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These notes are not a substitute for class attendance. Their main purpose is to
provide a lecture overview summarizing the topics covered.

Reading: Trefethen & Bau III, Lectures 11

We consider a popular problem in numerical analysis: least-squares problems. Let A ∈
Cm×n with m ≥ n, and for a given b ∈ Cm suppose we wish to find the solution x to

Ax = b.

Unless A is square and invertible, one cannot find x satisfying this equality for arbitrary b.
However, we can hope to find a solution that makes the residual b−Ax as small as possible,
where we need to defive “small” in a certain metric. Using the familiar `2 norm, we seek to
solve the problem

Find x that minimizes the function ‖b−Ax‖2

We say that this is the least-squares solution to the system Ax = b.

Theorem 1. Let A ∈ Cm×n, m ≥ n, be full rank. Then there is a unique least-squares
solution to Ax = b given by

A∗Ax = b =⇒ x = (A∗A)−1A∗b

Furthermore, the residual r = Ax− b is orthogonal to range(P ).

The formula A∗Ax = A∗b defining the least-squares solution is the set of so-called normal
equations. If A is full rank, then the reduced SVD of A is

A = Ũ Σ̃Ṽ ∗,

and thus an equivalent formula for the least-squares solution is

x = Ṽ Σ̃−1Ũ∗b.

We also note that if A = QR is the QR factorization of A, then yet another formula for the
least-squares solution is

x = (R∗R)−1A∗b

While the normal equations provide an explicit formula, using the QR decomposition to
solve this problem is a more stable algorithm. Finally, we note that much of the above can
be generalized to a weighted least-squares problem of the form

WAx = Wb,

where W is a diagonal m×m matrix.
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