
Interactive Out-Of-Core Visualization
of Large Datasets on Commodity PCs

Wagner Corrêa
Research Staff Member

IBM Watson Research Center

Goal● Interactive visualization of large datasets on
inexpensive PCs– interactive: 10 or more frames per second– large: larger than main memory– inexpensive: under $2,000 per PC

Motivations● Large datasets have many applications– CAD– modeling and simulation– virtual training

Motivations (cont.)● PCs are good alternative to
high-end workstations– better price/performance– easier to upgrade

Challenges● Datasets are larger than main memory● High I/O latency and low I/O bandwidth● Only one graphics pipe per PC● Low screen resolution

Solutions● Out-of-core preprocessing algorithms– spatialization, visibility precomputation, and
simplification● Out-of-core rendering algorithms– approximate visibility and prefetching– hardware-assisted conservative visibility● Out-of-core parallel rendering algorithms– rendering on multi-tile screen using PC cluster

Talk Outline● Out-of-core preprocessing● Out-of-core rendering● Out-of-core parallel rendering● Conclusions

Out-Of-Core Preprocessing● Build an octree– Hierarchical frustum culling– Working set management● Compute visibility coefficients– Occlusion culling– Prefetching● Create simplified versions– Level-of-detail control

Building an Octree

Building an Octree● Break model in sections that fit in memory● For each section– read hierarchy structure (HS) file– perform fake insertions– for each touched node● read old contents ● merge old + new● update contents on disk– update HS file on disk

Building an Octree

In memory at once

Advantages of Our
Spatialization Algorithm● Out-of-core– we need memory for the section, the HS file,

and the contents of one leaf● Incremental– only updates regions touched by the section– important for 3D scanning● Efficient– only reads a modified node once per section

Computing Visibility Coefficients● For each node, for each viewing direction– compute coefficient:
projected area of data/projected area of bbox● Used to determine node priority at runtime

Detail Culling● Avoid rendering unimportant details● Also known as level-of-detail management● LOD switching approaches– based on distance from viewer– optimized (Funkhouser93)● maximize image-quality (benefit)● given time and geometry constraints (cost)– based on visibility information

Creating Levels of Detail● Several static LODs per octree node– uses vertex clustering [Rossignac and Borrel
93]– limitations: popping, different levels between
adjacent nodes● Possible improvements:– dynamic LODs (slower, less suitable for HW)– hysteresis (don't switch LODs too often)

Advantages of Vertex Clustering● Fast and robust● Only needs to traverse the data once● Produces good enough approximations● Has an intuitive, user-controlled accuracy dial● Does not need topological adjacency graph

Preprocessing Tests● Measure time to preprocess datasets● Study tradeoff between spatialization granularity
and octree size● Assess quality of approximations

Test Datasets● UNC power plant● LLNL isosurface● Boeing 777

UNC Power Plant● CAD model● 13 million triangles● High depth complexity● 363 MB of raw data● 1GB after preprocessing

 LLNL Isosurface● Isosurface of turbulent boundary between two
mixing fluids● 473 million triangles● 10GB of data

 Boeing 777● CAD model● 13,525 parts● 352 million triangles● 5GB of data

Test Machine● 2.4 GHz Pentium IV● 512 MB RAM● 250 GB IDE disk● NVIDIA GeForce Quadro FX 500 graphics● Red Hat Linux 8.0● Cost: about $1,000

Power Plant Results● Effect of spatialization granularity

Power Plant Results

Power Plant Results● Octree (15,000 triangles per leaf)– 6m 24s, 15,177 leaves– 3.4 MB for structure, 671 MB for data● Visibility coefficients (20 dirs, 64x64 window)– 2m 36s, 711KB● Levels of detail (up to 5 levels, 1/4 each time)– 8m 5s, 268 MB● Total: about 17m and 1GB of data

LLNL Isosurface Results● Octree (480,000 triangles per leaf)– 1h 24m, 6,469 leaves– 1.3 MB for structure, 10 GB for data● Visibility coefficients (20 dirs, 64x64 window)– 26m, 303 KB● Levels of detail (up to 5 levels, 1/4 each time)– 1h 16m, 2.3 GB● Total: about 3h and 12 GB

