Massive Model Visualization using
Real-time Ray Tracing

Eurographics 2006 Tutorial:
Real-time Interactive Massive Model Visualization

Andreas Dietrich Philipp Slusallek

Saarland University & inTrace GmbH

COMPUTER\GRAPHIK? IQ A
WNIVERSITAT
DES, SAARIANDES)

REALTIME | RAY-TRACING TECHNOLOGIES

C G Overview

Simplicity of data preparation for ray tracing complex scenes

- Efficient spatial index structures for ray tracing

- Off-line construction of index structures

Adapting ray tracing to complex models

- Active memory management

- Asynchronous data loading

- Level-of-detail management

Photorealistic rendering and lighting of highly complex models
- Flexible combination and integration of different shading algorithms
- Efficient integration of environmental lighting

Review of hardware-trends for real-time ray. tracing

- Comparing multi-core CPUs, GPUs, Cell processor, and custom ray
tracing hardware

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

CCam = Ray Tracing

« Simple algorithm, with many advantages

Support for advanced shading and global illumination
- Not directly related to massive model rendering...

Supports object instantiation

Visibility culling built-in
- Includes view-frustum, back-face, and occlusion culling
- Per pixel visibility

Trivially parallelizable

Logarithmic scalability in scene size
- Due to traversal of (hierarchical) spatial index structures

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

CCam = Ray Tracing

» Simple algorithm, with many advantages
Support for advanced shading and global illumination
- Not directly related to massive model rendering...
Supports object instantiation
Visibility culling built-in
- Includes view-frustum, back-face, and occlusion culling
- Per pixel visibility
Trivially parallelizable
Logarithmic scalability in scene size
- Due to traversal of (hierarchical) spatial index structures

= Complex models: ,log scalability” most important!

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing 4

Ray Tracing
for Massive Models

- Proof by example: “Forest” scene
- 1.5 billion triangles
- Plus shadows, textures, transparency, ...
- Rendered interactively on few PCs

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

A e Storage Problem

* Number of visible triangles not main problem
=»Main problem: Efficient scene storage and access !
» The storage problem
- Logarithmic cost: Assumes all data is in memory

- “Forest” example:
- Only possible through instantiation - special case !

- For general complex models usually not the case
- Boeing 777: 30-40 GB on disk (including spatial index)

=>»Need efficient data handling for preprocessing
and rendering

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

Part |
Simplicity of Data Preparation for Ray
Tracing Complex Scenes

C O = Spatial Index

Hierarchy and Instancing

» Two-level k-d tree scheme [Wald et al. 2003]
- Accelerates ray-object intersection computation
- Low-level k-d tree for each object type

- High-level k-d tree organizes instances
- Object references
- Object bounding boxes
- Transformation matrices

Instance List

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

C O = Spatial Index

Hierarchy and Instancing

» Two-level k-d tree scheme enables
- Rigid-body dynamics
- Only high-level k-d tree has to be rebuilt

- Efficient instancing
- Low-level objects can be reused with little memory overhead

splitting planes <

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

C G Index Generation

» Simple case
- Source model grouped/partitioned into individual objects
- Object boxes are not extensively overlapping
- Data for single object fits into memory

=>Build k-d trees independently
- Build low-level object k-d trees one after another
- Build high-level scene k-d tree based on objects boxes

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

C N = Index Generation
' Streaming Approach

» Massive models require many GB of data
- Data often too large to build spatial index fully in-core
- Objects typically grouped functionally not spatially
- Model often exported as “soup of triangles”

=>»Divide and conqguer strategy

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

C N = Index Generation
| Streaming Approach

« Offline index generation

1. Produce triangle stream (file) from source data and
compute bounding box

= +

2. Split bounding box into two halves along longest side

a4 @

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

G Index Generation
i Streaming Approach

« Offline index generation

3. Go through triangle stream and sort each triangle into
the new bounding boxes - build two new files

v\

4. Repeat process recursively with new streams (files)

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing 13

G Index Generation
i Streaming Approach

« Offline index generation

5. If number of triangles small enough
—> build object k-d tree in-core

6. Build high-level k-d tree based on object bounding boxes

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

G Index Generation
i Streaming Approach

» Optimizations
- Remove vertex shading data from triangle stream
- Normals, UV-coordinates, vertex colors, etc.
- Do sorting only with vertex position data
- Reconstruct full triangles after sorting

