Interactive Out-Of-Core Visualization
of Large Datasets on Commodity PCs

Wagner Corréa
Research Staff Member
IBM Watson Research Center

Motivations

» Large datasets have many applications
- CAD
- modeling and simulation
- virtual training

Challenges

* Datasets are larger than main memory
High 1/O latency and low I/O bandwidth
* Only one graphics pipe per PC

e Low screen resolution

Goal

* Interactive visualization of large datasets on
inexpensive PCs

- interactive: 10 or more frames per second
- large: larger than main memory
- inexpensive: under $2,000 per PC

Motivations (cont.)

* PCs are good alternative to
high-end workstations

- better price/performance
- easier to upgrade

Solutions

* Qut-of-core preprocessing algorithms

- spatialization, visibility precomputation, and
simplification

* Out-of-core rendering algorithms
- approximate visibility and prefetching
- hardware-assisted conservative visibility
» Out-of-core parallel rendering algorithms
- rendering on multi-tile screen using PC cluster

preprocessing

compute
coverage
coefficients

create
levels
of detail

determine
visible nodes

load nodes
into cache

rasterize
nodes

user

interface
events

rendering
serves

local network

node
structure

rendering cluster

id

min point
max point
octant
depth

is leaf

vertices
#triangles

multi-tile screen

node
contents

vertices

vertex normals
vertex colors
triangles

vertices

vertex normals
vertex colors
triangles

node
structure

hierarchy
structure
file

node
contents

vertices

vertex normals
vertex colors
triangles

Advantages of Vertex Clustering

Fast and robust

Only needs to traverse the data once

* Produces good enough approximations

Has an intuitive, user-controlled accuracy dial
* Does not need topological adjacency graph

Test Datasets

* UNC power plant
* LLNL isosurface
* Boeing 777

Preprocessing Tests

* Measure time to preprocess datasets

» Study tradeoff between spatialization granularity
and octree size

» Assess quality of approximations

UNC Power Plant

* CAD model

13 million triangles

High depth complexity
363 MB of raw data
1GB after preprocessing

Test Machine

e 2.4 GHz Pentium IV

* 512 MB RAM

* 250 GB IDE disk

* NVIDIA GeForce Quadro FX 500 graphics
* Red Hat Linux 8.0

* Cost: about $1,000

i
I

. . . . o
* Effect of spatialization granularity S
o
~8
[as]
Max vert/leaf Build time Size (MB) Depth Leaves Nodes — Triangles = o
3750 10m 03s 1052 1T 72416 82,761 30,461,154 8 8
7500 Tm 5ls 833 11 33944 : @
15000 6m 24s 671 10 15177 1 ¢ 33|
30000 Sm 17s 578) 6,847 7.825 20,088,458 oY
60000 4m 45s 510) 3,354 3,833 18,301,106 o o
120000 Im 16s 165 8 1,744 1,993 17.509.750 a
240000 3m 57s 126 8 701 801 16215938
o

T
0 50000 100000 150000 200000
Max vertices per leaf

Power Plant Results

* Octree (15,000 triangles per leaf)
- 6m 24s, 15,177 leaves
- 3.4 MB for structure, 671 MB for data

* Visibility coefficients (20 dirs, 64x64 window)
-2m 36s, 711KB

* Levels of detail (up to 5 levels, 1/4 each time)
- 8m 5s, 268 MB

* Total: about 17m and 1GB of data

LLNL Isosurface Results

* Octree (480,000 triangles per leaf)
- 1h 24m, 6,469 leaves
- 1.3 MB for structure, 10 GB for data

* Visibility coefficients (20 dirs, 64x64 window)
- 26m, 303 KB

* Levels of detail (up to 5 levels, 1/4 each time)
-1h 16m, 2.3 GB

* Total: about 3h and 12 GB

Summary of Preprocessing Results

» Spatialization

- 5X faster than best similar approach (Wald01)
* Visibility precomputation

- negligible time and storage requirements
» Simplification

- fast, good enough, low storage requirements

interface

Visibility

display
(Ul

approximate
visibility: PLP
(b)

nodes to
render

conservative | o
pervative | visible set

front

= |

prefetch request

isibility: cPLP)

(©

fetch request

display
(Ul

[oo

“approximate

approximate
visibility: PLP
®)

‘mnd

visible set

conservative

front

isibility: cPLP)
(©

—

|fmlumum

prefetch request

prefetching
®

predicied camera
approximaie
visible set

approximate
visibility: PLP
()

prefetching

predicted camera

approximate
visible set

The PLP Algorithm The cPLP Algorithm

* Conservative extension of PLP
* Uses PLP to compute initial guess
* Adds nodes to guarantee correct images
* Unlike PLP, needs to read geometry
- can't determine visible set from HS file only
* Three implementations

projection priority
P high

- item buffer, HP test, NV occlusion query

. low

Improving the Accuracy of PLP

* Use precomputed visibility coefficients to
estimate node's opacity for current view

