Department of Mathematics, University of Utah

Analysis of Numerical Methods I

MATH 6610 - Section 001 - Fall 2017

Homework 3

$L U$ and Cholesky factorizations
Due Wednesday, November 1, 2017

Trefethen \& Bau III, Lecture 20: \# 20.1
Trefethen \& Bau III, Lecture 21: \# 21.6
Trefethen \& Bau III, Lecture 22: \# 22.3
Trefethen \& Bau III, Lecture 23: \# 23.1
Trefethen \& Bau III, Lecture 24: \# 24.1, 24.4
Additional problems:
P1. Let $P \in \mathbb{R}^{n \times n}$ be a permutation matrix.
(a) Prove that P^{T} is also a permutation matrix.
(b) Prove that $P^{T}=P^{-1}$.
(c) Prove that if P_{1} and P_{2} are both permutation matrices, then $P_{1} P_{2}$ is also a permutation matrix.
(d) Is it true in general that $P^{2}=P$? If so, prove it. If not, give a counterexample.

P2. Let $A \in \mathbb{C}^{n \times n}$ be invertible. Prove that the $L U$ decomposition algorithm with partial pivoting always successfully computes $P A=L U$.