- Compute better splitting planes

- Use cost functions to determine plane position e.g., Surface
Area Heuristics (SAH) [McDonald et al. 1989]

- Parallelize sorting
- Start extra processes for new streams

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

Part Il
Adapting Ray Tracing To Complex Models

C G Out-of-Core Ray Tracing

« Ray tracing capable of handling massive models
- Logarithmic in the number of triangles
- Multi-level k-d trees as hierarchical spatial index

» ,Boeing 777 model requires 30 - 40 GByte

=» Out-of-core mechanism needed

- Build index structures offline on disk
- Map disk data into 64-bit address space (mmap ())

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

< <, wuen Memory Management
OS Based Memory Mapping

» Advantages of OS based memory mapping
- Automatic demand paging
- Address translation and I/O handled by CPU and OS
- Fine cache granularity (page size 4 KByte)
* Problems
- Access to unavailable data causes page faults
- Stalling of rendering process inhibits interactivity

= Manually check data availability
Detect and prevent page faults using tile table

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

< <, wuen Memory Management
. Tile Table

» Simple hash table to efficiently check tile availability

virtual address

tile
descriptors

i = 1 P 6 pages

tile table

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

< <, wuen Memory Management
“u Tile Handling

 Tile descriptor
- Bits 64 - 16 : Tile base address (detect hash collisions)
- Bit 1: Referenced bit
- Bit 0 : Availability bit
 Tiles loaded by asynchronous fetcher thread
- Cache miss: Add tile ID to request queue
» Asynchronous tile eviction

- Free memory using ,Second Chance” algorithm
(madvise ())

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

10

Al i & Bridging Load Time

» What happens if data is not yet in main memory ?

Rays trying to access not loaded Fully loaded data - but only for
data colored red this particular view

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

Bridging Load Time
Ray Reordering

Ray reordering [Wald et al. 2002]

. Suspend rays that try to access not yet loaded data
Fetch missing data asynchronously
Immediately continue with other ray
Resume stalled rays after data is available

= Only possible for smaller models with not
drastically changing working sets

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

11

Bridging Load Time
Level-Of-Detail

Use simplified data as replacement

Polygonal simplification

- Seee.g., “A Developer’s Survey of Polygonals Simplification
Methods” [Luebke 2001]

- For “soup of triangles” typically use vertex clustering

- Voxel representation
- Seee.g., “Far Voxels” [Gobetti et al. 2005] > next talk

=» Generate n+1 model detail levels
- Level 0: Original un-simplified model

- Level n: Coarsest simplification
=> should fit fully into memory

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

Bridging Load Time
Level-Of-Detail

Switch to simplified representation during loading

Set initial level to 0

Increase level if
data missing

Traversal .
=== oo Y
zricl interssctior)

Continue if

i data available
Traversal finished

- Coarser levels can be loaded faster
- In worst case always level n available
- Blending between successive frames

to reduce poping artifacts

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

12

Part Il
Photorealistic Rendering and Lighting in
Highly Complex Models

High-Quality Shading

Shadows

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

13

<« e High-Quality Shading

Shadows

» Pixel-accurate shadows and highlights

- Simple integration into a ray tracer
- Shader (plug-in) is called when a ray hits a surface

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

< < % Photorealistic Rendering

» More complicated example:
- Realistically structured plant ecosystem
- Many plants and vegetation layers
- Highly irregular geometry

=» Much more difficult than CAD models

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

14

C N = Realistic Lighting

Environmental lllumination

» Realistic lllumination of outdoor scenes
- Depends heavily on environmental illumination

- One single directional light not sufficient

- Cannot capture subtle effects, e.g. soft shadows

Oﬁe éinglé light source HDR énvironment map lighting

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

C N = Realistic Lig_hting
HDRI Approximation

* Pre-computation e.g. PRT not practical
- Scene too complex > memory limitations
- Difficult to use with instantiation

=>Approximate HDR environmental illumination

- Approximate with large number of directional lights

- Generated from HDR environment maps
e.g., similar to [Kollig et al. 2003] or [Agarwal et al. 2003]

- Randomly pick subsets from these virtual lights
- Use as targets for shadow rays
- Interleave shadow rays with primary rays

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

29

15

< < it Interleaved Sampling

* Interleaved Sampling [Keller et al. 2001]

- Combination of geometric and illumination anti-aliasing
- Split up set of virtual directional lights into subsets
- Fire a number of primary rays per pixel
- Use a different light source subset for each primary ray

