DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH
Analysis of Numerical Methods I
MTH6610 — Section 001 — Fall 2017

Lecture notes: Least-squares problems
Monday, September 18, 2017

These notes are not a substitute for class attendance. Their main purpose is to
provide a lecture overview summarizing the topics covered.

Reading: Trefethen & Bau III, Lectures 11

We consider a popular problem in numerical analysis: least-squares problems. Let A €
C™*™ with m > n, and for a given b € C™ suppose we wish to find the solution z to

Ax =b.

Unless A is square and invertible, one cannot find x satisfying this equality for arbitrary b.
However, we can hope to find a solution that makes the residual b — Ax as small as possible,
where we need to defive “small” in a certain metric. Using the familiar 2 norm, we seek to
solve the problem

Find 2 that minimizes the function ||b — Ax||2

We say that this is the least-squares solution to the system Ax = b.

Theorem 1. Let A € C™*™, m > n, be full rank. Then there is a unique least-squares
solution to Ax = b given by

AAz=b = x=(4A"A)1A%
Furthermore, the residual r = Ax — b is orthogonal to range(P).

The formula A*Ax = A*b defining the least-squares solution is the set of so-called normal
equations. If A is full rank, then the reduced SVD of A is

A=UxV*,
and thus an equivalent formula for the least-squares solution is
z=VE~U*.

We also note that if A = QR is the QR factorization of A, then yet another formula for the
least-squares solution is

= (R*R)"" A%

While the normal equations provide an explicit formula, using the QR decomposition to
solve this problem is a more stable algorithm. Finally, we note that much of the above can
be generalized to a weighted least-squares problem of the form

WAz = Wb,

where W is a diagonal m x m matrix.




