Department of Mathematics, University of Utah
 Analysis of Numerical Methods I
 MTH6610 - Section 001 - Fall 2017

Lecture notes: Gram-Schmidt and the $Q R$ decomposition
 Monday September 11, 2017

These notes are not a substitute for class attendance. Their main purpose is to provide a lecture overview summarizing the topics covered.

Reading: Trefethen \& Bau III, Lecture 7

We have seen that if \mathcal{V}_{k} is a k-dimensional subspaace of \mathbb{C}^{n}, then there is a unique rank- k matrix P_{k} that is the orthogonal projector onto \mathcal{V}_{k}. If q_{1}, \ldots, q_{k} is any orthonormal basis for this subspace, then

$$
P_{k}=Q_{k} Q_{k}^{*}, \quad Q_{k}=\left[\begin{array}{llll}
q_{1} & q_{2} & \cdots & q_{k}
\end{array}\right]
$$

This projection matrix is a fundamental tool for orthogonalizing vectors. Note that one can compute $P_{k} v$ for some $v \in \mathbb{C}^{n}$ using only inner product operations between q_{j} and v, and need not explicitly form the matrix P_{k}.
Let a_{1}, \ldots, a_{n} be any basis for \mathbb{C}^{n}. Our goal is to orthogonalize these vectors: to arithmetically rearrange them to form an orthonormal basis. The idea is a straightforward: Because the a_{j} are linearly independent, then a_{j} is not a linear combination of a_{1}, \ldots, a_{j-1}. Therefore, the following inductive procedure generates an orthonormal set q_{1}, \ldots, q_{n} via the scalars $r_{i j}$:

$$
\begin{aligned}
u_{1} & =a_{1}, & r_{11} & =\left\|u_{1}\right\|, \\
r_{22} & =\left\|u_{2}\right\|, & q_{1} & =\frac{u_{1}}{r_{11}} \\
u_{2} & =a_{2}-P_{1} a_{2}, & q_{2} & =\frac{u_{2}}{r_{22}} \\
u_{k+1} & =a_{k+1}-P_{k} a_{k+1}, & r_{k+1, k+1} & =\left\|u_{k+1}\right\|,
\end{aligned} q_{k+1}=\frac{u_{k+1}}{r_{k+1, k+1}}
$$

Above, we use $\|\cdot\|$ to mean the vector 2-norm. The q_{1}, \ldots, q_{n} are an orthogonalization of the vectors a_{1}, \ldots, a_{n}. This algorithm is called the Gram-Schmidt procedure and can readily be implemented. However, this procedure also reveals a the existence of a particular matrix factoriztion. To see this, we manipulate the expressions above.
Since $P_{k} a_{k+1}$ lies in the span of q_{1}, \ldots, q_{k}, then we have

$$
P_{k} a_{k+1}=\sum_{j=1}^{k} r_{j, k+1} q_{j}, \quad r_{j, k+1}=q_{j}^{*} a_{k+1}
$$

Then defining the scalars $r_{j k}$ as shown, we have he relations

$$
a_{k+1}=u_{k+1}+P_{k} a_{k+1}=\sum_{j=1}^{k+1} r_{j, k+1} q_{j}
$$

If we identify a_{k} as columns of a matrix A, then this representation of the vectors a_{k} is called the $Q R$ decomposition of the matrix A. The following result is more general than the procedure we've defined above.

Theorem 1 (QR decomposition/factorization). Let $A \in \mathbb{C}^{m \times n}$ be a matrix. Then

$$
A=Q R, \quad Q \in C^{m \times m}, \quad R \in \mathbb{C}^{m \times n}
$$

where Q is unitary, and R is an upper triangular matrix. If A is full-rank, the diagonal elements of R can be chosen to be positive.

The columns of A are the vectors a_{k}, the columns of Q are q_{k}, and the entries of R are the $r_{i j}$. If A is not full-rank, then the iterative procedure we've outlined breaks down because one vector u_{k} will have zero norm. However, this can be remedied by "skipping" the formation of q_{k} in the orthogonalization procedure.
If $m>n$, then columns $n+1, \ldots, m$ of Q are superfluous and may be omitted. (This is similar in spirit to singular vectors corresponding to zero singular values.) In this case, we may instead have the decomposition $A=\widetilde{Q} \widetilde{R}$, where \widetilde{Q} is $m \times n$ with orthonormal columns, and \widetilde{R} is an $n \times n$ upper triangular matrix. This shorthand version of the full factorization is called the thin/skinny/reduced $Q R$ decomposition.

