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Goal

• Efficient algorithms for:
♦ Interactive visualization (rasterization and 

ray tracing)
♦ Collision detection
♦ Other geometric applications
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Interactive Visualization

• Walkthrough
♦ large man-made structures

• Investigate scientific simulation data
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Collision Detection

• Main component of:
♦ Dynamic simulation
♦ Navigation and path planning
♦ Haptic rendering
♦ Virtual prototyping
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Challenges

• Complex and massive models
♦ Ever-increasing model complexity

St. Matthew, 
372M (10GB)

Isosurface (472M) 
from a turbulence 

simulation 
Power plant, 

12M
Double eagle 
tanker, 82M

Puget sound,
400M+
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Issues and Our approaches

• Huge amount of data
♦ Take tens of giga-bytes in disk and memory

• Data access time
♦ Major bottleneck

• Orthogonal approaches
♦ Levels-of-detail (LODs) techniques
♦ Cache-coherent layouts
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Orthogonal Approaches

• LOD approaches

• Cache-coherent layouts 

Use simplification 
given an error

Reduce the amount of necessary data!
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Orthogonal Approaches

• LOD approaches
• Cache-coherent layouts 

CPU or 
GPU DiskCaches Memory

Minimize cache misses

Reduce expensive I/O accesses!
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Orthogonal Approaches

• LOD approaches
♦ Dynamic simplification for rasterization
♦ Static LODs for ray tracing

• Cache-coherent layouts 
♦ Cache-efficient layouts of meshes and graphs
♦ Cache-efficient layouts of BVHs
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Outline

• Dynamic simplification for rasterization
• LOD-based ray tracing
• Cache-coherent layouts
• Conclusion
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Outline

• Dynamic simplification for rasterization
• LOD-based ray tracing
• Cache-coherent layouts
• Conclusion
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View-Dependent Rendering

• [Clark 76, Funkhouser and Sequin 93]

• Static levels-of-detail (LODs)
• Dynamic (or view-dependent) 

simplification

Viewer
Object

Lower 
resolution
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Static LODs

50,00050,000 facesfaces10,000 faces10,000 faces2,000 faces2,000 faces

poppop poppop

Courtesy of [Hoppe 97]



15 Courtesy of [Hoppe 97]

Dynamic Simplification

• Provides smooth and varying LODs over 
the mesh [Hoppe 97]

1st person’s view 3rd person’s view
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Dynamic Simplification:  Issues

• Representation
♦ High CPU usages

• Runtime computation and rendering
♦ Low cache-utilization

• Construction
♦ Out-of-core computations
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Toward Scale-able Dynamic 
Simplification Method
• View-dependent rendering [Yoon et al. Vis 

04]
♦ New multi-resolution hierarchy (CHPM)
♦ Out-of-core construction 
♦ Applied to collision detection [Yoon et al. SGP 

04] and shadow computation [Lloyd et al. 
EGSR 06]

• Cache-coherent layouts [Yoon et al. SIG 
05]
♦ Higher GPU utilization
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Live Demo – View-Dependent 
Rendering

Pentium 4

GeForce Go 
6800 Ultra

1GB RAM

20 Pixels of
error 
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Clustered Hierarchy of Progressive 
Meshes (CHPM)
• Novel dynamic simplification 

representation 
♦ Cluster hierarchy
♦ Progressive meshes

PM1

PM3

PM2
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Clustered Hierarchy of Progressive 
Meshes (CHPM)

• Cluster hierarchy
♦ Clusters are spatially localized regions of 

the mesh
♦ Used for visibility computations and out-of-

core rendering
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Clustered Hierarchy of Progressive 
Meshes (CHPM)
• Progressive mesh (PM) [Hoppe 96]

♦ Each cluster contains a PM as an LOD 
representation

PM:
Base mesh

Vertex split 0

Vertex split 1

Vertex split n

…
..

