Department of Mathematics, University of Utah
Analysis of Numerical Methods I
MTH6610 - Section 001 - Fall 2017
Lecture notes - Fourier Series
Friday November 10, 2017

These notes are not a substitute for class attendance. Their main purpose is to provide a lecture overview summarizing the topics covered.

We consider the approximation of functions on finite intervals via a Fourier Series. This requires some notation. We consider the interval $[0,2 \pi]$, and introduce the space of squareintegrable perioidic functions:

$$
L^{2}=L_{p}^{2}([0,2 \pi] ; \mathbb{C})=\left\{f:[0,2 \pi] \rightarrow \mathbb{C} \mid\|f\|_{L^{2}}<\infty, \text { and } f(0)=f(2 \pi)\right\},
$$

where

$$
\|f\|_{L^{2}}^{2}=\langle f, f\rangle, \quad\langle f, g\rangle=\int_{0}^{2 \pi} f(x) g(x) \mathrm{d} x
$$

We will also need integer Sobolev spaces; for $s=0,1, \ldots$, define $H^{s}=H_{p}^{s}([0,2 \pi] ; \mathbb{C})=\left\{f \in L^{2} \mid f^{(r)} \in L^{2}, r=0, \ldots, s\right.$, and $\left.f^{(r)}(0)=f^{(r)}(2 \pi), r=0, \ldots, s-1\right\}$, where $f^{(s)}$ is the s th derivative of f. Note that $L^{2}=H^{0}$. We define the norm on this space as

$$
\|f\|_{H^{s}}^{2}=\sum_{k=0}^{s}\left\|f^{(k)}\right\|_{L^{2}}^{2} .
$$

Define the L^{2}-orthonormal functions

$$
v_{j}(x)=\frac{1}{\sqrt{2 \pi}} e^{i j x}, \quad j \in \mathbb{Z}
$$

where $i=\sqrt{-1}$ is the imaginary unit. The family $\left\{v_{j}\right\}_{j \in \mathbb{Z}}$ is complete in L^{2}. Therefore,

$$
f \in L^{2} \quad \Longrightarrow \quad f(x)=\sum_{j \in \mathbb{Z}} \widehat{f}_{j} v_{j}(x),
$$

where \widehat{f}_{j} are some constants. Parseval's identity states

$$
\|f\|_{L^{2}}^{2}=\sum_{j \in \mathbb{Z}}\left|\widehat{f_{j}}\right|^{2} .
$$

Formally taking inner products on both sides of the expansion of $f(x)$ shows that

$$
\widehat{f_{j}}=\left\langle f, v_{j}\right\rangle=\frac{1}{\sqrt{2 \pi}} \int_{0}^{2 \pi} f(x) e^{i j x} \mathrm{~d} x
$$

When using f in computational approximations, we frequently represent it as a truncated version of its infinite series. This has the form

$$
f_{N}(x)=\sum_{|j|<N} \widehat{f}_{j} v_{j}(x), \quad N \in \mathbb{N}
$$

A natural question is how large of an error we make in approximating f by f_{N}. To answer this question, first suppose that $f \in H^{s}$ for some $s>0$. We have computed the expansion coefficients \widehat{f}_{j} of f, but we can likewise compute the expansion coefficients $\widehat{f}_{j}^{(1)}$ of $f^{(1)}$:

$$
f \in H^{1} \quad \Longrightarrow \quad f^{(1)} \in L^{2} \Longrightarrow \quad f^{(1)}=\sum_{j \in \mathbb{Z}} \hat{f}_{j}^{(1)} e^{i j x}
$$

where

$$
\widehat{f}_{j}^{(1)}=\left\langle f^{(1)}, v_{j}\right\rangle=\frac{1}{\sqrt{2 \pi}} \int_{0}^{2 \pi} f^{(1)} e^{i j x} \mathrm{~d} x .
$$

A usage of integration by parts yields the identity

$$
\widehat{f}_{j}^{(1)}=i j \widehat{f}_{j} \quad \Longrightarrow \quad\left|\widehat{f}_{j}\right|^{2}=\frac{1}{j^{2}}\left|\widehat{f}_{j}^{(1)}\right|^{2}
$$

This identity will be useful in bounding the error committed by replacing f by f_{N}, since

$$
\begin{aligned}
\left\|f-f_{N}\right\|_{L^{2}}^{2} & =\sum_{|j| \geq N}\left|\widehat{f}_{j}\right|^{2}=\sum_{|j| \geq N} \frac{1}{j^{2}}\left|\widehat{f}_{j}^{(1)}\right|^{2} \leq \frac{1}{N^{2}} \sum_{|j| \geq N}\left|\widehat{f}_{j}^{(1)}\right|^{2} \\
& \leq \frac{1}{N^{2}} \sum_{j \in \mathbb{Z}}\left|\widehat{f}^{(1)}\right|^{2} \leq \frac{1}{N^{2}}\left\|f^{(1)}\right\|_{L^{2}}^{2} \leq \frac{1}{N^{2}}\|f\|_{H^{1}}^{2}
\end{aligned}
$$

Repeating this argument by induction yields the following classical approximation inequality:

$$
f \in H^{s} \quad \Longrightarrow \quad\left\|f-f_{N}\right\|_{L^{2}} \leq N^{-s}\|f\|_{H^{s}}
$$

This statement has a simple interpretation: smoothness of f, i.e., existence of sufficiently many derivatives, implies faster convergence when approximating by Fourier Series.

