DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH Analysis of Numerical Methods I MATH 6610 – Section 001 – Fall 2017 Homework 2 Orthogonalization and the *QR* decomposition

Due Monday, October 2, 2017

Trefethen & Bau III, Lecture 6: # 6.2, 6.4

Trefethen & Bau III, Lecture 7: # 7.3, 7.5

Trefethen & Bau III, Lecture 9: # 9.2 (You need not internalize lecture #9 to do this problem)

Trefethen & Bau III, Lecture 10: # 10.1, 10.2

Trefethen & Bau III, Lecture 12: # 12.3

Additional problems:

- **P1.** Let $M \in [1, \infty)$ and $n \ge 2$ be arbitrary. Explicitly construct a projection matrix $P \in \mathbb{R}^{n \times n}$ such that $\|P\|_2 = M$.
- **P2.** Let P be a projection matrix. Show that $\ker(P) \perp \operatorname{range}(P)$ if and only if $P = P^*$. (I.e., I am asking you to prove a result that justifies the definition of an orthogonal projector.)
- **P3.** Let $A \in \mathbb{C}^{m \times n}$ have rank r and reduced SVD

 $A = \widetilde{U}\widetilde{\Sigma}\widetilde{V}^*$

The Moore-Penrose pseudoinverse of A is defined as

$$A^+ = \widetilde{V}\widetilde{\Sigma}^{-1}\widetilde{U}^*$$

Prove the following:

- (a) If A is invertible (hence also square), then $A^{-1} = A^+$.
- (b) Prove that the matrices AA^+ , A^+A , $I AA^+$, and $I A^+A$ are all projection matrices. Are they orthogonal? How would you characterize their ranges and kernels in terms of subspaces defined by the matrix A?
- (c) Give and prove conditions on A so that $AA^+A = A$.
- (d) Show that $||A^+||_2 = 1/\sigma_r(A)$
- (e) In the induced matrix ℓ^2 norm $\|\cdot\|$, is the operation $A \mapsto A^+$ wellconditioned? That is, given an arbitrary but fixed A and a perturbation matrix B, is $||(A + B)^+ - A^+||/||A^+||$ controllable by ||B||/||A||? Prove it, or give a counterexample.

P4. Let $A \in \mathbb{C}^{m \times n}$ and $b \in \mathbb{C}^n$ be given. Show that $x = A^+ b$ solves

 $\min_{z \in \mathbb{C}^n} ||z|| \quad \text{subject to} \quad ||Az - b||_2 \text{ is minimized}$

What is the difference between this x and the linear least-squares solution to Az = b?