Department of Mathematics, University of Utah
 Analysis of Numerical Methods I
 MATH 6610 - Section 001 - Fall 2017
 Homework 2
 Orthogonalization and the $Q R$ decomposition

Due Monday, October 2, 2017

Trefethen \& Bau III, Lecture 6: \# 6.2, 6.4
Trefethen \& Bau III, Lecture 7: \# 7.3, 7.5
Trefethen \& Bau III, Lecture 9: \# 9.2 (You need not internalize lecture \#9 to do this problem)
Trefethen \& Bau III, Lecture 10: \# 10.1, 10.2
Trefethen \& Bau III, Lecture 12: \# 12.3
Additional problems:
P1. Let $M \in[1, \infty)$ and $n \geq 2$ be arbitrary. Explicitly construct a projection matrix $P \in \mathbb{R}^{n \times n}$ such that $\|P\|_{2}=M$.
P2. Let P be a projection matrix. Show that $\operatorname{ker}(P) \perp \operatorname{range}(P)$ if and only if $P=P^{*}$. (I.e., I am asking you to prove a result that justifies the definition of an orthogonal projector.)
P3. Let $A \in \mathbb{C}^{m \times n}$ have rank r and reduced SVD

$$
A=\widetilde{U} \widetilde{\Sigma} \widetilde{V}^{*}
$$

The Moore-Penrose pseudoinverse of A is defined as

$$
A^{+}=\widetilde{V} \widetilde{\Sigma}^{-1} \widetilde{U}^{*}
$$

Prove the following:
(a) If A is invertible (hence also square), then $A^{-1}=A^{+}$.
(b) Prove that the matrices $A A^{+}, A^{+} A, I-A A^{+}$, and $I-A^{+} A$ are all projection matrices. Are they orthogonal? How would you characterize their ranges and kernels in terms of subspaces defined by the matrix A ?
(c) Give and prove conditions on A so that $A A^{+} A=A$.
(d) Show that $\left\|A^{+}\right\|_{2}=1 / \sigma_{r}(A)$
(e) In the induced matrix ℓ^{2} norm $\|\cdot\|$, is the operation $A \mapsto A^{+}$wellconditioned? That is, given an arbitrary but fixed A and a perturbation matrix B, is $\left\|(A+B)^{+}-A^{+}\right\| /\left\|A^{+}\right\|$controllable by $\|B\| /\|A\|$? Prove it, or give a counterexample.

P4. Let $A \in \mathbb{C}^{m \times n}$ and $b \in \mathbb{C}^{n}$ be given. Show that $x=A^{+} b$ solves

$$
\min _{z \in \mathbb{C}^{n}}\|z\| \quad \text { subject to } \quad\|A z-b\|_{2} \text { is minimized }
$$

What is the difference between this x and the linear least-squares solution to $A z=b$?