Refined mesh
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Two-Levels of Refinement at 
Runtime
• Coarse-grained view-dependent 

refinement 
♦ Provided by selecting a front in the cluster 

hierarchy
♦ Inter-cluster level refinements

Front
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Two-Levels of Refinement at 
Runtime
• Coarse-grained view-dependent 

refinement 
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hierarchy
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Cluster-split
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Two-Levels of Refinement at 
Runtime
• Coarse-grained view-dependent 

refinement
♦ Provided by selecting a front in the cluster 

hierarchy
♦ Inter-cluster level refinements

Cluster-split Cluster-collapse
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Two-Levels of Refinement at 
Runtime
• Fine-grained local refinement

♦ Supported by performing vertex splits in PMs
♦ Intra-cluster refinements

Vertex split 0

Vertex split 1

Vertex split n

…
..

PM
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Main Properties of CHPM

• Low refinement cost
♦ 1 or 2 order of magnitude lower than a vertex 

hierarchy

• Alleviates visual popping artifacts
♦ Provides smooth transition between different 

LODs
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Overview of Building a CHPM

Cluster 
decomposition

Input model

Cluster hierarchy 
generation

Hierarchical 
simplification

CHPM

Performed
out-of-core 
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Overview of Building a CHPM

Cluster 
decomposition

Input model

Cluster hierarchy 
generation

Hierarchical 
simplification

CHPM
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Overview of Building a CHPM

Cluster 
decomposition

Input model

Cluster hierarchy 
generation

Hierarchical 
simplification

CHPM



30

Overview of Building a CHPM

Cluster 
decomposition

Input model

Cluster hierarchy 
generation

Hierarchical 
simplification

CHPM
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Boundary Constraints

• Do not simplify boundary triangles
♦ Guarantee crack-free boundaries

• Common problem in many hierarchical 
simplification algorithms
♦ [Hoppe 98; Prince 00; Govindaraju et al. 03]

Cluster E Cluster F

Boundary triangles
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Boundary Constraints
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Boundary Constraints

Zoomed image
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Cluster Dependencies

• Replaces preprocessing constraints with 
runtime dependencies
♦ Simplify boundary triangles
♦ Consider them at runtime with dependencies 
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Cluster Dependencies

227K triangles 19K triangles
92% triangles 

reduced

After creating
cluster 

dependencies



36

Runtime Performance

13GB

1GB

Model size

600MB291St. 
Matthew

400MB281Power 
plant

Mem. 
footprint

Frame 
rate

Pixels of 
errorModel

512x512 image resolution, GeForce 5950FX
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Applications

• Shadow computations
• Approximate collision detection
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Interactive View-Dependent Shadow 
Generation [Lloyd et al. EGSR 06]
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Approximate Collision Detection 
[Yoon et al. SGP 04]
• Perform approximate query based on a 

simplified mesh

Object A Simplified object A

Object B Simplified object B

Exact colliding 
regions

Simplified colliding 
regions

ε
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CHPM Representation

• Serve as a dual hierarchy for collision 
detection
♦ LOD hierarchy
♦ Bounding volume hierarchy

• Unified representation for:
♦ Rendering and collision detection

• Advantages
♦ Improve the performance
♦ Alleviates simulation discontinuities
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Benchmark Models – Dynamic 
Simulation

Lucy model: 
28M triangles

Turbine model: 
1.7M triangles

Impulse based rigid 
body simulation

[Mirtich and Canny 1995]
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Live Demo – Rigid Body Simulation

Error bound:
0.1% of width 
of Lucy model

Average query time:
18ms
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Outline

• Dynamic simplification for rasterization
• LOD-based ray tracing
• Cache-coherent layouts
• Conclusion
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Ray Tracing

• Well researched for 25+ years

• Slower than rasterization
• But: asymptotic performance 

~ logarithmic
♦ Good choice for massive models?
♦ Observed only in in-core cases
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Ray Tracing: Performance
• Measured with 2GB main memory

Memory
thrashing!

