

Massive Model Rendering with Super
Computers

Abe Stephens

1:30 - 1:50pm

Speaker affiliations: SCI Institute, University of Utah and Intel Corporation.

Overview

Focus on shared-memory/multi-core software design.
• Massive models? Why use super computers?

• Challenges: parallel build & rendering.

• Manta architecture.

• Applications & conclusions.

Massive Model Visualization

• Hundreds of millions of primitives.

• Scientific data, CAD, architectural.

• Principle task is static inspection.

Image/Data credits: James Bigler/CSAFE, SGI/Newport News Shipbuilding, Aaron
Knoll/LLNL, The Boeing Company. Rendered using Manta Ray Tracer.

Massive Model Visualization

Double Eagle Tanker
85 M Triangles

Boeing 777
350 M Triangles

CSAFE Container
2.8 million particles
2.1 voxel volume
450 timesteps

Richtmyer-Meshkov
8 GB volume
272 timesteps

Application Scenario

• Quality Engineers
use ray tracer to
visualize problems
with aircraft
assembly.

A. Stephens, S. Boulos, J. Bigler, I. Wald, and S. G. Parker An Application of Scalable
Massive Model Interaction using Shared Memory Systems Proceedings of the
Eurographics Symposium on Parallel Graphics and Visualization, 2006

Application Scenario

Why parallel computers?

• Large amount of processors
and memory.

• The same system used for
scientific computing and
visualization.

• Becoming smaller and cost
less.

• Faster multi-core clusters
require fewer nodes.

16 core Opteron system. (top)
16 processor SGI Itanium
(half rack).

Parallel Acceleration
Structure Build
• Example parallel KD-Tree build.

– Strategies for offline build
• Multi-thread sorting and merging.

• Evaluate split candidates in parallel.

• Build sub-trees in parallel.

Reduced 777 build time from one day to several
hours.

Parallel Ray Tracing
• Easy to break ray tracing into parallel pieces.
• Parallel architecture must focus on scalability.

– User input coordination.

– Thread safe state changes.

– Display overhead.

– Acceleration structure update.

• Both thread level parallelism and instruction level
parallelism effect design.

Processor utilization (green is
unused capacity)

Manta Software Architecture

• Addresses both thread level parallelism and
instruction stream optimization.

• Provides a scalable foundation to solve a
variety of rendering problems.

• Modular software components and Python
bindings.

http://code.sci.utah.edu/Manta
Open Source

Manta Parallel Pipeline

Thread 0

Thread n
.

 .

 .

Ray Tracing

Image Display

Frame Setup

Transactions

Pi
pe

lin
e

B
ar

rie
r

Manta Parallel Pipeline

Thread 0

Thread n

.
 .

 .

Display of previous frame.

Ray tracing, dynamically load balanced.

Manta Parallel Pipeline

Thread 0

Thread n

.
 .

 .

Manta Rendering Stack

• Stack of modular sampling and ray tracing
components.

• Only global synchronization in pipeline.

• Threads execute stack asynchronously.

Thread n

Image Traverser

Pixel Sampler
Renderer

Load balancing

Load balancer tile division, requires thread safety.

Code Example
void Pipeline::inner_loop(int frame,
 int proc, int numProcs) {
 // Global synchronization.
 pipeline_barrier.waitFor(numProcs);

 // Inherently load balanced.
 parallel_animation_callbacks();

 // Imbalanced.
 if (proc == display_proc)
 image_display->
 displayImage(buffer[frame-1]);

 // Dynamically balanced.
 image_traverser->
 render_image(buffer[frame], proc);
}

Code Example
void Raytracer::traceRays(const Context&

context,
 RayPacket& rays) {
 context.camera->makeRays(rays);

 rays.resetHits();
 context.scene->getObject()->intersect(context,

rays);

 for(int i = rays.begin();i<rays.end();){
 if(rays.wasHit(i)){
 const Material* hit_matl =

rays.getHitMaterial(i);
 int end = i+1;
 while(end < rays.end() && rays.wasHit(end)

&&
 rays.getHitMaterial(end) == hit_matl)
 end++;

RayPacket subPacket(rays, i, end);
 hit_matl->shade(context, subPacket);
 i=end;
 } else {
 int end = i+1;
 while(end < rays.end() &&

!rays.wasHit(end))
 end++;
 RayPacket subPacket(rays, i, end);
 context.scene->getBackground()-

>shade(context,
 subPacket);
 i=end;
 }
 }
}

Scalability - 128 processors

Bottom Line

• To achieve scalable multi-threadperformance:
– Use a parallel pipeline with limited synchronization

points.
– Use asynchronous display.

• Optimize for single processor performance.
– Use packet properties for instruction optimization.

• Not really “big iron” any more.

Questions?

This work is supported by:
• U.S. Department of Energy through the Center for the Simulation of Accidental Fires and Explosions, under

grant W-7405-ENG-48
• Utah Center of Excellence for Interactive Ray-Tracing and Photo Realistic Visualization.
• National Science Foundation.
Additional support through internships:
• Silicon Graphics Inc.
• Intel Corporation

A. Stephens, S. Boulos, J. Bigler, I. Wald, and S. G. Parker An Application of Scalable Massive Model
Interaction using Shared Memory Systems Proceedings of the Eurographics Symposium on Parallel
Graphics and Visualization, 2006

A. Knoll, I. Wald, S. G. Parker, C. Hansen. Interactive Isosurface Ray Tracing of Large Octree Volumes.
Scientific Computing and Imaging Institute, University of Utah. Technical Report No UUSCI-2006-026.
(submitted)

J. Bigler, A. Stephens, S. G. Parker. Design for Parallel Interactive Ray Tracing Systems. Scientific
Computing and Imaging Institute, University of Utah. Technical Report No UUSCI-2006-027. (submitted)

