
Department of Mathematics, University of Utah
Analysis of Numerical Methods I

MTH6610 – Section 001 – Fall 2017

Lecture notes: Floating-point representation
Monday September 25, 2017

These notes are not a substitute for class attendance. Their main purpose is to
provide a lecture overview summarizing the topics covered.

Reading: Trefethen & Bau III, Lecture 13

The modern representation of numbers stored and manipulated internally on computers is
floating-point format. First note that we usually represent numbers in the decimal (“base-
10”) system, e.g.,

34.1503

This representation has six digits, each taking a value between 0 and 9. The above repre-
sentation actually means the following:

34.1503 = 3× 101 + 4× 100 + 1× 10−1 + 5× 10−2 + 0× 10−3 + 3× 10−4,

but the latter is obviously quite unwieldy. However, this decomposition reveals that we
can represent numbers using any base b ∈ N, b ≥ 2 we like. Essentially, need only replace
the number 10 above with a different base b to achieve a similar breakdown, of course
corresponding to a different number:

b = 6, 34.1503 = 3× 61 + 4× 60 + 1× 6−1 + 5× 6−2 + 0× 6−3 + 3× 6−4,

where now the digits take values between 0 and b− 1 = 5. (Sometimes we write something
like 34.15036 to emphasize that this number is written in base 6.) This procedure works for
any valid base. Humans like base-10 things because our hands, and our feet, have 10 digits.

Computers internally represent and manipulate numbers with the presence or absence of
an electrical impulse (1 = on or 0 = off), and so computers “prefer” base-2, or binary, rep-
resentations. Floating-point representation is a way of writing decimal numbers in a type
of base-2 way. We’ll describe the high-level idea of modern floating-point representations,
the vast majority of which are based on the IEEE 754 standard. A binary digit (a 0 or 1)
is called a bit, and 8 sequential bits make up a byte.

Roughly speaking, a floating-point number consists of two integers, a “significand”, and an
“exponent”. The popular single precision and double precision standards use 32 and 64 bits
total, respectively, to represent a number. These bits are split between the significand and
the exponent. A simplistic example with 10 bits total may devote 7 bits to the significand
and 3 to the exponent:

1111001011→ 1111001, 011→ 11110012, 0112 →

1 +
1

2
+

1

4
+

1

8
+ 0 + 0 +

1

64
, 0× 22 + 21 + 20 → 1.890625 3→ 1.890625× 23 = 15.125

1



Lecture notes: Floating-point representation
MATH6610 Analysis of Numerical Methods I University of Utah

Things like negative signs, Infs, Nans, and some detailed particulars make the actual
machine-level map between bits and significand/exponent a little more complicated.

The double precision standard (8 bytes or 64 bits) allocates bits between the exponent and
significant to allow exponents (in decimal) to vary between -1022 and 1024, and has ap-
proximately 16 decimal digits in the significand. Thus, the largest possible positive value
that can be represented in double precision is approximately 21024, and the closest floating-
point-representable number to 0 is approximately 2−1022.

This representation also implies that the significand can only express numbers with a finite
(16-digit) precision. This implies, for example, that the distance between the floating-point
number 1 and the next largest floating point number is the minimum number that the
significand can represent, which in decimal is around 10−16. The maximum error one can
then make when rounding exact numbers to their floating point representation is half of
this distance; such errors due to floating-point rounding are called roundoff error.

This maximum rounding error (relative to 1) is called machine epsilon, often abbreviated
εmach and is therefore a bound on relative floating-point errors due to rounding. Relative
rounding errors, on the order of 10−16 in double precision floating-point, may seem insignif-
icant, but these casue serious problems when performing some numerical computations.
Here is a simplistic example: Consider the exact arithmetic computation

1

δ
[1 + δ − 1] = 1

For δ smaller than machine precision, a straightforward floating-point arithmetic computa-
tion of the left-hand side will evaluate to 0 because (1 + δ) rounds to floating-point 1.

The phenomenon of order-1 errors (or larger) in computations due to machine precision
limitations is called loss of significance. Loss of significance can sometimes be avoided by
rearranging the order of computations. Here are some examples where loss of significance
plays a role.

• Evaluation of
√

1 + x4−1 for small, positive x. (Instead, compute as x4/(1+
√

1 + x4).)

• Evalution of ex for x < 0 using its (absolutely convergent!) Taylor series. (Instead,
compute as 1/e−x.)

• Evaluation of f(x+h)−f(x)
h for small h.

A relevant example for this class is what we saw earlier: classical Gram-Schmidt can some-
times provide very incorrect answers, and this happens when loss of significance occurs.
Consider the matrix

A =


1 1 1
δ 0 0
0 δ 0
0 0 δ


For any δ > 0, this matrix is full rank and so there is no problem in directly applying
classical Gram-Schmidt. We seek to orthogonalize these vectors, essentially computing the

2



Lecture notes: Floating-point representation
MATH6610 Analysis of Numerical Methods I University of Utah

decomposition A = QR for a 4 × 3 matrix Q with orthonormal columns qj , and a 3 × 3
matrix R.

A computation in exact arithmetic shows that

q1 =
1√

1 + δ2


1
δ
0
0

 , r2,2q2 = a2 − q1q∗1a2 =
1

1 + δ2


(1 + δ2)− 1
−δ

δ(1 + δ2)
0


The problem here occurs when the first entry of r2,2q2 is truncated to 0 instead of the exact
δ2 when δ � 1. This truncation does not adversely affect the actual vector q2, since q2 is
still nearly orthogonal to q1. To see this, consider the next step of generating q3 from a3:

q2 =
1√
2


0
−1
1
0

 =⇒ r3,3q3 = a3 − q1q∗1a3 − q2q∗2a3 =


0

− δ
1+δ2

0
δ

 =⇒ q3 ≈
1√
2


0
−1
0
1


Our computed q3 is clearly not orthogonal to q2.

The modified Gram-Schmidt procedure fixes this problem because it first computes the
intermediate vector:

v3 = a3 − q∗1a3 ≈


0
−δ
0
δ


When one takes this vector and orthogonalizes against q2, the (approximate) correct answer
is obtained:

r3,3q3 = v3 − q2q∗2v3 =
δ

2


0
−1
−1
2



3


