Department of Mathematics, University of Utah
 Analysis of Numerical Methods I
 MTH6610 - Section 001 - Fall 2017

Lecture notes: Householder transformations
 Friday September 15, 2017

These notes are not a substitute for class attendance. Their main purpose is to provide a lecture overview summarizing the topics covered.

Reading: Trefethen \& Bau III, Lecture 10
Even though the modified Gram-Schmidt procedure is more stable than the standard GramSchmidt algorithm, there is a procedure that performs even more stably than modified Gram-Schmidt: triangularization via Householder reflections.
First some preliminaries:
Lemma 1. Let $P \in \mathbb{C}^{n \times n}$ be an orthogonal projection matrix. Then $I-2 P$ is Hermitian, unitary, and involutory.

This result implies that operations using $I-2 P$ are stably, mainly since they are unitary. The special case of P a rank-1 orthogonal projection matrix is called a Householder reflection. Any rank-1 orthogonal projector is defined by a single vector: the range of P. Let $v \in \mathbb{C}^{n}$ be a unit vector in the range of P. Then $P=v v^{*}$, and

$$
\begin{equation*}
I-2 P=I-2 v v^{*} . \tag{1}
\end{equation*}
$$

Note in particular that application of $I-2 P$ on a vector does note require formation of the full Householder reflection matrix.
The main utility of Householder reflections is the ability to unitarily transform an arbitrary nontrivial vector $x \in \mathbb{C}^{n}$ to a new vector pointing in the direction of the cardinal vector e_{1}, defined by

$$
e_{1}=(1,0, \ldots, 0)^{T} \in \mathbb{C}^{n}
$$

More precisely, for any $\theta \in[0,2 \pi)$, we seek to define $v=v(x)$ so that the resulting Householder reflection accomplishes

$$
(I-2 P) x=\|x\| e^{i \theta} e_{1}
$$

One can see that we can accomplish this by defining

$$
\begin{equation*}
v=\frac{x-\|x\| e^{i \theta} e_{1}}{\|x-\| x\left\|e^{i \theta} e_{1}\right\|} \tag{2}
\end{equation*}
$$

The choice of θ can be arbitrary, but numerical algorithms are generally more stable when such operations transform vectors in "large" ways. I.e., for stability we want

$$
\|x-(I-2 P) x\|=2\|P x\|
$$

to be as large as possible. A computation shows that this happens when

$$
\begin{equation*}
e^{i \theta}=-\frac{x_{1}}{\left|x_{1}\right|}, \tag{3}
\end{equation*}
$$

where x_{1} is the first element in the vector x. Then, given a nontrivial x, the full Householder reflection procedure defines $Q=I-2 P$ via (1), (2), and (3).
How is this useful for $Q R$ factorizations? A Gram-Schmidt procedure for computing $Q R$ factorizations starts with A and attempts to transform it into a unitary Q via column operations, i.e., it performs

$$
A \rightarrow A R^{-1}=Q
$$

In constrast, a Householder transformations procedure for computing a $Q R$ factorization starts with A and attempts to transform it into an upper triangular matrix via row operations, i.e., it performs

$$
A \rightarrow Q^{*} A=R
$$

This triangularization is accomplished via Householder reflections, where a subset of a column is reflected to the direction e_{1}. At step k of the procedure, we have the following block structure for a transformed A :

$$
A=\left[\begin{array}{cc}
\widetilde{R}_{k-1} & \widehat{R}_{k-1} \\
0_{k-1 \times n-k+1} & \widetilde{A}_{k-1}
\end{array}\right] \in \mathbb{C}^{m \times n}, \quad \widetilde{R}_{k-1} \in \mathbb{C}^{(k-1) \times(k-1)}, \quad \widetilde{A}_{k} \in \mathbb{C}^{(m-k+1) \times(k-1)}
$$

where \widetilde{R}_{k-1} is upper triangular and \widehat{R}_{k-1} and \widetilde{A}_{k-1} are dense matrices. The first $k-1$ columns of this transformed $\underset{\sim}{A}$ are already upper triangular; we can enforce this condition on column k by working on \widetilde{A}_{k-1}.
Let $\widetilde{x}_{k} \in \mathbb{C}^{m-k+1}$ be the first column of \widetilde{A}_{k-1}. We define \widetilde{Q}_{k} as the $(m-k+1) \times(m-k+1)$ Householder reflector that takes \widetilde{x}_{k} to $\left\|\widetilde{x}_{k}\right\| e_{1} e^{i \theta} \in \mathbb{C}^{m-k+1}$. Then the matrix

$$
\widetilde{Q}_{k} \widetilde{A}_{k-1}
$$

has first column proportional to e_{1}. Therefore, define the unitary transformation $Q_{k} \in$ $\mathbb{C}^{m \times m}$

$$
Q_{k}=\left(\begin{array}{cc}
I_{(k-1) \times(k-1)} & 0 \\
0 & \widetilde{Q}_{k}
\end{array}\right) .
$$

We have

$$
Q_{k} A=\left[\begin{array}{cc}
\widetilde{R}_{k-1} & \widehat{R}_{k-1} \\
0_{k-1 \times n-k+1} & \widetilde{Q}_{k} \widetilde{A}_{k-1}
\end{array}\right],
$$

and therefore this new matrix is upper triangular in its first k columns. We can then proceed by induction, performing a sequence of unitary operations resulting in

$$
Q_{q-1} Q_{q-2} \cdots Q_{1} A=R
$$

where R is upper triangular and $q=\min (m, n)$. Thus, we have accomplished a $Q R$ factorization for A since the product of unitary matrices is unitary.