» Shoot rays from user's viewpoint to estimate
projection priority of octree nodes

* Ray contribution is initialized to 1

» Attenuate contribution based on opacity of nodes
hit along ray path

Advantages of Improved Heuristic Improving the Running Time of cPLP
* Better images in approximate mode * |tem buffer
* Better frame rates in conservative mode - slow, multiple tests at a time, int result

- less work for cPLP * HP occlusion test
* Better prefetching - fast, one test at a time, boolean result

- less cache pollution * NV occlusion query

- fewer cache misses - fast, many tests at a time, int result

* Better visibility-based LOD selection

(b)

display
(Ul

front

@

| = I

prefetch request

Tetch request aching

prefetching
®

P

predicted camera

approximate

visible set

approximate
visibility: PLP

geomery
cache

display
(Ul

render

approximate

conservative | o
pervative | visible set

visibility: PLP
(b

isibility: cPLP)

©

fetch request

preTerch request

predicted camera

prefetching approximate
® visible set

display
(Ul

Rastgrization

nodes to
render

approximate conservative | .
visibility: PLP isibility: cPLP| ViSiDIe set
) front ©

P — I

prefetch request

fetch request

predicted camera
prefetching approximate
visible set

10

misses
prefetches

misses
prefetches

3
6
6
10000

10000

a
.
4

frame rate (framesisec)
frame rate (framesisec)

2

frame rate (framesisec)

2
2

6000

size (KB)
size (KB)

6000

0 2000
0 2000

100 200 300 400 500 200 300
frame number frame number

Importance of Frame Coherence

W
ge| 1Ty

slow user speed

0 200 400 800 800 1000
frame number

fast user speed

0 50 100 150 200 250
frame number

Attt byt
" [,
| \‘ﬁ‘ | W e

normal user speed

o 100 200 300 400 500

frame number

very fast user speed

20 40 60 80 100 120
frame number

LLNL Isosurface Rendering Results

6

4

frame rate (frames/sec)

2

e Wt
, Y

T
0 100 200

300
frame number

T
400 500 600

How Much Better is the Improved
Visibility Heuristic
* For interior views
- not much
* For exterior views
- quite a bit

Summary of Rendering Results

* We can render a model 20 times larger than main
memory at interactive frame rates and acceptable
quality on a cheap PC

» Performance is heavily dependent on frame-to-
frame-coherence

* Sparse ray tracing helps visibility estimation
significantly without much overhead

user
geometry

rendering . rendering rendering
server server server
projector projector . -

frame rate (frames/s)

frame rate (frames/s)

(15
[

net! locall net2 local2 net4 local4 net8 localg net16 local16

cluster corfiguration (disk type and number of PCs)

-]

net! locall net2 local2 net4 local4 net8 local8 net16 local16

cluster corfiguration (disk type and number of PCs)

New Cluster

* 8 rendering servers:
- 2.8 GHz Pentium 1V, 512 MB RAM
- 35 GB SCSI disk
- NVIDIA Quadro 980 XGL graphics card
* File server
- same plus 200 GB SCSI disk
* Gigabit Ethernet
* Red Hat Linux 8.0, MPICH 1.2.5

Summary of Parallel Rendering
Results

* We can scale the resolution of an application
without any loss in performance

* Caching and prefetch exploit coherence well:
even with centralized file server, usually limited
by rendering

Conclusions

* iWalk system is practical and scalable
» Out-of-core techniques are fast and effective

e PCs are an attractive, cost-effective alternative to
high-end machines

* The system can help to bring visualization of
large datasets to a broader audience

LLNL Isosurface Parallel Rendering
Results

* Conservative visibility and LOD
* 8 x 1280 x 1024 (10 megapixels)
* For outside views

- 3-5 frames per second
* For inside views

- 8-10 frames per second

* Frame rates using shared disk almost the same as
frame rates using local disks

Comparison to Other Parallel
Rendering Systems

» Better frame rates than Humphreys02, but we do
need to change the source code

* Faster frame rates and higher resolution than
Wald01, but lower image quality

» Similar frame rates to Moreland01, plus image
occlusion queries

Research Contributions

* Efficient out-of-core algorithm to build octree
» Extensions of the PLP visibility algorithm

- ray-tracing based approximate heuristic

- hardware-assisted conservative extension
* Out-of-core, from-point prefetching algorithm
» Qut-of-core sort-first architecture

