
Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Visibility-guided rendering for
real time visualization of
extremely large data sets

B. Brüderlin, S. Pfützner, M. Heyer
3DInteractive GmbH, Ilmenau & Technical University Ilmenau
www.3dinteractive.de

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Tutorial Overview

• Rendering Requirements for Engineering & Styling
• Looking at Classical Approaches

– Rasterization (HW-based OpenGL)
– Sampling-based (Raytracing)

• Visibility-guided Rendering (basic priciples)
– Why ? How? How well?

• System Issues With Large Data Sets
– out-of-core, memory, disk, preprocessing

• Conclusion & Outlook, Related Issues

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Requirements of Engineering & Styling

• Engineering: Extremely large data sets (DMU) >> 4GB
– CAD models
– Real time interaction

• Styling: Realistic appearance: materials & lighting
– High quality (off-line)
– Virtual Reality (real time, interactive)

• Scalability: speed / quality / hardware cost
– PDA; laptop, workstation, high-end render server

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Extremely Large-scale CAD Models

Full level of detail of large industrial
CAD models is often beyond real-
time visualization (> 20 GB)

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

 Laptop PC / Workstation Graphics Server: multi CPU / GPU
 SGI Prism

Standard PC Graphics Hardware / OpenGL
Linux 64 or Windows 32 operating systems

Scalability: Hardware Performance vs. Cost

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

The Classical Approaches:

• Per Vertex Operation
– Transformation (Object-, View Transformation)
– Phong Illumination (Gouraud Shading)

 Polygon limitation!! O(n)
• Per Fragment (Pixel) Operation

– Raster Conversion (polygon filling)
– Shading (Interpolation or per pixel shading)
– Z-buffer – Test
– Pixel Shader GLSL

 Fill rate limitation!!
• Performance Measurement (peak performance)

– 100 Mio Triangles (@ 100 pixels) / second
– 10 Billion Pixels / Second

• Realistic: 1-5 Mio Polygons 10 fps (with vertex buffer)
– Memory limitations, Render Calls, Bus Bandwidth (e.g. AGP 8 x, PCI Express)

Graphics Hardware (GPU) Rasterization / Open GL

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

The Render Pipeline

Vertex
Shading

(TnL)

Triangle Setup

Rasterization

Fragment
Shading /

Raster
Operations

post-TnL
cache

pre-TnL
cache

texture
cache

On-Chip Cache Memory

Geometry

Frame Buffer

Commands

Textures

Video Memory

System
Memory

CPU

Polygon  pixel
Visibility: Raster-based (z-buffer at end of pipeline)  enormous overdraw !

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Raytracing

Eye point

Reflected rays Light source

Image plane

Primary ray Pixel

sr

pr

lp

ap

Per Pixel Operation:
• Search polygon in spatial data structure:

O(log n); O(3√n . log n)
• Intersect, Shade: O(1)
• Indirect lighting (reflection, refraction, shadows)

Pixel  polygon
Visibility: geometry based  no overdraw !

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Performance Comparison

Average PC (2005) 3GHz CPU, 3D graphics card, 500MB memory
and 1M pixel display, direct Phong lighting, (no reflections,
shadows, etc.).

Performance f(P) (fps)

Data Size (P) 1 M 10 M 100 M 1 B

OpenGL 3D Graphics HW:
f(P) = 1/P

10

100

1000

1
Ray Tracing: f(P) = 1 / log(P)

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Restrictions of the Classical Solutions
& A Way Out

• Model resolution is reduced for real-time
handling. Disadvantage:
– Loss of detail
– Additional costs through outsourcing
– Manual work; Loss of time

• Is it really either, or?
– Raytracing vs. OpenGL?
– Real time vs. off line?
– Photorealistic vs. interactive?

• The case for Visibility-guided Rendering!
– Combine the advantages of both approaches

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Basics of Visibility-guided Rendering
Why VGR?

Observation: Large scenes with > 100 M polygons / Screen 1 M Pixels

Individual polygons often either

 are outside the view area

 have sub-pixel size

 are hidden by other polygons

Visibility Culling
Techniques:

 View frustum culling

 Detail culling, LOD

 Occlusion culling

Each polygon covers < 1/100 pixel (on average)

Direct hardware rasterization doesn‘t handle these situations
efficiently!!

