Department of Mathematics, University of Utah
Analysis of Numerical Methods I
MTH6610 - Section 001 - Fall 2017
\section*{Lecture notes}
Friday, August 25, 2017

These notes are not a substitute for class attendance. Their main purpose is to provide a lecture overview summarizing the topics covered.

Reading: Trefethen \& Bau III, Lectures 4,5
The main goal is to discuss the singular value decomposition (SVD) of $A \in \mathbb{C}^{m \times n}$. Formally, existence of this decomposition is stated as follows:

Theorem 1. Given $A \in \mathbb{C}^{m \times n}$, there exist matrices U, Σ, and V of sizes $m \times m, m \times n$, and $n \times n$, respectively, such that

$$
A=U \Sigma V,
$$

where U and V are unitary matrices, and Σ is a diagonal matrix with real, non-negative diagonal entries.

With $q:=\min (m, n)$, the diagonal entries of $\Sigma, \sigma_{1}, \ldots \sigma_{q}$ are usually ordered in desecending order. The SVD has an attractive geometric interpretation in terms of hyperellipses, and codifies action of the map $A: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$.
When $r=\operatorname{rank}(A)<q$, there are "reduced" versions of the SVD where one truncates U, Σ, and V to sizes $m \times r, r \times r$, and $r \times n$, respectively.
The SVD has numerous attractive uses:

- The SVD is the "general" way to diagonalize matrices. (This is separate from matrix diagonalization via an eigendecomposition.)
- The matrix rank, range, nullspace, 2-norm, and Frobenius norms can be determined explicitly from the SVD.
- The non-zero squared singular values of A match the non-zero eigenvalues of $A^{*} A$ and $A A^{*}$.
- The SVD provides an explicit strategy for low-rank approximation of matrices.

