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Goal

« Efficient algorithms for:

¢ Interactive visualization (rasterization and
ray tracing)

¢ Collision detection
¢ Other geometric applications




Interactive Visualization

 Walkthrough
¢+ large man-made structures

e Investigate scientific simulation data




Collision Detection

 Main component of:
¢+ Dynamic simulation
¢+ Navigation and path planning
¢ Haptic rendering
¢ Virtual prototyping




Challenges

e Complex and massive models

¢ Ever-increasing model complexity

St. Matthew,
372M (10GB)

=

= A Puget sound,
C  400M+

Isosurface (472M)
from a turbulence
simulation

Power plant, DOl‘J“bHIe---'éagIe
6 12M tanker, 82M




Issues and Our approaches

e Huge amount of data
¢+ Take tens of giga-bytes in disk and memory

e Data access time
¢+ Major bottleneck

 Orthogonal approaches
¢ Levels-of-detail (LODs) techniques
¢ Cache-coherent layouts

® - &



« LOD approaches

Use simplification
ﬁ given an error 6
——————————————

Reduce the amount of necessary data!

 Cache-coherent layouts
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« LOD approaches
 Cache-coherent layouts

Minimize cache misses

Reduce expensive |/O accesses!
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« LOD approaches
¢+ Dynamic simplification for rasterization
¢ Static LODs for ray tracing

« Cache-coherent layouts
¢+ Cache-efficient layouts of meshes and graphs
¢ Cache-efficient layouts of BVHs
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Outline

 Dynamic simplification for rasterization
 LOD-based ray tracing
 Cache-coherent layouts

e Conclusion
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View-Dependent Rendering

 [Clark 76, Funkhouser and Sequin 93]
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» Static levels-of-detail (LODs)

 Dynamic (or view-dependent)
simplification
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2,000 faces 10,000 faces 50,000 faces
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 Provides smooth and varying LODs over
the mesh [Hoppe 97]

1st person’s view 3™ person’s view
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Dynamic Simplification: Issues

 Representation
¢+ High CPU usages

 Runtime computation and rendering
¢ Low cache-utilization

 Construction
¢+ Out-of-core computations
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Simplification Method

 View-dependent rendering [ Yoon et al. Vis
04]
¢ New multi-resolution hierarchy (CHPM)
¢ Out-of-core construction

¢ Applied to collision detection | Yoon et al. SGP
04] and shadow computation [ Lioyd et al.
EGSR 06]

 Cache-coherent layouts | Yoon et al. SIG
05]
¢+ Higher GPU utilization
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Rendering

20 Pixels of

error
Pentium 4

- .fnimrf- —== o GeForce Go
B = | 6800 Ultra
1GB RAM

Double Eagle Tanker
82 Million triangles
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Meshes (CHPM)

 Novel dynamic simplification
representation
¢ Cluster hierarchy
¢+ Progressive meshes

PM, <+

PM,




Meshes (CHPM)

e Cluster hierarchy

¢ Clusters are spatially localized regions of
the mesh

¢ Used for visibility computations and out-of-
core rendering
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!lus!ere! HllerarcHy o!‘ !rogressllve

Meshes (CHPM)

 Progressive mesh (PM) [ Hoppe 96]

¢ Each cluster contains a PM as an LOD
representation

Vertex split

Vertex split
@ @PM; B

Base mesh |Vertex split ,| Refined mesh
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Runtime

 Coarse-grained view-dependent
refinement

¢ Provided by selecting a front in the cluster
hierarchy

¢ Inter-cluster level refinements

Front




Runtime

 Coarse-grained view-dependent
refinement

¢ Provided by selecting a front in the cluster
hierarchy

¢ Inter-cluster level refinements

Cluster—split
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Runtime

 Coarse-grained view-dependent
refinement

¢ Provided by selecting a front in the cluster
hierarchy

¢ Inter-cluster level refinements

Cluster—split Cluster—collapse
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Runtime

 Fine-grained local refinement
¢+ Supported by performing vertex splits in PMs
¢ Intra-cluster refinements

Vertex split 4

Vertex split

Vertex split




Main Properties of CHPM

e Low refinement cost

¢ 1 or 2 order of magnitude lower than a vertex
hierarchy

e Alleviates visual popping artifacts

¢ Provides smooth transition between different
LODs
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Input model

