DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH Analysis of Numerical Methods I MTH6610 – Section 001 – Fall 2017

Lecture notes: Gram-Schmidt and the QR decomposition Monday September 11, 2017

These notes are <u>not</u> a substitute for class attendance. Their main purpose is to provide a lecture overview summarizing the topics covered.

Reading: Trefethen & Bau III, Lecture 7

We have seen that if \mathcal{V}_k is a k-dimensional subspace of \mathbb{C}^n , then there is a unique rank-k matrix P_k that is the orthogonal projector onto \mathcal{V}_k . If q_1, \ldots, q_k is any orthonormal basis for this subspace, then

$$P_k = Q_k Q_k^*, \qquad \qquad Q_k = [q_1 \ q_2 \ \cdots \ q_k]$$

This projection matrix is a fundamental tool for orthogonalizing vectors. Note that one can compute $P_k v$ for some $v \in \mathbb{C}^n$ using only inner product operations between q_j and v, and need not explicitly form the matrix P_k .

Let a_1, \ldots, a_n be any basis for \mathbb{C}^n . Our goal is to *orthogonalize* these vectors: to arithmetically rearrange them to form an orthonormal basis. The idea is a straightforward: Because the a_j are linearly independent, then a_j is not a linear combination of a_1, \ldots, a_{j-1} . Therefore, the following inductive procedure generates an orthonormal set q_1, \ldots, q_n via the scalars r_{ij} :

$$u_{1} = a_{1}, r_{11} = ||u_{1}||, q_{1} = \frac{u_{1}}{r_{11}}$$

$$u_{2} = a_{2} - P_{1}a_{2}, r_{22} = ||u_{2}||, q_{2} = \frac{u_{2}}{r_{22}}$$

$$\vdots$$

$$u_{k+1} = a_{k+1} - P_{k}a_{k+1}, r_{k+1,k+1} = ||u_{k+1}||, q_{k+1} = \frac{u_{k+1}}{r_{k+1,k+1}}$$

Above, we use $\|\cdot\|$ to mean the vector 2-norm. The q_1, \ldots, q_n are an orthogonalization of the vectors a_1, \ldots, a_n . This algorithm is called the *Gram-Schmidt* procedure and can readily be implemented. However, this procedure also reveals a the existence of a particular matrix factorization. To see this, we manipulate the expressions above.

Since $P_k a_{k+1}$ lies in the span of q_1, \ldots, q_k , then we have

$$P_k a_{k+1} = \sum_{j=1}^k r_{j,k+1} q_j, \qquad r_{j,k+1} = q_j^* a_{k+1}.$$

Then defining the scalars r_{jk} as shown, we have he relations

$$a_{k+1} = u_{k+1} + P_k a_{k+1} = \sum_{j=1}^{k+1} r_{j,k+1} q_j$$

11-

If we identify a_k as columns of a matrix A, then this representation of the vectors a_k is called the QR decomposition of the matrix A. The following result is more general than the procedure we've defined above.

Theorem 1 (QR decomposition/factorization). Let $A \in \mathbb{C}^{m \times n}$ be a matrix. Then

$$A = QR, \qquad \qquad Q \in C^{m \times m}, \qquad \qquad R \in \mathbb{C}^{m \times n}$$

where Q is unitary, and R is an upper triangular matrix. If A is full-rank, the diagonal elements of R can be chosen to be positive.

The columns of A are the vectors a_k , the columns of Q are q_k , and the entries of R are the r_{ij} . If A is not full-rank, then the iterative procedure we've outlined breaks down because one vector u_k will have zero norm. However, this can be remedied by "skipping" the formation of q_k in the orthogonalization procedure.

If m > n, then columns $n + 1, \ldots, m$ of Q are superfluous and may be omitted. (This is similar in spirit to singular vectors corresponding to zero singular values.) In this case, we may instead have the decomposition $A = \tilde{Q}\tilde{R}$, where \tilde{Q} is $m \times n$ with orthonormal columns, and \tilde{R} is an $n \times n$ upper triangular matrix. This shorthand version of the full factorization is called the thin/skinny/reduced QR decomposition.