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Motivations

» Large datasets have many applications
- CAD
- modeling and simulation
- virtual training

Challenges

* Datasets are larger than main memory
High 1/O latency and low I/O bandwidth
* Only one graphics pipe per PC

e Low screen resolution

Goal

* Interactive visualization of large datasets on
inexpensive PCs

- interactive: 10 or more frames per second
- large: larger than main memory
- inexpensive: under $2,000 per PC

Motivations (cont.)

* PCs are good alternative to
high-end workstations

- better price/performance
- easier to upgrade

Solutions

* Qut-of-core preprocessing algorithms

- spatialization, visibility precomputation, and
simplification

* Out-of-core rendering algorithms
- approximate visibility and prefetching
- hardware-assisted conservative visibility
» Out-of-core parallel rendering algorithms
- rendering on multi-tile screen using PC cluster
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Advantages of Vertex Clustering

Fast and robust

Only needs to traverse the data once

* Produces good enough approximations

Has an intuitive, user-controlled accuracy dial
* Does not need topological adjacency graph

Test Datasets

* UNC power plant
* LLNL isosurface
* Boeing 777

Preprocessing Tests

* Measure time to preprocess datasets

» Study tradeoff between spatialization granularity
and octree size

» Assess quality of approximations

UNC Power Plant

* CAD model

13 million triangles

High depth complexity
363 MB of raw data
1GB after preprocessing







Test Machine

e 2.4 GHz Pentium IV

* 512 MB RAM

* 250 GB IDE disk

* NVIDIA GeForce Quadro FX 500 graphics
* Red Hat Linux 8.0

* Cost: about $1,000
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Power Plant Results

* Octree (15,000 triangles per leaf)
- 6m 24s, 15,177 leaves
- 3.4 MB for structure, 671 MB for data

* Visibility coefficients (20 dirs, 64x64 window)
-2m 36s, 711KB

* Levels of detail (up to 5 levels, 1/4 each time)
- 8m 5s, 268 MB

* Total: about 17m and 1GB of data




LLNL Isosurface Results

* Octree (480,000 triangles per leaf)
- 1h 24m, 6,469 leaves
- 1.3 MB for structure, 10 GB for data

* Visibility coefficients (20 dirs, 64x64 window)
- 26m, 303 KB

* Levels of detail (up to 5 levels, 1/4 each time)
-1h 16m, 2.3 GB

* Total: about 3h and 12 GB

Summary of Preprocessing Results

» Spatialization

- 5X faster than best similar approach (Wald01)
* Visibility precomputation

- negligible time and storage requirements
» Simplification

- fast, good enough, low storage requirements
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The PLP Algorithm The cPLP Algorithm

* Conservative extension of PLP
* Uses PLP to compute initial guess
* Adds nodes to guarantee correct images
* Unlike PLP, needs to read geometry
- can't determine visible set from HS file only
* Three implementations

projection priority
P high

- item buffer, HP test, NV occlusion query

. low

Improving the Accuracy of PLP

* Use precomputed visibility coefficients to
estimate node's opacity for current view

» Shoot rays from user's viewpoint to estimate
projection priority of octree nodes

* Ray contribution is initialized to 1

» Attenuate contribution based on opacity of nodes
hit along ray path

Advantages of Improved Heuristic Improving the Running Time of cPLP
* Better images in approximate mode * |tem buffer
* Better frame rates in conservative mode - slow, multiple tests at a time, int result

- less work for cPLP * HP occlusion test
* Better prefetching - fast, one test at a time, boolean result

- less cache pollution * NV occlusion query

- fewer cache misses - fast, many tests at a time, int result

* Better visibility-based LOD selection
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Importance of Frame Coherence
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LLNL Isosurface Rendering Results
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How Much Better is the Improved
Visibility Heuristic
* For interior views
- not much
* For exterior views
- quite a bit

Summary of Rendering Results

* We can render a model 20 times larger than main
memory at interactive frame rates and acceptable
quality on a cheap PC

» Performance is heavily dependent on frame-to-
frame-coherence

* Sparse ray tracing helps visibility estimation
significantly without much overhead
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New Cluster

* 8 rendering servers:
- 2.8 GHz Pentium 1V, 512 MB RAM
- 35 GB SCSI disk
- NVIDIA Quadro 980 XGL graphics card
* File server
- same plus 200 GB SCSI disk
* Gigabit Ethernet
* Red Hat Linux 8.0, MPICH 1.2.5

Summary of Parallel Rendering
Results

* We can scale the resolution of an application
without any loss in performance

* Caching and prefetch exploit coherence well:
even with centralized file server, usually limited
by rendering

Conclusions

* iWalk system is practical and scalable
» Out-of-core techniques are fast and effective

e PCs are an attractive, cost-effective alternative to
high-end machines

* The system can help to bring visualization of
large datasets to a broader audience

LLNL Isosurface Parallel Rendering
Results

* Conservative visibility and LOD
* 8 x 1280 x 1024 (10 megapixels)
* For outside views

- 3-5 frames per second
* For inside views

- 8-10 frames per second

* Frame rates using shared disk almost the same as
frame rates using local disks

Comparison to Other Parallel
Rendering Systems

» Better frame rates than Humphreys02, but we do
need to change the source code

* Faster frame rates and higher resolution than
Wald01, but lower image quality

» Similar frame rates to Moreland01, plus image
occlusion queries

Research Contributions

* Efficient out-of-core algorithm to build octree
» Extensions of the PLP visibility algorithm

- ray-tracing based approximate heuristic

- hardware-assisted conservative extension
* Out-of-core, from-point prefetching algorithm
» Qut-of-core sort-first architecture