These polygons don‘t contribute visibly to the
final picture, in general

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Visibility Culling Methods

View-Frustum Culling
Occlusion Culling
Backface Culling
Detail Culling / LOD

The VGR approach determines
the visibility of polygons
before GPU rasterization in
real time, using new graphics
hardware features and
efficient data structures and
algorithms

This drastically reduces the load
on the graphics hardware

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Example: Model contains 1,780,000
polygons

Volkswagen New Beetle Convertible, Model Courtesy of Volkswagen AG

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Only appr. 385,000 polygons are visible by
camera

Volkswagen New Beetle Convertible, Model Courtesy of Volkswagen AG

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbHVolkswagen New Beetle Convertible, Model Courtesy of Volkswagen AG

Occlusion culling: Approximately 1.4 Million
polygons don‘t need to be rendered

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Spatial Tree Structure (kd-tree)

VBuffer 1

IBuffer 1

VBuffer 2

IBuffer 2

VBuffer 3

IBuffer 3

VBuffer 4

IBuffer 4

VBuffer X

IBuffer X

Binary Tree (split domain in x/y/z, periodically at each level)

Hierarchical AABB

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Datastructure

• kd-Tree + „loose“ AABB tree
• Almost as flexible as BSP tree
• Simple creation (like octree) but more adaptive
• Use:

– Hierarchical occlusion culling with boundingboxes at nodes
(binary relation)  Approximate front-to-back rendering

– Hierarchical frustum culling (unary relation)
– LOD, detail culling (unary relation)  point rendering

In the following we discuss occlusion culling (the most interesting
part, because of object object interaction) in more detail

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Hardware Occlusion Queries

• Test of an object for occlusion (potential occludee)
• Use simple bounding geometry
• Query should be significantly less work than rendering the object

itself (several thousand polygons / BB)
• OpenGL 1.5: ARB_occlusion_query
• Hardware determines the number of visible pixels without writing to

the z-/frame buffer
• Result of query available only after delay (latency)
• Premature querying of result causes pipe line stall

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Latency vs. Traversal Order

• Depth-first traversal of nodes (front to back & top down)
• Order depends on results of previous queries
• Synchronization between CPU and GPU  „stop and wait“

QUERYQUERY

view direction

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Query Queue

Q1Q1 Q2Q2 Q3Q3
view direction

To avoid pipeline stalls, we introduce a query queue

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Query Queue

Q2Q2 Q3Q3 Q1.1Q1.1Q1Q1
view direction

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Query Queue

Q3Q3 Q1.1Q1.1 Q1.2Q1.2Q1Q1 Q2Q2
view direction

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Queueing of Jobs and Queries

• Adaptation of query queue length to latency by asynchronous
querying

• Ideally no wait for query results; there is always something to do.
• Problems:

– No optimal queue length can be determined, due to changing
latency

– Strict top-down, front-to-back traversal is altered  more invisible
triangles are handled unnecessarily (false positives)

• However, minimal number of rendered triangles is not necessarily the
optimum, but also:
– Minimize render calls
– Avoid render pipeline stalls

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Frame-to-Frame Coherence

• Two consecutive frames contain largely the same visible objects.
• Exploit the z-sorted list of visible objects in frame i to initialize the z-

buffer for frame i + 1.
• For every m-th frame carry out an occlusion query for every object on

the list

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Frame-to-Frame Coherence

• Invisible nodes:
• Visible nodes:
• Propagate the leaf visibility upward

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Marking Nodes

• Invisible nodes:
• Visible nodes:
• Only scene parts with unknown visibility are tested in every frame

visibilityvisibility band band

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Marking Nodes

• Initial filling of the query queue with the root nodes of yet untested
partial trees
– Fewer but more useful queries
– More stable prerequisites for the query queue
– Significant performance gains

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

• Model w. appr. 12.700.000 polygons

Powerplant Model, University of North Carolina at Chapel Hill

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

• Occluder Fusion

Powerplant Model, University of North Carolina at Chapel Hill

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Styling Lighting and Materials

• Programmable
Pixel and Vertex
Shaders

• Image-based
lighting

• Transparency
• HDRI,

Reflections
• Blooming
• Tone Map, etc.