Render time
(log scale)

Model complexity (M tri) - log scale

Working set 
Size 2GB

2GB
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Incoherent Memory Accesses

• Model with 370M triangles
• Assuming 512x512 resolution

– Hundreds of triangle per pixel
– At most <1% of triangles visible
– Each triangle likely in different

area of memory

Scan of Michelangelo’s St.Matthew:
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Our approach

• Add levels-of-detail to ray tracing
– LOD: simplified versions of geometry

• Selection according to LOD metric
– Rasterzation: selection per object
– Ray tracing: selection per ray

• Main benefit: 
– Reducing working set size
– Improved memory coherence
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Our approach  

• R-LODs [Yoon et al. PG 06]
– Highly integrated with kd-tree [Wald et al. 05]
– Can also be integrated with BVHs

• Simple but fast LOD metric
– Works with shadows, reflections

• Integrates ray and cache coherences
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R-LOD Representation

• Tightly integrated with kd-nodes
– A plane, material attributes, and surface 

deviation
– Computed from PCA

Plane

Normal

kd-node

Valid extent 
of the planeIntersection

No
intersection

Rays
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LOD-based Runtime Traversal

• Modification of efficient kd-tree traversal
– [Wald 04]

• Traverse, evaluate metric at each node
• If satisfies, intersect with plane instead

– if it hits, we’re done
– if not, go back up, try other sub tree

• In any case: don’t need to go deeper!
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Properties of R-LODs

• Compact and efficient LOD representation
– Add only 4 bytes to (8 bytes) kd-node

• Drastic simplification
– Useful for performance improvement
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Properties of R-LODs

• Error-controllable LOD rendering
– Error is measured in a screen-space in terms 

of pixels-of-error (PoE)
– Provides interactive rendering framework
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R-LODs with Different PoE 
Values

PoE:   Original            1.85                       5         10        

(512x512, no anti-aliasing)
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Ray Tracing: Performance
• Measured with 2GB main memory

Memory
thrashing!

Render time
(log scale)

Model complexity (M tri) - log scale

Working set 
size 2GB2GB
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Ray Tracing: Performance

Model complexity (M tri) - log scale

Achieved up to three order of magnitude speedup!

Render time
(log scale)

Working set 
size



56

Real-time Captured Video – St. 
Matthew Model

512 by 512 and 2x2 super-sampling, 4 pixels-of-error
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Impacts of R-LODs

PoE = 0
(No LOD) PoE = 2.5

# of intersected
nodes per ray

Render time

Working set
size

10X speedup
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Real-time Captured Video – St. 
Matthew Model

512 x 512, 2 x 2 anti-aliasing, PoE = 4



59

Outline

• Dynamic simplification for rasterization
• LOD-based ray tracing
• Cache-coherent layouts
• Conclusion
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Motivation

• Lower growth rate of memory access 
time

Growth rate
during 1993 - 2004

0
20
40
60
80

100
120
140
160

Disk
access
speed

RAM
access
speed

CPU speed GPU
speed

Courtesy: Anselmo Lastra and         
http://www.hcibook.com/e3/online/moores-law/

during 99 - 04

47X
20X2X

120X
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Block-based I/O Model [Aggarwal
and Vitter 88]

CPU or 
GPU

Fast memory 
or cache

Slow memory

Block
transfer

Disk

1 secAccess time: 10-4 sec10-6 sec
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Cache-Coherent Layouts

• Cache-aware layouts
♦ Optimized for particular cache parameters 

(e.g., block size)

• Cache-oblivious layouts
♦ Minimize data access time without any 

knowledge of cache parameters
♦ Even work with various hardware and memory 

hierarchies
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Our Approaches

• Algorithms to compute cache-aware and 
cache-oblivious layouts [Yoon et al., SIG 
05, Yoon and Lindstrom, Vis 06]
♦ Cache-aware and cache-oblivious metrics
♦ Multi-level optimization framework
♦ Specialization for bounding volume hierarchies 

