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These notes are not a substitute for class attendance. Their main purpose is to
provide a lecture overview summarizing the topics covered.

Reading: Trefethen & Bau III, Lecture 7

We have seen that if Vk is a k-dimensional subspaace of Cn, then there is a unique rank-k
matrix Pk that is the orthogonal projector onto Vk. If q1, . . . , qk is any orthonormal basis
for this subspace, then

Pk = QkQ
∗
k, Qk = [q1 q2 · · · qk]

This projection matrix is a fundamental tool for orthogonalizing vectors. Note that one can
compute Pkv for some v ∈ Cn using only inner product operations between qj and v, and
need not explicitly form the matrix Pk.
Let a1, . . . , an be any basis for Cn. Our goal is to orthogonalize these vectors: to arith-
metically rearrange them to form an orthonormal basis. The idea is a straightforward:
Because the aj are linearly independent, then aj is not a linear combination of a1, . . . , aj−1.
Therefore, the following inductive procedure generates an orthonormal set q1, . . . , qn via the
scalars rij :

u1 = a1, r11 = ‖u1‖, q1 =
u1
r11

u2 = a2 − P1a2, r22 = ‖u2‖, q2 =
u2
r22

...

uk+1 = ak+1 − Pkak+1, rk+1,k+1 = ‖uk+1‖, qk+1 =
uk+1

rk+1,k+1

Above, we use ‖ · ‖ to mean the vector 2-norm. The q1, . . . , qn are an orthogonalization
of the vectors a1, . . . , an. This algorithm is called the Gram-Schmidt procedure and can
readily be implemented. However, this procedure also reveals a the existence of a particular
matrix factoriztion. To see this, we manipulate the expressions above.
Since Pkak+1 lies in the span of q1, . . . , qk, then we have

Pkak+1 =

k∑
j=1

rj,k+1qj , rj,k+1 = q∗jak+1.

Then defining the scalars rjk as shown, we have he relations

ak+1 = uk+1 + Pkak+1 =
k+1∑
j=1

rj,k+1qj
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If we identify ak as columns of a matrix A, then this representation of the vectors ak is
called the QR decomposition of the matrix A. The following result is more general than
the procedure we’ve defined above.

Theorem 1 (QR decomposition/factorization). Let A ∈ Cm×n be a matrix. Then

A = QR, Q ∈ Cm×m, R ∈ Cm×n

where Q is unitary, and R is an upper triangular matrix. If A is full-rank, the diagonal
elements of R can be chosen to be positive.

The columns of A are the vectors ak, the columns of Q are qk, and the entries of R are
the rij . If A is not full-rank, then the iterative procedure we’ve outlined breaks down
because one vector uk will have zero norm. However, this can be remedied by “skipping”
the formation of qk in the orthogonalization procedure.
If m > n, then columns n + 1, . . . ,m of Q are superfluous and may be omitted. (This is
similar in spirit to singular vectors corresponding to zero singular values.) In this case, we
may instead have the decomposition A = Q̃R̃, where Q̃ is m×n with orthonormal columns,
and R̃ is an n× n upper triangular matrix. This shorthand version of the full factorization
is called the thin/skinny/reduced QR decomposition.
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