These techniques integrate well with visibility-guided renderingThese techniques integrate well with visibility-guided rendering

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Out-of-core System Architecture

2-Level Caching:

• Spatial Database (10 GB – x TB)
– Core Memory (500MB – x GB)
– VRAM (64MB – 512MB)

• Out-of-core rendering
• Prefetching mechanism to avoid lag time
• Off-line clash detection

Core Memory

CPU

GPU

VRAM

Graphics HW Database

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Subdivision of Graphics Memory

• LRU as replacement strategy of complete slices
• Maintaining data coherence
• Fewer buffer swaps, but „dead storage“

Slice 1
Vertexbuffer

Indexbuffer

Vertexbuffer

Indexbuffer

Vertexbuffer

Indexbuffer

Vertexbuffer

Indexbuffer

Slice 2 Slice 3 Slice 4

0M 4M 8M 12M 16M

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Prefetching from HD

• In each frame, there is potentially a different distribution of priorities.
However, due to the temporal coherence from frame to frame, only
a few changes need to be applied simultaneously.

• The prefetching-and-replacement strategy tries to keep as many leaf
nodes as possible in main memory, starting at the leaves with the
highest priority.

• Leaves with lower priority that have stayed in memory for the
longest time will be removed from the systems memory first

• Leaf nodes marked as “visible” will never be removed from memory,
to avoid flickering.

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Performance Comparison

Average PC (2005) 3GHz CPU, 3D graphics card, 500MB memory
and 1M pixel display, direct Phong lighting, (no reflections,
shadows, etc.).

Performance f(P) (fps)

Data Size (P) 1 M 10 M 100 M 1 B

OpenGL 3D Graphics HW:
f(P) = 1/P

10

100

1000

1
Ray Tracing: f(P) = 1 / log(P)

Visibility-guided rendering: f(P) =
1/log(P)

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Scene with 1.300.000.000 Polygons

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Preprocessing Data
• Goal: Hierarchically and spatially subdivide scene into sets of 1000 to 8000

triangles
• Sort these sets as leaves of a kd-tree.

 Spatial Sorting (no complex pre-processing required)
• Needs to be done out of core:
• Examples of pre-processing times:

– Power plant (12,7 Mio. triangles) in 1.5 min
– Boeing 777 (350 Mio. triangles) in 70 min.

VBuffer

IBuffer

VBuffer

IBuffer

VBuffer

IBuffer

VBuffer

IBuffer

VBuffer

IBuffer

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Two memory management strategies

• Memory mapped files &
• Explicit swapping of geometry chunks

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Memory mapped files
• Make use of optimized swapping strategy of the operating system:
• Principle: The virtual address space of a process is subdivided into pages (usually 4

kB in size) which can reference pages in main memory, external devices, or on the
hard disk.

• Linear view on all data simultaneously. Access via 64-bit indices. Requirement of the
necessary sizes in megabytes.

• Storage may be requested and modified by means of defined windows on the data that
are mapped to systems memory (memory-mapped files)

• Memory can be read or written transparently. Altered pages will automatically be
written to the hard disk.

• By only using one storage window at a time, the swapping of data is completely
managed by the operating system, which reduces fragmentation of the address space.

Problems of memory mapped files:
• Swapping strategies of the operating systems are kept general and are not optimal for

the specific application case.
• Swapping is done only when the system memory fills up and memory requests can no

longer be met.
• For instance under MS-Windows only single pages are written out and immediately

afterward other pages are read back in. This leads to inefficient I/O behavior.
• The linear view does not fit well with the hierarchical organization of the geometry. This

requires continuous copying to maintain coherence.

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Explicit Memory Management

• Considers the hierarchical subdivision of data
• Explicitly controls read and write actions.
• For every node of the tree, the complete sub tree data needs to be

read, handled and written back to disk
amounts to the complete data set once per level of recursion)

• If the necessary data is smaller than the available systems memory,
the complete leaf data can be handled in core.