[Yoon and Dinesh, Euro 06]
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Realtime Captured Video – Rendering 
Throughput of Dynamic Simplification

GeForce
6800
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Overview

Multilevel optimization
Cache-oblivious metric

Local permutations

va

vb vd
vc

Input graph

va vb vd vc
Result 1D layout
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Graph-based Representation

• Directed graph, G = (V, E)
♦ Represents access patterns of applications

• Vertex
♦ Data element 
♦ (e.g., mesh vertex or mesh triangle)

• Edge
♦ Connects two vertices if they are likely to be 

accessed sequentially

va

vb vd

vc
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Problem Statement

• Vertex layout of G = (V, E)
♦ One-to-one mapping of vertices to indices 

in the 1D layout

• Compute a      that minimizes the 
expected number of cache misses

ϕ

:ϕ |}|, ... ,1{ V→V

→ va vb vd vc
1 2 3 4va

vb vd

vc
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Cache-Aware Metric, One Cache Block

• Cache misses when a cache holds only 
one block

• Layout computation
♦ Minimize the number of straddling edges
♦ Graph partitioning

Block 1 Block 2

Already 
accessed data

Straddling edge 
(its length = 2)
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Cache-Aware Metric, Multiple Cache 
Blocks

• What if a cache can hold multiple blocks?

• Approximated with cache-aware metric of  
a single cache block
♦ Has strong correlation

Block 1 Block 2

Straddling edge 
(its length = 2)

Already 
accessed data
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Cache-Oblivious Metrics

• Assuming arithmetic block sizes (e.g., 1, 
2, 3, ..)
♦ Mean of edge lengths, Σ|x – y|
♦ Arithmetic mean

• Assuming geometric block sizes (e.g., 1, 2, 
4, 8, ..)
♦ Mean of log of edge lengths, Σ log |x – y|
♦ Geometric mean

x and y are indices of two 
vertices of an edge in the layout
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Validation for Cache-Oblivious (CO) 
Metrics

• Geometric cache-oblivious metric
♦ Practical and useful

Geometric 
CO layout

Arithmetic 
CO layout

97% of tested 
block sizes

Number of 
cache misses

73% of tested 
power-of-two block sizes
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Correlations with Observed Number of 
Cache Misses

Cache misses
One blk :  Mult blks

Arithmetic
CO metric

Geometric
CO metric

R2 = 0.98 R2 = 0.81 
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Layout Optimization

• Find an optimal layout that minimizes our 
metric
♦ Combinatorial optimization problem [Diaz et 

al. 2002]

• Employ multi-level construction method
♦ Construct layouts that consider geometrically 

increasing blocks sizes
♦ A good heuristic for geometric cache-oblivious 

metric
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Applications

• View-dependent rendering
• Collision detection
• Ray tracing
• Isocontour extraction
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View-Dependent Rendering

• Layout vertices and triangles of CHPM
♦ Reduce misses in GPU vertex cache

47 M/s

90 M/s

106 M/s

Our layout

22 M/s82MDouble eagle 
tanker

20 M/s100MIsosurface

23 M/s372MSt. Matthew

CHPM layout# of Tri.Models

4.5X

2.1X

Peak performance: 145 M tri / s on 
GeForce 6800 Ultra
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Comparison with Optimal Cache Miss 
Ratio

0.5

1

1.5

2

2.5

3

8 16 32 64
Vertex cache size

Simulated 
cache miss 

ratio 
(misses 

per 
triangle) Our layout

CHPM layout

Lower bound of 
optimal cache 

miss ratio
[Bar-Yehuda and 

Gotsman 96]

Test model: Bunny model
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Comparison with Space Filling Curve on 
Power Plant Model