/,
//'\ virtual directional light
i

~

shadow ray

é. pixel

observer primary ray

hitpoint

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

Interleaved Sampling
Example

* 1 primary sample per pixel « 4 primary samples per pixel
* 1 light sample / hitpoint * 4 light samples / hitpoint
(1 virtual light source) (4 different sets of virtual lights)

32 CPUs: 6 fps (640x480 pixels) 32 CPUs: 1 fps (640 <480 pixels)
Note: “sample” means sequence of ray segments

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing 32

16

CCam = Handling Aliasing

» Brute-force pixel over-sampling

Simultaneously remove geometric and illumination
aliasing (using interleaved sampling)

Trivial implementation

Scales even better than linear in number of CPUs
=> Exploits coherence

But still needs many samples for high-quality images
- Especially for complicated geometry (e.g., plant leaves)
- And complex illumination model (e.g., global illumination)

=>» Progressive image enhancement

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

< <, i Progressive Rendering

* Rendering in progressive mode
Activated as soon as camera motion stops
Successive frames are accumulated
Use new random sample values each frame
Generates high-quality images in a few seconds

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

Progressive Rendering
Example

No accumulation

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

< < u Progressive Rendering

Eg]o][

4 frames accumulated

EG 2006 Tutorial Massive Model Visualization using Real-time Ray Tracing

18

EG 2006 Tutorial

Progressive Rendering
Example

1270960 pixels)

10 frames accumulated (after 5 seconds)

Massive Model Visualization using Real-time Ray Tracing

19

Hardware Trends
for Realtime Ray Tracing

Philipp Slusallek
Saarland University, Germany

infarmatile
saarland.

Outdoor Environments
with full Sky lllumination

Outdoor Environments
with full Sky lllumination

Large Model Visualization
at Boeing

CATIA Model of Boeing 777:
350 million triangles, 30 GB on disk, 2-3 fps on Dual-Opteron

VW Visualization Center
by inTrace GmbH

; . V ; ——3
| ‘!" | ;
4 B = \ ol I"
- v R =X ‘ g
= | :
P >
= i\ '
1. r =R — | ¥
t 8 =
b B) ! P
7 | - |

VW Visualization Center
by inTrace GmbH

VW Visualization Center
by inTrace GmbH

S
- -

Lighting Simulation
at EADS

Product Visualization
at EADS

O
[
O
©
—

-
>
©

14

Realtime Requirements

 Minimum Number of Rays

— 1 megapixel screen

— 30 frames per second

— 10 rays per pixel (anti-aliasing, lighting, ...)
=>» 300 million rays per second

e But

— Larger screens (2x), higher frame rate (2x)
— Complex lighting (10x)

* Promising: Adaptive space-time sampling

Ray Tracing on Multi-Core

* Advantages:

— High-performance implementations are available
— Highly flexible environment
— Scales nicely with # of cores (~10 Mrays/s per core)

e Disadvantage
— Need 30 cores for minimum requirements
* Not for the mass market any time soon

Ray Tracing on Multi-Core

 Advantages:

— High-performance implementations are available
— Highly flexible environment
— Scales nicely with # of cores (~10 Mrays/s per core)

* Disadvantage
— Need 30 cores for minimum requirements

* Not for the mass market any time soon

— But high-end systems are becoming available
* Opteron-System (8 CPUs x Quad-Core) =» 32 cores

Ray Tracing on GPUs

 Increasingly Implemented as an Add-On

— Volume rendering by ray casting [Kruger '03]

— Displacement mapping [Wang '04]

— Approximate refractions on GPU [Weyman '05]
— Screen space caustics [Kruger '06]

* Not well supported by GPUs

— So far, less efficient than CPUs
» Even though they have higher raw performance

Ray Tracing on GPUs:
Performance @ 1024 x1024

—\‘\
N—\
T

Scene Triangles ATl x1900

Cube 16 50
Hand 17k 55
Ben 72k 1.1

Ray Tracing on Celi

* Advantages:

— Already 8 compact but powerful cores (SPUs)
— Highly efficient SIMD instruction set

— DMA and full control over caches in LS

— C/C++ compiler

* Disadvantages

— Still hard to program, non-optimal compilers

— Needs another programming approach
* No good, high-level data parallel languages available