Performed
out-of-core

-

CHPM




Overview of Building a CHPM

Input model




Overview of Building a CHPM

Input model




Overview of Building a CHPM

Input model

CHPM




Boundary Constraints

Do not simplify boundary triangles

¢ Guarantee crack-free boundaries
Boundary triangles

e Common problem in many hierarchical
simplification algorithms
¢ [Hoppe 98; Prince 00; Govindaraju et al. 03]
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Boundary Constraints
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Cluster Dependencies

 Replaces preprocessing constraints with
runtime dependencies
¢+ Simplify boundary triangles
¢ Consider them at runtime with dependencies




Cluster Dependencies

22 /K triangles 19K triangles




Runtime Performance

Model Pixels of | Frame Mem_. Model size
error rate | footprint
SO 1 28 400MB 1GB
plant
SIE 1 29 600MB 13GB
Matthew

512x512 image resolution, GeForce 5950FX
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« Shadow computations
 Approximate collision detection
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Generation [Lloyd et al. EGSR 06]




[Yoon et al. SGP 04]

 Perform approximate query based on a
simplified mesh

Simplified object A

Exact colliding Simplified colliding
regions regions
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CHPM Representation

e Serve as a dual hierarchy for collision
detection

¢ LOD hierarchy
¢ Bounding volume hierarchy

 Unified representation for:
¢+ Rendering and collision detection

 Advantages
¢+ Improve the performance
¢ Alleviates simulation discontinuities
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Simulation

Lucy model:
28M triangles

Turbine model:
1.7M triangles

Impulse based rigid
body simulation

[Mirtich and Canny 1995]
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Live Demo — Rigid Body Simulation

\-.\

Simulation Example

R
28M Triangle Lucy Model
1.7M Triangle Turbine Blade Model

Dual Pentium 4 2, GHz
1GB RAM

GeForce FX 5950 Ultra 128MB RAM

Error bound:
0.1% of width
of Lucy model

Average query time:
18ms
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Ray Tracing

« Well researched for 25+ years

 Slower than rasterization
- But: asymptotic performance
~ logarithmic
¢+ Good choice for massive models?
¢ Observed only in in-core cases
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Ray Tracing: Performance

* Measured with 2GB main memory
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¥ Incoherent Memory Accesses

* Model with 370M triangles

* Assuming 512x512 resolution
— Hundreds of triangle per pixel
— At most <1% of triangles visible

— Each triangle likely in different
area of memory

Scan of Michelangelo’s St.Matthew:




Our approach

» Add levels-of-detail to ray tracing
— LOD: simplified versions of geometry

» Selection according to LOD metric
— Rasterzation: selection per object
— Ray tracing: selection per ray
* Main benefit:
— Reducing working set size
— Improved memory coherence




Our approach

 R-LODs [Yoon et al. PG 06]
— Highly integrated with kd-tree [Wald et al. 05]
— Can also be integrated with BVHs

« Simple but fast LOD metric
— Works with shadows, reflections

* Integrates ray and cache coherences




R-LOD Representation

* Tightly integrated with kd-nodes

— A plane, material attributes, and surface
deviation

— Computed from PCA
kd-node

of the plane 49
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@LOD-based Runtime Traversal

Modification of efficient kd-tree traversal
— [Wald 04]

Traverse, evaluate metric at each node

If satisfies, intersect with plane instead
— if it hits, we're done

— if not, go back up, try other sub tree

In any case: don't need to go deeper!




Properties of R-LODs

« Compact and efficient LOD representation
— Add only 4 bytes to (8 bytes) kd-node

* Drastic simplification
— Useful for performance improvement




Properties of R-LODs

* Error-controllable LOD rendering

— Error is measured in a screen-space in terms
of pixels-of-error (PoE)

— Provides interactive rendering framework




R-LODs with Different PoE
Values

PoE: Original 1.85 5

(512x512, no anti-aliasing)




Ray Tracing: Performance

* Measured with 2GB main memory
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Ray Tracing: Performance

Achieved up to three order of magnitude speedup!