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

8 16 32 64
Vertex cache size

Simulated 
cache miss 

ratio

Our layout

Space filling curve (Z-curve) 
[Sagan 94]
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Collision Detection and Ray Tracing

• Bounding volume 
hierarchies [Yoon and 
Manocha Euro 06]
♦ Consider geometric 

relationship to capture 
runtime access patterns

♦ Achieve 30% ~ 300% 
performance improvement Dynamic simulation
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Isocontour Extraction

• Uses contour tree [van 
Kreveld et al. 97]

• Use mesh as the input 
graph

• Extract an isocontour 
that is orthogonal to z-
axis

Puget sound, 
134 M triangles

Isocontour
z(x,y) = 500m
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Comparison – First
Extraction of Z(x,y) = 500m

0

5

10

15

20

25

Cache-
oblivious

layout

Z-axis
sorted

Y-axis
sorted

Spectral
layout

Relative 
Performance

over
Z-axis sorted

layout

Nearly optimized for particular isocontour

2

21

13

1

Disk access time is bottleneck
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Comparison – Second Extraction of 
Z(x,y) = 500m

Relative 
Performance

over
Z-axis sorted

layout
2

21

13

0
50

100
150
200
250
300
350
400

Cache-
oblivious

layout

Z-axis
sorted

Y-axis
sorted

Spectral
layout

379

212

10.8

Memory and L1/L2 cache access times are bottleneck
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Advantages

• General 
♦ Applicable to all kinds of polygonal models
♦ Works well for various applications

• Cache-oblivious
♦ Can have benefit for all levels of the 

memory hierarchy (e.g. CPU/GPU caches, 
memory, and disk)

• No modification of runtime 
applications
♦ Only layout computation

Source codes are available 
as a library called

OpenCCL
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Conclusion

• Huge amount (giga-bytes) of data
♦ Limited L1/L2 cache and memory sizes

• Data access time
♦ Major bottleneck
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Conclusion

• Orthogonal approaches
♦ Levels-of-detail (LOD) techniques
♦ Cache-coherent layouts

• Applications
♦ Visualization and geometric processing

• Achieved interactive performance
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UCRL-PRES-223537

This work was performed under the auspices 
of the U.S. Department of Energy by University 
of California Lawrence Livermore National 
Laboratory under contract No. W-7405-ENG-48.
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Main Requirements

• Generality
♦ Handle any kind of polygonal models
♦ (e.g., CAD, scanned, isosurface models)

• Interactivity
♦ Provide at least 10 frames per second



89

Memory Hierarchies

Register

Caches

Main memory

Disk storage

Size

1KB

1MB

1GB

> 1GB

Speed

100 ns

101 ns

102ns

104ns 
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Low Growth Rate of Memory 
Bandwidth

0
5

10
15
20
25
30
35
40
45
50

Disk
access
speed

RAM
access
speed

CPU
speed

Growth rate
during 1993 – 2004

Courtesy:  http://www.hcibook.com/e3/online/moores-law/

Recent hardware improvements may 
not provide an efficient solution to our problem!

47X

20X2X
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Ongoing and Future Work
●What is an optimal cluster size?

● Performance depends on computed clusters 
[Yoon and Manocha EG 06]

●How can we efficiently deal with dynamic 
models?
● Require efficient data structure updates and 

rebuilding [Lauterbach et al. IEEE RT 06]
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Summary
●Dynamic simplification representation 

(CHPM)
● Low refinement time

●Out-of-core construction method

● Tested with different applications
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Cluster Dependencies at Runtime

CB

Cluster hierarchy

A D

E F

dependency
Cluster-splitForce 

cluster-split
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Approximate Collision Detection

• Uses dynamic simplification
♦ CHPM representation

• Conservative error metric
♦ Approximate collision results introduces only 

epilson distance error

• Two lemmas 
♦ Guarantees that our runtime LOD selection 

method satisfies the metric

• Employ GPU-based collision detection
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Image Quality Comparison – Forest 
Model (32M Triangles)