 Boeing 777 Results

 Summary of Preprocessing Results● Spatialization– 5X faster than best similar approach (Wald01)● Visibility precomputation– negligible time and storage requirements● Simplification– fast, good enough, low storage requirements

Out-Of-Core Rendering● Load the visible nodes on demand● Multiple threads (as opposed to processes)– visibility computation– cache management– prefetching– rasterization

Occlusion Culling● Classification criteria for occlusion culling
algorithms– from-point vs. from-region– precomputed vs. online– object space vs. image space– conservative vs. approximate

The PLP Algorithm● Approximate volumetric visibility● Keeps the octree nodes in a priority queue called
the front● First visits nodes most likely to be visible● Stops when a budget is reached● Doesn't need to read the geometry– estimates the visible set from the hierarchy

structure (HS) file

The PLP Algorithm The cPLP Algorithm● Conservative extension of PLP● Uses PLP to compute initial guess● Adds nodes to guarantee correct images● Unlike PLP, needs to read geometry– can't determine visible set from HS file only● Three implementations– item buffer, HP test, NV occlusion query

Improving the Accuracy of PLP● Use precomputed visibility coefficients to
estimate node's opacity for current view● Shoot rays from user's viewpoint to estimate
projection priority of octree nodes● Ray contribution is initialized to 1● Attenuate contribution based on opacity of nodes
hit along ray path

Advantages of Improved Heuristic● Better images in approximate mode● Better frame rates in conservative mode– less work for cPLP● Better prefetching– less cache pollution– fewer cache misses● Better visibility-based LOD selection

Improving the Running Time of cPLP● Item buffer– slow, multiple tests at a time, int result● HP occlusion test– fast, one test at a time, boolean result● NV occlusion query– fast, many tests at a time, int result

Geometry Caching● Keep bulk of data on disk● Bring data into memory on demand● Keep in memory the least recently used data

The Geometry Cache● User-defined maximum size● Blocks of variable size● Global lock● Busy flag per block● Work queue of fetch requests● Work queue of prefetch requests● LRU replacement policy

Geometry Prefetching● Guess what data will be needed next● Read data ahead of time● Hides I/O latency

From-Point Prefetching● Improves frame rate by hiding I/O latency● Uses PLP (approximate visibility algorithm)– fine, because prefetching is speculative● Doesn't need geometry (good for out-of-core) ● Doesn't need graphics pipe (good for PCs)● Needs less preprocessing than from-region● Tighter estimate than from-region (less I/O)

The Geometry Cache

Rasterization● Pass geometry to the graphics card– OpenGL rendering– Gouraud shading● Vertex array per octree node– more memory efficient than display lists

Rendering Results● Measure frame rates● Assess image quality● Evaluate effect of multi-threading and
prefetching● Study the importance of frame-to-frame
coherence● Assess how much better the improved visibility
heuristic is

Multi-threading Improves Frame
Rates

sequential fetching
and rendering

concurrent fetching,
rendering, and

prefetching

concurrent fetching
and rendering

Prefetching Amortizes the Cost of I/O
Operations

without prefetching with prefetching

Importance of Frame Coherence

slow user speed normal user speed

fast user speed very fast user speed

How Much Better is the Improved
Visibility Heuristic● For interior views– not much● For exterior views– quite a bit

LLNL Isosurface Rendering Results Summary of Rendering Results● We can render a model 20 times larger than main
memory at interactive frame rates and acceptable
quality on a cheap PC● Performance is heavily dependent on frame-to-
frame-coherence● Sparse ray tracing helps visibility estimation
significantly without much overhead

Out-Of-Core Parallel Rendering● So far– single PC– low resolution images (1024x768)– interactive frame rates● Now– display wall driven by a cluster of PCs– high resolution images (4096x3072)– same or faster frame rates