=% = Render time w/o R-LODs
=#— Render time w/ R-LODs + CO-layout
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eal-time Captured Video — St.
Matthew Model

St. Matthew

128 Million triangles

Dual Xeon processors
with Hyper-Threading

Resolution: 512x512

512 by 512 and 2x2 super-sampling, 4 pixels-of-error 56




Impacts of R-LODs

10X speedup
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eal-time Captured Video — St. &=
Matthew Model

512 x 512, 2 x 2 anti-aliasing, PoE =4

St. Matthew

with reflection &
shadows

128 Million triangles

Dual Xeon processors
with Hyper-Threading

Resolution: 512x512
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 Lower growth rate of memory access

time

Growth rate
during 1993 - 2004

160
140
120
100

80

40
20

Disk RAM CPU speed GPU
access access speed
speed speed during 99 - 04

Courtesy: Anselmo Lastra and
http://www.hcibook.com/e3/online/moores-law/



di I<cer

Fast memory Slow memory

or cache
Block
transfer
Access time: 10%sec 104 sec 1 sec
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Cache-Coherent Layouts

« Cache-aware layouts

¢+ Optimized for particular cache parameters
(e.g., block size)

 Cache-oblivious layouts

¢+ Minimize data access time without any
knowledge of cache parameters

¢ Even work with various hardware and memory
hierarchies




Our Approaches

e Algorithms to compute cache-aware and
cache-oblivious layouts | Yoon et al., SIG
05, Yoon and Lindstrom, Vis 06]

¢ Cache-aware and cache-oblivious metrics
¢ Multi-level optimization framework

¢ Specialization for bounding volume hierarchies
[Yoon and Dinesh, Euro 06]
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Throughput of Dynamic Simplification

St. Matthew
372 Million triangles  [RSUAAG
9 Gigabyte 6800

GPU: GeForce 6800




Va3
\ﬂbe@ <— |nput graph

<+— Cache-oblivious metric

<+— [ocal permutations

Result 1D layout



Graph-based Representation

 Directed graph, G = (V, E)

¢ Represents access patterns of applications
 Vertex

¢+ Data element

¢+ (e.g., mesh vertex or mesh triangle)
 Edge

¢+ Connects two vertices if they are likely to be
accessed sequentially




Problem Statement

 Vertex layout of G = (V, E)
¢+ One-to-one mapping of vertices to indices

mthe 1D layout
— {L...,|V[}
3 4

—> %@

- Compute a () that minimizes the
expected number of cache misses
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Cache-Aware Metric, One Cache Block

 Cache misses when a cache holds only

one block
Already Straddling edge
accessed data (its length = 2)
Block 1 Block 2

 Layout computation
¢ Minimize the number of straddling edges
¢ Graph partitioning

% 68 L(:/




Cache-Aware Metric, Multiple Cache
Blocks

« What if a cache can hold multiple blocks?

Already
accessed data

Straddling edge
(its length = 2)

Block 1 Block 2

 Approximated with cache-aware metric of
a single cache block

¢ Has strong correlation

69 c




Cache-Oblivious Metrics

 Assuming arithmetic block sizes (e.g., 1,
2, 3,..)

¢ Mean of edge lengths, = | x — y| \

¢ Arithmetic mean
x and y are indices of two

vertices of an edge in the layout

 Assuming geometric block sizes (e.g., 1, 2,
4,8, ..)
¢+ Mean of log of edge lengths, > [og |x —vy|
¢ Geometric mean

e L




Metrics
73% of tested 97% of tested
power-of-two block sizes block sizes
N N
21207 ' | | |
Number of Geometric \

cache misses 2r5}

CO layout -f.
T 1KB 16KB  256KB | 2MB 8MB
Block size (log-scale)  Arithmetic
CO layout

e Geometric cache-oblivious metric
¢ Practical and useful
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Correlations with Observed Number of
Cache Misses

R2=0.98 R2=0.81

Uni-diag

0 —p —Bi-dia
L 0.8 —d— Unl 9 .
et ni=-rowr
E 0.6 -+ - Bi-row ]
B . —% —MLA
N o4 COLg ]
w —d— Z.curve
E 0.2 —&— H-order |
g ] —+— Hilber