PoE = 0 (No LOD) PoE = 4
and cache-oblivious 

layout of kd-tree

4 X speedup

Shading 
difference
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Ongoing and Future Work

• Investigate dynamic simplification to 
improve visual quality

• Extend to global illumination
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New Results

• Dynamic simplification method
♦ CHPM representation
♦ Out-of-core construction method
♦ Application to collision detection

• Cache-oblivious layout algorithm
♦ Cache-oblivious metric
♦ Multilevel minimization
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Future Work on Visualization

• Achieve end-to-end interactivity
♦ Requires no or minimal preprocessing

• Handle time-varying geometry

Just one instance 
among 27K time steps 

during simulation
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Future Work on Collision Detection

• Handle dynamically deformable models 
(e.g. cloth simulation)
♦ Requires no or minimal preprocessing

• Support penetration depth computations

Obj 1 Obj 2
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Future Work on Cache-Coherent 
Layouts
• Develop cache-aware layouts
• Investigate optimality
• Apply to other applications and other 

representations
♦ Shortest path computation, etc.

• Provide multiresolution functionality from 
layouts
♦ [Pascucci and Frank 01]
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Comparison with Hoppe’s Rendering 
Sequence

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

8 16 32 64
Vertex cache size

Simulated 
cache 

miss ratio 
(misses 

per 
triangle) 

Our layout

[Hoppe 99]
Optimized for 16 vertex cache size

with FIFO replacement

Optimized for no particular cache size

Test model: Bunny model
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Limitations

• Monotonicity assumption
♦ May not work well for all applications

• Does not compute global optimum
♦ Greedy solution
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Conclusion

• LOD techniques and cache-efficient 
layouts
♦ Applied them to visualization and 

collision detection
♦ Demonstrated with a wide variety of 

polygonal models
♦ Achieved interactive performance on 

commodity hardware
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Multilevel Minimization

Step 1: 
Coarsening
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Multilevel Minimization

Step 2: 
Ordering of coarsest graph
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Multilevel Minimization

Step 3: 
Refinement and 

local optimization
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Dynamic Simplification:  Issues

• Representation
♦ High CPU usages

• Runtime computation and rendering
♦ Low cache-utilization

• Construction
♦ Out-of-core computations
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Dynamic Simplification:  Issues

• Representation
♦ High CPU usages

• Runtime computation and rendering
♦ Low cache-utilization

• Construction
♦ Out-of-core computations
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Low Computation Speed 

• Rendering throughput
♦ GPU capable of 100M+ triangles per sec
♦ Only achieved 20M triangles per sec

• Low cache utilization
♦ Cannot efficiently use triangle strips for 

dynamically generated geometry
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Comparison with Hoppe’s Rendering 
Sequence

Test model: Bunny model

Highest resolution
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Multilevel Construction Method

• Heuristic
♦ Optimize a layout for geometrically increasing 

block sizes
♦ Well suited for a multi-level method

…

1. Partition 2. Lay out
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Goal

• Compute cache-coherent layouts of 
polygonal meshes 
♦ For visualization and collision detection
♦ Handle any kind of polygonal models (e.g., 

irregular geometry)
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Rigid Body Simulation
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Collision Detection Time

2X on average

Depth-first layout

Cache-oblivious layout
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Runtime Performance

2%

1%

Refinement 
time

600MB291St. Matthew

400MB281Power plant

Mem. 
footprint

Frame 
rate

Pixels of 
errorModel

512x512 image resolution, GeForce 5950FX
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Ray Coherence Techniques

• Assume coherences between rays
♦ Works well with CAD or architectural models

• Highly-tessellated models
♦ Not much coherence between rays

Viewpoint

Image plane
Small 

triangles

Rays per each pixel



118

R-LODs with Different PoE Values

PoE:   Original            40 80
512x512 image resolution


