Department of Mathematics, University of Utah
 Analysis of Numerical Methods I
 MTH6610 - Section 001 - Fall 2017

Lecture notes: Floating-point representation Monday September 25, 2017

These notes are not a substitute for class attendance. Their main purpose is to provide a lecture overview summarizing the topics covered.

Reading: Trefethen \& Bau III, Lecture 13

The modern representation of numbers stored and manipulated internally on computers is floating-point format. First note that we usually represent numbers in the decimal ("base$10 ")$ system, e.g.,

This representation has six digits, each taking a value between 0 and 9 . The above representation actually means the following:

$$
34.1503=3 \times 10^{1}+4 \times 10^{0}+1 \times 10^{-1}+5 \times 10^{-2}+0 \times 10^{-3}+3 \times 10^{-4}
$$

but the latter is obviously quite unwieldy. However, this decomposition reveals that we can represent numbers using any base $b \in \mathbb{N}, b \geq 2$ we like. Essentially, need only replace the number 10 above with a different base b to achieve a similar breakdown, of course corresponding to a different number:

$$
b=6, \quad 34.1503=3 \times 6^{1}+4 \times 6^{0}+1 \times 6^{-1}+5 \times 6^{-2}+0 \times 6^{-3}+3 \times 6^{-4},
$$

where now the digits take values between 0 and $b-1=5$. (Sometimes we write something like 34.1503_{6} to emphasize that this number is written in base 6.) This procedure works for any valid base. Humans like base-10 things because our hands, and our feet, have 10 digits.

Computers internally represent and manipulate numbers with the presence or absence of an electrical impulse ($1=$ on or $0=$ off $)$, and so computers "prefer" base- 2 , or binary, representations. Floating-point representation is a way of writing decimal numbers in a type of base- 2 way. We'll describe the high-level idea of modern floating-point representations, the vast majority of which are based on the IEEE 754 standard. A binary digit (a 0 or 1) is called a bit, and 8 sequential bits make up a byte.

Roughly speaking, a floating-point number consists of two integers, a "significand", and an "exponent". The popular single precision and double precision standards use 32 and 64 bits total, respectively, to represent a number. These bits are split between the significand and the exponent. A simplistic example with 10 bits total may devote 7 bits to the significand and 3 to the exponent:

$$
\begin{aligned}
& 1111001011 \rightarrow 1111001, \quad 011 \rightarrow 1111001_{2}, \quad 011_{2} \rightarrow \\
& 1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+0+0+\frac{1}{64}, \quad 0 \times 2^{2}+2^{1}+2^{0} \rightarrow 1.890625 \quad 3 \rightarrow 1.890625 \times 2^{3}=15.125
\end{aligned}
$$

Things like negative signs, Infs, Nans, and some detailed particulars make the actual machine-level map between bits and significand/exponent a little more complicated.

The double precision standard (8 bytes or 64 bits) allocates bits between the exponent and significant to allow exponents (in decimal) to vary between -1022 and 1024, and has approximately 16 decimal digits in the significand. Thus, the largest possible positive value that can be represented in double precision is approximately 2^{1024}, and the closest floating-point-representable number to 0 is approximately 2^{-1022}.

This representation also implies that the significand can only express numbers with a finite (16-digit) precision. This implies, for example, that the distance between the floating-point number 1 and the next largest floating point number is the minimum number that the significand can represent, which in decimal is around 10^{-16}. The maximum error one can then make when rounding exact numbers to their floating point representation is half of this distance; such errors due to floating-point rounding are called roundoff error.

This maximum rounding error (relative to 1) is called machine epsilon, often abbreviated $\epsilon_{\text {mach }}$ and is therefore a bound on relative floating-point errors due to rounding. Relative rounding errors, on the order of 10^{-16} in double precision floating-point, may seem insignificant, but these casue serious problems when performing some numerical computations. Here is a simplistic example: Consider the exact arithmetic computation

$$
\frac{1}{\delta}[1+\delta-1]=1
$$

For δ smaller than machine precision, a straightforward floating-point arithmetic computation of the left-hand side will evaluate to 0 because $(1+\delta)$ rounds to floating-point 1 .

The phenomenon of order-1 errors (or larger) in computations due to machine precision limitations is called loss of significance. Loss of significance can sometimes be avoided by rearranging the order of computations. Here are some examples where loss of significance plays a role.

- Evaluation of $\sqrt{1+x^{4}}-1$ for small, positive x. (Instead, compute as $x^{4} /\left(1+\sqrt{1+x^{4}}\right)$.)
- Evalution of e^{x} for $x<0$ using its (absolutely convergent!) Taylor series. (Instead, compute as $1 / e^{-x}$.)
- Evaluation of $\frac{f(x+h)-f(x)}{h}$ for small h.

A relevant example for this class is what we saw earlier: classical Gram-Schmidt can sometimes provide very incorrect answers, and this happens when loss of significance occurs. Consider the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
\delta & 0 & 0 \\
0 & \delta & 0 \\
0 & 0 & \delta
\end{array}\right)
$$

For any $\delta>0$, this matrix is full rank and so there is no problem in directly applying classical Gram-Schmidt. We seek to orthogonalize these vectors, essentially computing the
decomposition $A=Q R$ for a 4×3 matrix Q with orthonormal columns q_{j}, and a 3×3 matrix R.

A computation in exact arithmetic shows that

$$
q_{1}=\frac{1}{\sqrt{1+\delta^{2}}}\left(\begin{array}{l}
1 \\
\delta \\
0 \\
0
\end{array}\right), \quad r_{2,2} q_{2}=a_{2}-q_{1} q_{1}^{*} a_{2}=\frac{1}{1+\delta^{2}}\left(\begin{array}{c}
\left(1+\delta^{2}\right)-1 \\
-\delta \\
\delta\left(1+\delta^{2}\right) \\
0
\end{array}\right)
$$

The problem here occurs when the first entry of $r_{2,2} q_{2}$ is truncated to 0 instead of the exact δ^{2} when $\delta \ll 1$. This truncation does not adversely affect the actual vector q_{2}, since q_{2} is still nearly orthogonal to q_{1}. To see this, consider the next step of generating q_{3} from a_{3} :
$q_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}0 \\ -1 \\ 1 \\ 0\end{array}\right) \quad \Longrightarrow \quad r_{3,3} q_{3}=a_{3}-q_{1} q_{1}^{*} a_{3}-q_{2} q_{2}^{*} a_{3}=\left(\begin{array}{c}0 \\ -\frac{\delta}{1+\delta^{2}} \\ 0 \\ \delta\end{array}\right) \quad \Longrightarrow \quad q_{3} \approx \frac{1}{\sqrt{2}}\left(\begin{array}{c}0 \\ -1 \\ 0 \\ 1\end{array}\right)$
Our computed q_{3} is clearly not orthogonal to q_{2}.

The modified Gram-Schmidt procedure fixes this problem because it first computes the intermediate vector:

$$
v_{3}=a_{3}-q_{1}^{*} a_{3} \approx\left(\begin{array}{c}
0 \\
-\delta \\
0 \\
\delta
\end{array}\right)
$$

When one takes this vector and orthogonalizes against q_{2}, the (approximate) correct answer is obtained:

$$
r_{3,3} q_{3}=v_{3}-q_{2} q_{2}^{*} v_{3}=\frac{\delta}{2}\left(\begin{array}{c}
0 \\
-1 \\
-1 \\
2
\end{array}\right)
$$

