
Notes on the Distributed Computation of
Merge Trees on CW -complexes

Aaditya G. Landge, Peer-Timo Bremer, Attila Gyulassy, and Valerio Pascucci

Abstract Merge trees are topological structures that record changes in super-
level set topology of a scalar function. They encapsulate a wide range of thresh-
old based features which can be extracted for analysis and visualization. Several
distributed and parallel algorithms for computing merge trees have been proposed
in the past, but they are restricted to simplicial complexes or regular grids. In this
paper, we present an algorithm for the distributed computation of merge trees on
CW -complexes. The conditions on the CW -complex required for the computation
of the merge tree are discussed along side a proof of correctness.

1 Introduction

Analysis and visualization are crucial components in gaining scientific insight from
scientific simulations. In this regard, topological techniques have been successful at
extracting features of interest from scientific datasets [2, 8, 15]. Topological struc-
tures, such as merge trees, are combinatorial in nature and encode level-set based
features of a scalar function. They enable threshold-based feature extraction and
can be represented compactly, making them suitable for post process exploratory
analysis. The continuous increase in computational resources available to scientists
performing simulations of complex scientific phenomenon is leading to a corre-
sponding increase in the size and complexity of data being generated. Concurrently,
compute architectures are gradually moving towards multi-core and large scale dis-
tributed environments. In this scenario, its important to design and develop parallel
topological analysis algorithms and techniques that can harness the parallelism pro-
vided by these massively parallel resources.

Preciously, several efficient serial [3,5], and streaming algorithms [?,2] have been
presented for topological constructs. The first parallel algorithm for computing con-
tour trees has been proposed by Pascucci et. al. [12]. Subsequently, [6, 7, 10, 11]
introduced techniques to computecontour or merge trees more efficiently at scale.
All the above algorithms have been developed for simplicial complexes or recti-
linear 2 or 3-d grids. But there are several scientific phenomenon [4, 13] that are
modelled using meshes like structured/unstructured curvilinear meshes, finite ele-
ment zoo meshes [14], adaptive mesh refinement(AMR) meshes [1], etc. For these

Aaditya G. Landge, Attila Gyulassy, and Valerio Pascucci,
Scientific Computing and Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, e-mail:
aaditya, jediati, pascucci@sci.utah.edu

Peer-Timo Bremer
Lawrence Livermore National Laboratory, Livermore, CA, e-mail: bremer6@llnl.gov

1

2 Aaditya G. Landge, Peer-Timo Bremer, Attila Gyulassy, and Valerio Pascucci

types of meshes, its non-trivial and potentially costly to convert a mesh into a sim-
plicial complex. However, the majority of such meshes can be represent as regular
CW -complexes. Hence, there is a strong motivation to extend the topological anal-
ysis algorithms to handle CW -complexes. In this work, we present a distributed
algorithm for computing the merge tree on a regular CW -complex. Furthermore, we
present a proof of correctness for this approach, and apply our result to validate the
previous algorithms.

2 Background

We briefly review some basic concepts from algebraic topology, and refer the reader
to Massey [9] for further reading. Let there be a space M ⊂ Rd , which is repre-
sented using a a d-dimensional, finite, regular CW -complex, Kd , such that a k-cell
is an open k-ball, 0≤ k≤ d. In computational science, a continuous Morse function
F : M→ R, is typically discretized by assigning values to 0-cells(vertices) and in-
terpolating the function within every k-cell to obtain a function f : K→R, such that
each vertex is associated with a distinct function value and the interpolation scheme
ensures f is C0 on Kd with simple critical points. For example, in the cases when K

is a simplicial complex or a 3d-rectilinear grid, the interpolation schemes that could
be used are linear and trilinear respectively.

Let there be a k-dimensional cell, αk ∈K, k≤ d. Then the closure of α , denoted
as α , is the cell α and the limit points of α . Thus, the boundary of α , denoted as
∂α , is given by ∂α = α\α . If another cell, β m ∈ K,k < m ≤ d such that α ⊂ β ,
then αk is the face of β m, denoted as α � β .

Definition 1. The level set, lc, of f at a value c ∈ R is the set of points in the do-
main of f such that lc = f−1(c). A connected component of the level set is called a
contour.

Definition 2. The super-level set, Lc, of f is the set of points in the domain of f
with value in f greater than c ∈ R and is given as Lc = f−1[c,∞).

