynomial interpolation
to construct interpolatory quadrature rules. I.e., if one prescribes x1, . . . , xN as distinct
points in [a, b], then the unique degree-(N − 1) polynomial that interpolates f(x) at these
points is given by

pN−1(x) =

N∑
j=1

f(xj)`j(x),

where `j are the N cardinal Lagrange interpolating polynomials associated with the points
x1, . . . , xN . An interpolatory quadrature rule constructs a quadrature rule via the approx-
imation ∫ b

a
f(x) dx ≈

∫ b

a
pN−1(x) dx =

N∑
j=1

f(xj)

∫ b

a
`j(x) dx,

which shows that we can define the quadrature weights as

wj =

∫ b

a
`j(x) dx.

This provides a formulaic procedure for computing interpolatory quadrature rules once
x1, . . . , xN are prescribed.
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There is a different, equivalent procedure for computing the weights wj of an interpolatory
quadrature rule for the given nodes x1, . . . , xN . We note that

f ∈ span
{

1, x, x2, . . . , xN−1
}
⇒ f(x) = pN−1(x),

so that an interpolatory quadrature rule with the weights wj satisfies∫ b

a
p(x) dx =

N∑
j=1

p(xj)wj , p ∈ span
{

1, x, x2, . . . , xN−1
}
.

Noting that the above constraint is linear in the unknowns wj , then let q1, . . . , qN be any
basis for span

{
1, x, . . . , xN−1

}
, so that the vector solution w ∈ RN to the linear system

V w = b, (V )k,j = qk(xj), (b)k =

∫ b

a
qk(x) dx,

contains the interpolatory quadrature rule weights wj . Solving the above linear system is
an equivalent way of computing weights wj for an interpolatory rule.
The error committed by an interpolatory quadrature rule can be understood by consider-
ing the error committed by the interpolation. The following is a standard error formula
committed by polynomial interpolation on an interval [a, b]:

f(x)− pN−1(x) =
N∏
j=1

(x− xj)
f (N)(ξ)

N !
, ξ = ξ(x) ∈ [a, b].

The number ξ is usually not computable. However, noting that∣∣∣∣∣∣
N∏
j=1

(x− xj)

∣∣∣∣∣∣ ≤ (b− a)N ,

then

max
x∈[a,b]

|f(x)− pN−1(x)| ≤ (b− a)N

N !
max
x∈[a,b]

∣∣∣f (N)(x)
∣∣∣ ,

so that the error committed by the interpolatory quadrature rule is∣∣∣∣∫ b

a
f(x) dx−

∫ b

a
pN−1(x) dx

∣∣∣∣ ≤ (b− a) max
x∈[a,b]

|f(x)− pN−1(x)| ≤ (b− a)N+1

N !
max
x∈[a,b]

∣∣∣f (N)(x)
∣∣∣ .

One frequently uses interpolatory quadrature rules in a composite (i.e,. piecewise) form,
so that the interval length (b − a) is usually small, (b − a) < 1. Under this assumption,
one then sees that this provides a convergent interpolatory estimate, so long as the Nth
derivative of f does not become too large. In particular, the error scales as (b − a)N+1 as
(b− a)→ 0. We say that the order of the quadrature rule is N + 1.
A special family of interpolatory quadrature rules is given by the Newton-Cotes rules.
These are N -point (N ≥ 2) rules using equidistant points on [a, b]. If the nodes include the
endpoints, these are called closed Newton-Cotes rules. If they do not include the endpoints,
they are open Newton-Cotes rules.
Finally, we recall that interpolation on equidistant nodes is usually a bad idea for high-
degree polynomial interpolation. Therefore, the Newton-Cotes rules are only viable when
N . 10.
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