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These notes are not a substitute for class attendance. Their main purpose is to
provide a lecture overview summarizing the topics covered.

Reading: Trefethen & Bau III, Lectures 24

Let A ∈ Cn×n. A scalar λ ∈ C is an eigenvalue of A if there exists a nonzero vector v such
that

Av = λv

For a fixed eigenvalue λj , the subspace Vj ⊂ Cn containing vectors v satisfying the above
equation is called the eigenspace associated to λj . The eigenspace Vj has dimension dj , and
this dimension is called the geometric multiplicity of the eigenvalue λj .
Let λ1, . . . , λp be an enumeration of the eigenvalues of A, and let λj have corresponding
eigenspace Vj of dimension dj ≥ 1. Let vj1, . . . , vjdj be any basis for Vj . Then we have the
matrix equality

AV = V Λ,

where the matrices V and Λ are defined as

Λ =


λ1Id1

λ2Id2
. . .

λpIdp

 , V =
(
v11 · · · v1d1 v21 · · · v2d2 · · · vpdp

)

If λ is an eigenvalue of A, the definition implies that

pA(λ) := det(λI −A) = 0,

and also any λ satisfying the above is an eigenvalue of A. The Laplace expansion of the
determinant implies that z 7→ pA(z) is a polynomial of degree n. pA is the called the
characteristic polynomial of A. We see that A must therefore have exactly n eigenvalues
corresponding to the n roots of pA, some of which may be repeated. The multiplicity of a
root λ of pA is called the algebraic multiplicity of the eigenvalue λ.
Given a square matrix A and an invertible matrix S, a similarity transformation applied
to A is the map A 7→ S−1AS. Similarity transformations preserve eigenvalues, algebraic
multiplicities, and geometric multiplicities.
Let λ1, . . . , λn be the eigenvalues of A, with repeated values for algebraic multiplicity greater
than 1. By using properties of the chacateristic polynomial, we have that

detA =

n∏
j=1

λj , trace(A) =

n∑
j=1

λj .
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The geometric multiplicity of an eigenvalue is at most the algebraic multiplicity of that
eigenvalue. Any eigenvalue whose geometric multiplicity is strictly less than its algebraic
multiplicity is called a defective eigenvalue. Any matrix with a defective eigenvalue is called
a defective matrix.
When a matrix is defective, one cannot form an invertible matrix V of its eigenvalues. When
a matrix is nondefective, then V is invertible and we can form the eigenvalue decomposition

A = V ΛV −1,

and in such cases we say that A is diagonalizable, meaning that it is similar to a diagonal
matrix. While not all matrices have eigenvalue decompositions (i.e., defective ones do not),
all matrices do have a Jordan decomposition A = V JV −1, where J has entries only the
main and super-diagonal.
A special class of matrices are those who are diagonalizable via a unitary similar transform,
V −1 = V ∗. We have already seen that Hermitian matrices fall into this class, but the more
general class of matrices are normal matrices. A matrix A is a normal matrix if it commutes
with its conjugate transpose, AA∗ = A∗A. A matrix is a normal matrix if and only if it is
diagonalizable via a unitary matrix.
While not every matrix is unitarilty diagonalizable (i.e., non-normal matrices are not), all
matrices can be brought into upper triangular form via a unitary transformation:

A = UTU∗,

where U is unitary and T is upper triangular. This is called the Schur decomposition.
This decomposition plays a fundamental role in numerical algorithms: since A is similar to
T , they share the same eigenvalues. Since T is triangular, its eigenvalues can be read off
from the diagonal. This provides one of the more well-conditioned strategies for computing
eigenvalues: compute eigenvalues of A from its Schur factor T , which can be computed via
unitary transformations of A.
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