
Department of Mathematics, University of Utah
Analysis of Numerical Methods I

MTH6610 – Section 001 – Fall 2017

Lecture notes: Algorithm stability
Friday September 29, 2017

These notes are not a substitute for class attendance. Their main purpose is
to provide a lecture overview summarizing the topics covered.

Reading: Trefethen & Bau III, Lectures 14, 15

We have previously investigated (i) mathematical conditioning of a problem, and (ii) the
rounding/truncation error introduced by finite-precision representation of numbers. We are
now ready to discuss stabilty of numerical algorithms used to solve mathematical problems.

If f : Rn → Rm is the mathematical problem at hand, we hope that a numerical algorithm
f̃ : Rn → Rm satisfies the property that the relative error it commits is not too large, viz.,
that ∥∥∥f̃(x)− f(x)

∥∥∥
‖f(x)‖

is small. A short digression: the definition of the norm ‖ · ‖ above can be arbitrary, so long
as m,n < ∞. This fact hinges on a well-established result that any norm over a finite-
dimensional space is equivalent to any other norm. I.e., if ‖ · ‖ and ‖ · ‖∗ are any two norms
on Rn, then

c‖x‖ ≤ ‖x‖∗ ≤ C‖x‖, x ∈ Rn,

where the constants c, C are strictly positive and independent of x, but may depend on n.
This result essentially allows us to prove convergence in one norm, and use inequalities like
the above to extend the result to any other norm. Therefore, we use ‖ · ‖ in the remaining
to denote arbitrary norms on Rn and Rm.

Floating-point representations of real numbers have relative errors of at most machine
precision, εmach. Thus, we are hoping for algorithms that satisfy∥∥∥f̃(x)− f(x)

∥∥∥
‖f(x)‖

= O(εmach).

This is a bit unrealistic (or even unreasonable) to request if the mathematical problem f is
ill-conditioned. We therefore expect some dependence on the condition of f to surface.

One basic fact is that there are two approximations happening: first an exact value of x
is truncated to x̃, and then this x̃ is fed into a numerically approximate algorithm for f .
We express the cumulation of these two approximations in the algorithm f̃ . An application
of the triangle inequality yields∥∥∥f̃(x)− f(x)

∥∥∥
‖f(x)‖

≤

∥∥∥f̃(x)− f(x̃)
∥∥∥

‖f(x)‖
+
‖f(x̃)− f(x)‖
‖f(x)‖

(1)

1



Lecture notes: Algorithm stability
MATH6610 Analysis of Numerical Methods I University of Utah

The second term can be handled with our notion of the conditioning of f . Treatment of
the first term requires a definition.

Definition 1. “Forward” stability
An algorithm f̃ is (forward) stable if, for all x ∈ Rn, we have∥∥∥f̃(x)− f(x̃)

∥∥∥
‖f(x̃)‖

= O(εmach),

for some x̃ satisfying ‖x− x̃‖ = ‖x‖O (εmach).

This definition expresses the idea that we recognize f̃ first performs the approximation
x 7→ x̃. Therefore, we should measure the error in f̃ relative to f(x̃). This idea spawns
the quip, “a forward stable algorithm yields an approximate answer to a closely related
question.”

Much of numerical analysis is then devoted to showing that a numerical algorithm is
forward stable, where one hopefully can prove that∥∥∥f̃(x)− f(x̃)

∥∥∥
‖f(x)‖

≤ Cεmach sup
y
κ(f, y). (2a)

The definition of the condition of f yields

‖f(x)− f(x̃)‖
‖f(x)‖

≤ ‖x− x̃‖
‖x‖

sup
y
κ(f, y) (2b)

Finally, floating-point representation satisfies

‖x− x̃‖
‖x‖

= O (εmach) (2c)

Using algorithm stability (2a), problem conditioning (2b), and the finite-precision bound
(2c), we see that our accuracy desideratum (1) is achieved with a bound scaling like
εmach supy κ(f, y). This process of estimation, using the definition of stability we have
introduced, is called forward error analysis.

It turns out that proving forward stability is actually quite hard in pratice. There is a
competing, often easier, strategy for error analysis.

Definition 2. Backward stability
An algorithm f̃ , which approximates f , is backward stable if, for each x ∈ Rn, we have

f̃(x) = f(x̃)

for some x̃ satisfying (2c).

Hence, “a backward stable algorithm yields an exact answer to a closely related question.”
Proving accuracy with a backward stable algorithm is straightforward:∥∥∥f̃(x)− f(x)

∥∥∥
‖f(x)‖

=
‖f(x̃)− f(x)‖
‖f(x)‖

,

2



Lecture notes: Algorithm stability
MATH6610 Analysis of Numerical Methods I University of Utah

and this can be bounded by the conditioning of f (2b) and the precision bound (2c). The
process of proving backward stability of f̃ to achieve an accuracy bound is called backward
error analysis.

In practice, it also turns out that proving that algorithms are backwards stable can be
easier than proving that they are forward stable.

3