Parallel Rendering● Sort-first– distribute object-space primitives– each processor is assigned a screen tile● Sort-middle– distribute image-space primitives– geometry processors and rasterizers● Sort-last– distribute pixels– rendering and compositing processors

Choosing the Parallelization Strategy● Why sort-first?– each processor runs entire pipeline for a tile– exploits frame-to-frame coherence well● Why not sort-middle?– needs tight integration between geometry
processing and rasterization ● Why not sort-last?– needs high pixel bandwidth– prevents us from using image occlusion queries

The Out-Of-Core Sort-First Parallel
Architecture

The Out-Of-Core Sort-First Parallel
Architecture● Separate rendering server for each tile● Client does almost no work, and can be as

lightweight as a hand-held computer● MPI to start and synchronize the servers● Options: distributed vs. centralized data

UNC Power Plant Tests● Pre-recorded 500-frame camera path● Cluster sizes– 1, 2, 4, 8, and 16● Disk type– local and network

Old Cluster● Rendering servers– 900 MHz Athlon, 512 MB of RAM– GeForce2, IDE disk● Client: 700 MHz Pentium III● File server: 400 GB SCSI disk array● Network: gigabit Ethernet● Software: Red Hat Linux 7.2, MPI/Pro 1.6.3

Box Plots

interquartile
distance (IQD):
spread

[median – 1.5 IQD, median + 1.5 IQD]:
99.3% of the data (if Gaussian)

median: center

outliers

Results for Approximate Visibility● Median frame rates
improve with
cluster size● Disk type makes
no difference

Obstacles for Perfect Scalability● Duplication of effort– primitives may overlap multiple tiles● Communication overhead– barrier at the end of each frame● Load imbalance– primitives may cluster into regions

Results for Conservative Visibility
Without LODs ● Median frame rates

remain almost
constant● Disk type makes
no difference● Additional
obstacle: visible
geometry increases
with resolution

Summary of Power Plant Parallel
Rendering Results● 1 PC (1024x768 images)– median frame rate: 9.1 frames per second● 16 PCs (4096x3072 images)– median frame rate: 10.8 frames per second– cap on frame rate● gives prefetching better chance to run● reduces frame rate variance

New Cluster● 8 rendering servers:– 2.8 GHz Pentium IV, 512 MB RAM– 35 GB SCSI disk– NVIDIA Quadro 980 XGL graphics card● File server– same plus 200 GB SCSI disk● Gigabit Ethernet● Red Hat Linux 8.0, MPICH 1.2.5

LLNL Isosurface Parallel Rendering
Results● Conservative visibility and LOD● 8 x 1280 x 1024 (10 megapixels)● For outside views– 3-5 frames per second● For inside views– 8-10 frames per second● Frame rates using shared disk almost the same as

frame rates using local disks

Summary of Parallel Rendering
Results● We can scale the resolution of an application

without any loss in performance● Caching and prefetch exploit coherence well:
even with centralized file server, usually limited
by rendering

Comparison to Other Parallel
Rendering Systems● Better frame rates than Humphreys02, but we do

need to change the source code● Faster frame rates and higher resolution than
Wald01, but lower image quality● Similar frame rates to Moreland01, plus image
occlusion queries

Conclusions● iWalk system is practical and scalable● Out-of-core techniques are fast and effective● PCs are an attractive, cost-effective alternative to
high-end machines● The system can help to bring visualization of
large datasets to a broader audience

Research Contributions● Efficient out-of-core algorithm to build octree● Extensions of the PLP visibility algorithm– ray-tracing based approximate heuristic– hardware-assisted conservative extension● Out-of-core, from-point prefetching algorithm● Out-of-core sort-first architecture

Future Work● Support for different types of scenes– textures, volumes (working prototype), dynamics● Efficiency– add geometry and appearance quantization– eliminate geometry replication● Analysis– develop analytic model for system parameters– optimize system parameters automatically

Acknowledgements● Financial support– CNPq (Brazilian research funding agency)– Princeton University– AT&T Research– Oregon Graduate Institute– IBM Research● Datasets– UNC Chapel Hill, UC Berkeley, 3rdTech, LLNL,
Boeing