— Complex and costly memory handling

Ray Tracing on Cell:
Performance @ 1024 x1024

Scene Triangles Single-Cell | Dual

ERWG6 800 58.1
Conference 280k 20.0
Beetle 680k 16.2

D-RPU Approach

* Shading processor
* Design similar to fragment processors on GPUs
e Support for full recursion even with SIMD
* Highly parallel, highly efficient
* Improved programming model
* Add highly efficient recursion, conditional branching
* Add flexible memory access (beyond textures)
* Custom traversal and intersection hardware
* High-performance kd-tree traversal & triangle intersection

D-RPU: Dynamic Scenes
[GH'06]

 Bounding KD-Trees (B-KD Trees)

— Combining the best of two worlds
 Traversal efficiency of kd-trees
« Update efficiency of bounding volume hierarchies

— Efficient for coherent motion
with fixed topologies

— Supports general rays
— Good for empty space

* Implemented in HW
— Traversal & update

D-RPU: High-Level
Architecture

to framebuffer

Fully
Programmable

Shader
Processing
Units

Shader Cache
128 Bit wide

Node Cache
128 Bit wide

instructions from nodes to

D-RPU: Hardware Architecture

Yecror Sy

SI7CrO0r00s EXecup,
=2 P L S SP1/
ﬁ-b‘l Ve /4 ’ S S
=7\ 4 L S SoLy
\ AN A
) i ‘)
W\
175]
£ =
T ,_ Tead ity (/] 8

W S SoL

Hardware Implementation

D-RPU Implementation

» Xilinx Virtex-4 LX160

— 128 MB RAM, .5 GB/s @ 66 MHz

— 7.5 GFLOP/s @ 24 bit

— Usage: 99% logic, 60% memory

— 32 threads per SPU 60% usage |
— Chunk size of 4 95% efficiency &
— 12 kB caches in total 90% hitrate

e Performance

— 40-70% faster than OpenRT
— OpenRT on CPU with 40x clock rate
= 60x ,more efficient”

D-RPU Implementation

 D-RPU ASIC
— Synthesized from HWML

« With HW evaluation for clock rate

— Larger caches (3x 16 KB)
* 4-way associative

— 130 nm process from UMC: 49 mm?, 266 MHz
* 30 GFLOP/s @ 32 bit (post-layout timing)
« 2.1 GB/s required to external memory

Projections

e ATI R-520: 288 mm?in 90 nm process

e D-RPU-4: 196 mm?, 130 nm

— 120 GFLOP/s @ 266 MHz (constant field scaling)
— 8.5 GB/s (DDR2 memory?)

e D-RPU-8: 186 mm?, 90 nm

— 361 GFLOP/s @ 400 MHz (constant field scaling)
— 25.6 GB/s (multi-channel DDR-2 or XDR memory)

Scene
Shirley6
Conference
Office
Mafia Room
Mafia Spheres
Hand
Skeleton
Helix

Gael
DvnGael

Performance @ 1024 x 768

(shadows, full Phong shading, textures)

triangles objects vs | DRPU FPGA
0.5 S 4.7 ips

1.7 fps

3.6 fps

2.8 fps

1.8 fps

5.0 fps

5.9 fps

3.5 fps

1.9 ips

DRPU ASIC

20.0 fps
23.6 fps
14.0 fps
7.6 fps
8.0 fps

DEPU4 ASIC

56.0 fps
30.4 fps

32.0 fps

2250 tps
81.2 fps
1728 fps

134 4 fps

91.2 fps
96.0 fps

Outlook:
Hardware for Ray Tracing

 Symmetric & Asymmetric Multi-Core CPUs

— Current: ~10 Mrays/s (per core)
— Future: many cores per chip, SHM

* High Performance Parallel GPUs
— Not competitive (yet?), limited programming model
 Custom Ray Tracing Hardware

— Current: 5-9 Mrays/s (FPGA, 66 MHz)
— Future: >300 Mrays/s (ASIC, 285 MHz)

Interested?
Questions?

infarmatile

saarland.

Informatik Saarland
Computergraphik
Ray Tracing

Direct Email

inTrace GmbH

http://www.informatik-saarland.de
http://graphics.cs.uni-sb.de
http://www.OpenRT.de
slusallek@cs.uni-sb.de

http://www.inTrace.com
info@inTrace.com

http://www.informatik-saarland.de/
http://graphics.cs.uni-sb.de/
http://www.openrt.de/
http://www.openrt.de/
mailto:slusallek@cs.uni-sb.de
http://www.intrace.com/
mailto:info@inTrace.com