• Otherwise, the subdivision has to be carried out in stages, where
only a subset what fits into memory is handled simultaneously.

Advantage over the memory-mapped file approach:
• Subdivision of geometry data into chunks that can be handled

completely in core.
• Swapping more efficient 50MB/s vs. only 1 – 5 MB/s with mmf
• Acceleration of pre-processing by up to a factor of 10.
• Asynchronous writing of data during generation.

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Engineering Example: Boeing 777

Extremely detailed CAD
Model: - 350 Million
Triangles in Real Time

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Veo:Factory: DaimlerChrysler

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

DaimlerChrysler VTC
Van Technology Center

Satellite Data + CAD Model (modeled with Bentley MicroStation)

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Conclusion and Outlook

Advantages of interviews3D‘s Visiblity-guided Rendering:
• Only one set of data! Utilize simultaneously for

– Engineering (DMU) and Styling
– Render quality and quantity

• No more need to simplify models!!
– Visualize large, detailed models directly from CAD
– Save time and money

• Scalability: One software system for
– PC workstation, laptops
– Render server for power wall presentations

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Conclusion and Outlook

• Support of PLM (product life cycle management) – selective
updates & version

• Clash detection (Veo:Factory):

• DMU tool for
factory planning

• Graphical User
Interface

• Power Wall
Presentation:
3000 x 1200
Pixels, Stereo (4
Projectors)

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Vertex Tracing

Standard Ray Tracing

Vertex Tracing:

Eye point

Reflected rays Light source

Image plane

Primary ray Pixel

sr

pr

lp

ap
Hardware Shader

 Interpolation (GPU)
i

Transmitted (refracted)
 Rays

rr

tr
v

e

VT Object

i

Primary-Vertex

Edge

• No primary ray intersection
• Graphics hardware for reconstruction (pixel- vertex shaders)
• Only visible objects generate secondary rays (use VGR)

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Scalability

Graphics Server SGI Prism: Multi CPU, multi GPU, global shared
memory, high bandwidth RAID

Performance gain for visibility-guided rendering?

Global Shared
Memory

CPU

RAID
System

CPU

CPU
GPU

CPU

GPU

GPU

GPU

Video

Compositor

Video

Compositor GPU
GPU

Power Wall

Projection

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Theoretical Scalability of Multi-GPU
Systems

Performance f(P) (fps)

Data Size (P) 1 M 10 M 100 M 1 B

OpenGL 3D Graphics HW:
f(P) = 1/P

10

100

1000

1

1 GPU1 GPU

10 10 GPUsGPUs

Visibility-guided rendering

1 GPU1 GPU

Already with one GPU, Visibility-Guided Rendering VGR is faster than
direct hardware rendering witb 10 GPUs.

However: VGR also scales appr. 10 times with 10 GPUs

10 10 GPUsGPUs

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Scalabilitiy in Performance?

• Not necessary to render more polygons! (frame rate
depends little on data size)

• However, high-end hardware power enables:
• Higher frame-rate through multi-GPU:

– Time sequential / AFR (linear speed-up, some
latency)

– Tiling mode / SFR (near linear speed-up, no
latency

• High performance, global shared memory: e.g. 20 GB
can load entire Boeing 777 into core memory

• Fast RAID system for even larger models: Navigate
through terabites of data directly from database
without much latency

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Graphics Server Advantages:

• Additional performance for improvement of quality at consistently high
frame rate:
– Sophisticated and complex vertex and pixel shaders for special

materials and lighting effects
– Materials: E.g. brushed metals, leather, coating, etc.
– Hardware anti-aliasing

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

• HDRI: High dynamic range imaging, for realistic light reflections
• Soft shadows, indirect lighting in real-time
• Real specular object inter-reflections (refractions) through

hybrid, real-time ray tracing (multi-CPU)

Higher Frame Rates With Realistic
Rendering:

Sept. 4, 2006 Eurographics Tutorial 3DI3DInteractive GmbH

Thank You!

For For furtherfurther informationinformation, , pleaseplease
contactcontact::

www.3dinteractive.dewww.3dinteractive.de
info@3dinteractive.deinfo@3dinteractive.de

