

Hardware Trends for Realtime Ray Tracing

Philipp Slusallek Saarland University, Germany

informatik saarland.

Outdoor Environments with full Sky Illumination

Outdoor Environments with full Sky Illumination

71 Trillion Triangles

Large Model Visualization at Boeing

CATIA Model of Boeing 777: 350 million triangles, 30 GB on disk, 2-3 fps on Dual-Opteron

VW Visualization Center by inTrace GmbH

VW Visualization Center by inTrace GmbH

VW Visualization Center by inTrace GmbH

Lighting Simulation at EADS

Product Visualization at EADS

Ray Traced Games

BO BE DO B

Realtime Requirements

- Minimum Number of Rays
 - 1 megapixel screen
 - 30 frames per second
 - 10 rays per pixel (anti-aliasing, lighting, ...)
 - → 300 million rays per second
- But
 - Larger screens (2x), higher frame rate (2x)
 - Complex lighting (10x)
- Promising: Adaptive space-time sampling

Ray Tracing on Multi-Core

- Advantages:
 - High-performance implementations are available
 - Highly flexible environment
 - Scales nicely with # of cores (~10 Mrays/s per core)
- Disadvantage

- Need 30 cores for minimum requirements

Not for the mass market any time soon

Ray Tracing on Multi-Core

- Advantages:
 - High-performance implementations are available
 - Highly flexible environment
 - Scales nicely with # of cores (~10 Mrays/s per core)
- Disadvantage
 - Need 30 cores for minimum requirements
- Not for the mass market any time soon
 - But high-end systems are becoming available
 - Opteron-System (8 CPUs x Quad-Core) → 32 cores

Ray Tracing on GPUs

- Increasingly Implemented as an Add-On
 - Volume rendering by ray casting [Krüger '03]
 - Displacement mapping [Wang '04]
 - Approximate refractions on GPU [Weyman '05]
 - Screen space caustics [Krüger '06]
- Not well supported by GPUs
 - So far, less efficient than CPUs
 - Even though they have higher raw performance

Ray Tracing on GPUs: Performance @ 1024 x1024

Scene	Triangles	ATI x1900
Cube	16	5.0
Hand	17k	5.5
Ben	72k	1.1

Ray Tracing on Cell

- Advantages:
 - Already 8 compact but powerful cores (SPUs)
 - Highly efficient SIMD instruction set
 - DMA and full control over caches in LS
 - C/C++ compiler
- Disadvantages
 - Still hard to program, non-optimal compilers
 - Needs another programming approach
 - No good, high-level data parallel languages available
 - Complex and costly memory handling

Ray Tracing on Cell: Performance @ 1024 x1024

Scene	Triangles	Single-Cell	Dual
ERW6	800	58.1	110.9
Conference	280k	20.0	37.3
Beetle	680k	16.2	30.6

D-RPU Approach

Shading processor

- Design similar to fragment processors on GPUs
- Support for full recursion even with SIMD
- Highly parallel, highly efficient

Improved programming model

- Add highly efficient recursion, conditional branching
- Add flexible memory access (beyond textures)
- Custom traversal and intersection hardware
 - High-performance kd-tree traversal & triangle intersection

D-RPU: Dynamic Scenes [GH'06]

- Bounding KD-Trees (B-KD Trees)
 - Combining the best of two worlds
 - Traversal efficiency of kd-trees
 - Update efficiency of bounding volume hierarchies
 - Efficient for coherent motion with fixed topologies
 - Supports general rays
 - Good for empty space
- Implemented in HW
 - Traversal & update

D-RPU: High-Level Architecture

D-RPU: Hardware Architecture

Hardware Implementation

D-RPU Implementation

Xilinx Virtex-4 LX160

- 128 MB RAM, .5 GB/s @ 66 MHz
- 7.5 GFLOP/s @ 24 bit
- Usage: 99% logic, 60% memory
- 32 threads per SPU
- Chunk size of 4
- 12 kB caches in total

Performance

- -40-70% faster than OpenRT
- OpenRT on CPU with 40x clock rate
- → 60x "more efficient"

D-RPU Implementation

- D-RPU ASIC
 - Synthesized from HWML
 - With HW evaluation for clock rate
 - Larger caches (3x 16 KB)
 - 4-way associative

- 130 nm process from UMC: 49 mm², 266 MHz

- 30 GFLOP/s @ 32 bit (post-layout timing)
- 2.1 GB/s required to external memory

Projections

ATI R-520: 288 mm² in 90 nm process

- D-RPU-4: 196 mm², 130 nm
 - 120 GFLOP/s @ 266 MHz (constant field scaling)
 8.5 GB/s (DDR2 memory?)
- D-RPU-8: 186 mm², 90 nm
 - 361 GFLOP/s @ 400 MHz (constant field scaling)
 - 25.6 GB/s (multi-channel DDR-2 or XDR memory)

Performance @ 1024 x 768 (shadows, full Phong shading, textures)

Scene	triangles	objects	#rays	DRPU FPGA	DRPU ASIC	DRPU4 ASIC	DRPU8 ASIC
Shirley6	0.5k	1	1.5M	4.7 fps	18.8 fps	75.2 fps	225.6 fps
Conference	282k	52	1.5M	1.7 fps	6.7 fps	27.0 fps	81.2 fps
Office	34k	1	1.5M	3.6 fps	14.4 fps	57.6 fps	172.8 fps
Mafia Room	15k	1	1.5M	2.8 fps	11.2 fps	44.8 fps	134.4 fps
Mafia Spheres	20k	б	1.6M	1.8 fps	7.2 fps	28.8 fps	86.4 fps
Hand	17k	2	1.3M	5.0 fps	20.0 fps	80.0 fps	240.0 fps
Skeleton	16k	2	1.3M	5.9 fps	23.6 fps	94.4 fps	283.2 fps
Helix	78k	2	1.5M	3.5 fps	14.0 fps	56.0 fps	168.0 fps
Gael	52 k	1	1.5M	1.9 fps	7.6 fps	30.4 fps	91.2 fps
DynGael	85k	4	1.5M	2.0 fps	8.0 fps	32.0 fps	96.0 fps

Outlook: Hardware for Ray Tracing

- Symmetric & Asymmetric Multi-Core CPUs
 - Current: ~10 Mrays/s (per core)
 - Future: many cores per chip, SHM
- High Performance Parallel GPUs
 - Not competitive (yet?), limited programming model
- Custom Ray Tracing Hardware
 - Current: 5-9 Mrays/s (FPGA, 66 MHz)
 - Future: >300 Mrays/s (ASIC, 285 MHz)

Interested? Questions?

informatik saarland.

Informatik Saarland Computergraphik Ray Tracing Direct Email

inTrace GmbH

http://www.informatik-saarland.de http://graphics.cs.uni-sb.de http://www.OpenRT.de slusallek@cs.uni-sb.de

http://www.inTrace.com info@inTrace.com