0 —#—PBetal = |
Geometric Cache misses Arithmetic

CO metric One blk : Mult blks CO metric




Layout Optimization

e Find an optimal layout that minimizes our
metric

¢+ Combinatorial optimization problem

« Employ multi-level construction method

¢ Construct layouts that consider geometrically
increasing blocks sizes

¢ A good heuristic for geometric cache-oblivious
metric




Applications

 View-dependent rendering
e Collision detection

e Ray tracing

e Isocontour extraction
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View-Dependent Rendering

e Layout vertices and triangles of CHPM
¢ Reduce misses in GPU vertex cache

Peak performance: 145 M tri /s on
GeForce 6800 Ultra

Models # of Tri. | Our layout CHPM layout
St. Matthew 372M 106 M/S/I 23 M/s
=]
Isosurface 100M 90 M/s 20 M/s
Double eagle
tanker 82M 47 M/s2 ] 1X 22 M/s
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Ratio
3 S
Simulated 2.5 | CHPM Iayout
cache miss
ratio 2
(misses
per 1.5
triangle) Our layout
1
.y ..;\.;

Lower bound of
8 16 32 64 :
Vertex cache size \/O pti m al Ca_C he
MISS ratio

[Bar-Yehuda and
Gotsman 96]

Test model: Bunny model



Power Plant Model

2
1.9 - Space filling curve (Z-curve)
1.8 [Sagan 94] i
HIEN
Simulated 1.6 -
cache miss 1.5 -

ratio 1.4
1.3

2 1 T~

11 1 Our layout ™= -
1

8 16 32 64
Vertex cache size &__/
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Collision Detection and Ray Tracing

e Bounding volume
Lucy model

hierarchies n 28M triangles

Dragon model

i} . 0.8M triangles
+ Consider geometric *
relationship to capture

runtime access patterns

¢ Achieve 30% ~ 300%
performance improvement

Dynamic simulation




ur

 Uses contour tree [ van
Kreveld et al. 97]

e Use mesh as the input
graph
e Extract an isocontour

that is orthogonal to z-

axis

79
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Puget sound,
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Disk access time is bottleneck

25
Relative 20
Performance
over 15
Z-axis sorted 10
layout c
0
Cache- Z-axis Y-axis Spectral
oblivious sorted sorted layout
layout

Nearly optimized for particular isocontour
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X,y) = 500m
400
Relative 350
Performance oy
250
over 200
Z-axis sorted 150
layout 100
50
0

Cache- Z-axis Y-axis Spectral
oblivious  sorted sorted layout

layout \ /

Memory and L1/L2 cache access times are bottleneck

¢
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Advantages

 General
¢ Applicable to all kinds of polygonal models
¢+ Works well for various applications

Source codes are available
as a library called
OpenCCL

¢ TINU TITOUTITICAUIUIT OT TUITUTITE
applications
¢+ Only layout computation
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Conclusion

 Huge amount (giga-bytes) of data
¢ Limited L1/L2 cache and memory sizes

e Data access time
¢+ Major bottleneck




Conclusion

 Orthogonal approaches
¢ Levels-of-detail (LOD) techniques
¢ Cache-coherent layouts

e Applications
¢ Visualization and geometric processing

 Achieved interactive performance
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Main Requirements

 Generality
¢+ Handle any kind of polygonal models
¢ (e.g., CAD, scanned, isosurface models)

e Interactivity
¢ Provide at least 10 frames per second




Memory Hierarchies

Size SpAeed
1KB 10° ns
1MB 10" ns
1GB Main memory 10%ns

>1GB Disk storage




Low Growth Rate of Memory
Bandwidth

Growth rate
during 1993 — 2004

25 47X

10 ox | 20X —

0 |

Disk RAM CPU
access access speed
speed speed

Recent hardware improvements may
not provide an efficient solution to our problem!

k_j Courtesy: http://www.hcibook.com/e3/online/moores-law/



Ongoing and Future Work

e What is an optimal cluster size?
e Performance depends on computed clusters

e How can we efficiently deal with dynamic
models?

e Require efficient data structure updates and
rebuilding




Summary

e Dynamic simplification representation
(CHPM)

e Low refinement time

e Out-of-core construction method

e Tested with different applications




Cluster Dependencies at Runtime

Force Cluster—split
cluste[—split dependency
i—m 2 /‘J

I\

Cluster hierarchy




Approximate Collision Detection

e Uses dynamic simplification
¢ CHPM representation

e Conservative error metric

¢+ Approximate collision results introduces only
epilson distance error

e Two lemmas

¢ Guarantees that our runtime LOD selection
method satisfies the metric

« Employ GPU-based collision detection
T 94 =




T
Image Quality Comparison — Forest
Model (32M Triangles)




Ongoing and Future Work

e Investigate dynamic simplification to
improve visual quality

e Extend to global illumination
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New Results

 Dynamic simplification method
¢ CHPM representation
¢ Out-of-core construction method
¢ Application to collision detection

e Cache-oblivious layout algorithm
¢ Cache-oblivious metric
¢ Multilevel minimization




Future Work on Visualization

 Achieve end-to-end interactivity
¢ Requires no or minimal preprocessing

e Handle time-varying geometry

Just one instance
among 27K time steps
during simulation




Future Work on Collision Detection

 Handle dynamically deformable models
(e.g. cloth simulation)
¢ Requires no or minimal preprocessing

e Support penetration depth computations

Obj 1 Obj 2
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Future Work on Cache-Coherent
Layouts

 Develop cache-aware layouts
e Investigate optimality

e Apply to other applications and other
representations
¢+ Shortest path computation, etc.

 Provide multiresolution functionality from
layouts

T, 101



Sequence

1.2
1.1 -

® [Hoppe 99] ‘

Simulated
cache 0.9 -

* Optimized for 16 vertex cache size
with FIFO replacement

miss ratio 0.8 Our Iayou\
(misses 0.74' ;

per 0.6
triangle) g

0.4 T

Optimized for no particular cache size |

0.3

@@ 102

8 16 32 64
Vertex cache size
Test model: Bunny model



Limitations

e Monotonicity assumption
¢+ May not work well for all applications

 Does not compute global optimum
¢ Greedy solution




Conclusion

 LOD techniques and cache-efficient
layouts

¢ Applied them to visualization and
collision detection

¢+ Demonstrated with a wide variety of
polygonal models

¢ Achieved interactive performance on
commodity hardware
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\
Step 1.

Coarsening N\ o

Sh
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\ Step 2:
\\ Ordering of coarsest graph

\
N

Sh
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Multilevel Minimization

Step 3.
\ RefiInement and f

\ local optimization
\ /




Dynamic Simplification: Issues

 Representation
¢+ High CPU usages

 Runtime computation and rendering
¢ Low cache-utilization

 Construction
¢+ Out-of-core computations
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 Representation
¢+ High CPU usages

« Runtime computation and rendering
¢+ Low cache-utilization

e Construction
¢+ Out-of-core computations
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Low Computation Speed

 Rendering throughput
¢ GPU capable of 100M+ triangles per sec
¢+ Only achieved 20M triangles per sec

e Low cache utilization

¢+ Cannot efficiently use triangle strips for
dynamically generated geometry




Sequence

i
=
[
=
=
[
=
=

1 TNe power plant model, wnich nas an Irregular geomertric AISripution.

o O
0] (.On—"

_--_-

Avg. cache
misses per
o

triangle (ACMR)

-©-HRS [13]
~== COML [30]| -
—¢ COLg

—_—_-____

o
(9)]

1

o

=
=
=

Yo 25% 50% 75% 100%

Highest resolution

Test model: Bunny model &?/



Multilevel Construction Method

e Heuristic

¢+ Optimize a layout for geometrically increasing
block sizes

¢ Well suited for a multi-level method

1. Partition 2. Lay out




Goal

« Compute cache-coherent layouts of
polygonal meshes
¢ For visualization and collision detection

¢+ Handle any kind of polygonal models (e.g.,
irregular geometry)




Rigid Body Simulation

Lucy model

28M triangles
>

Dragon model

"l"’: i 0.8M triangles
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Collision Detection Time

' Depth-first layout

2X on average

Collision query time(sec)

- 1 20 A0 < 1l (&0 i
Simulation step

Cache-oblivious layout
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Runtime Performance

512x512 image resolution, GeForce 5950FX

Pixels of | Frame Mem. Refinement
Model ) ]
error rate footprint time
Power plant 1 28 400MB 1%
St. Matthew 1 29 600MB 2%

« 116 (1



Ray Coherence Techniques

« Assume coherences between rays
¢ Works well with CAD or architectural models

 Highly-tessellated models
¢ Not much coherence between rays
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R-LODs with Different PoE Values