Definition 3. Given a super-level set, Lc, of f having n connected components de-
noted as {C1,C2, . . . ,Cn}, then Lc = ∪Ci for i = 1 . . .n and Ci ∩C j = /0 (i 6= j). We
define an equivalence relation ‘∼’ on K such that two points x,y ∈K are related if
f (x) = f (y) = c and x,y ∈Ci i.e. belong to the same level-set and the same super-
level component of Lc. Then the quotient space, K/ ∼, is the merge tree of f on
K, denoted as MT (K). The many-to-one map, φ : K→K/∼, maps points from K

onto a point in the merge tree.

Intuitively, the merge tree encodes the evolution of the frontiers of connected
components of the super-level set of f on K. The merge tree is composed of nodes
and arcs. The nodes represent the critical points that create, merge, or destroy super-
level set components which are the maxima - leaves in the tree, saddles - interior
nodes and the global minimum - the root of the tree respectively. Sometimes, the
merge tree is augmented with valence-2 nodes, which are non-critical nodes that do

Notes on the Distributed Computation of Merge Trees on CW -complexes 3

not correspond to any change in the super-level set topology. We call these nodes
regular nodes. In this paper, we assume without loss of generality that K is simply-
connected. In the case when K is not connected, we would obtain a forest of merge
trees where each tree corresponds to a connected component of the domain.

3 Computing Merge Trees on CW-complexes

Our technique is based on the divide and conquer strategy where a merge tree is
computed for each partition of the domain. These trees are then joined to form the
merge tree of the domain. In this section, we first describe the domain decomposition
used by the divide and conquer strategy. The strategy is then expressed as a recursive
algorithm followed by the necessary modifications to adapt it to a distributed setting.

3.1 Domain Decomposition
In order to apply a divide and conquer strategy we partition the domain K into a
finite number of patches.

Definition 4. A patch, P, is a d-dimensional sub-complex of K, where P is com-
posed of a set of d-cells along with their boundaries, i.e. let P ⊆ K such that if
αd ∈ P, then β ∈ P iff β ⊂ αd .

Definition 5. The patch-boundary, ∂P, of P is the intersection of P with the clo-
sure of K\P. Thus ∂P = (K\P)∩P.

Definition 6. The domain-decomposition of K is given as a union of finite number
of patches given as K = ∪Pi,0 < i ≤ n such that for any two patches Pi,Pj ∈ K,
(Pi\∂Pi)∩ (Pj\∂Pj) = /0, i 6= j.

Definition 7. Let there be patches, P,Q∈K. Then P and Q are neighbors if P∩Q 6=
/0. The boundary components, ∂iP, of P are the intersections of P with each of its
neighbors, Qi. Thus, the boundary components of P are ∂iP = P ∩ Qi. We denote
the set of all ∂iP as ∂̂P. Since P and Qi are neighbors, each P ∩Qi is also a boundary
component of each neighbor Qi.

Definition 8. A patch hierarchy consists of levels, h = 0, . . . ,hmax, where h = 0 is
the finest level and h = hmax is the coarsest level. Each level a complex of patches
such that patch at level h, denoted as Ph is the union of patches at level h−1. Thus,
Ph = ∪ Ph−1

i ,0 < i ≤ n. At the finest level, h = 0 , a patch, P0 is a d-dimensional
cell, αd ∈Kd along with its boundary, ∂αd . Thus, P0 = αd ∪ ∂αd = αd .

One may consider the hierarchy as a tree where each node is a patch. The leaves
are patches composed of a single d-dimensional cell and the interior nodes are
patches composed of the union of the children. We do not enforce any restriction
on the neighborhoods of the children.

3.2 Joining Merge Trees
Given two neighboring patches, P,Q ∈ K, we can compute their respective merge
trees MT (P) and MT (Q) and glue them in a specific way to obtain the merge tree of

4 Aaditya G. Landge, Peer-Timo Bremer, Attila Gyulassy, and Valerio Pascucci

the union, P ∪ Q. We call this the join operation. But to perform the join, we have
to preserve the connectivity of the super-level set components that expand into the
neighboring patch. This information is provided by points on the shared boundary
P ∩ Q and one can achieve the join by adding all these points into the merge trees of
the patches as noncritical, regular nodes. These can then be used in the join to form
the merge tree of P ∪ Q. But as there are infinitely many points on the boundary this
approach is not feasible. Instead, we can restrict the number of noncritical points
from the boundary by only adding the boundary maxima as regular nodes to the
merge trees.

Definition 9. The maxima of f , when f is restricted to every boundary component
of a patch, P, are known as the boundary maxima of P.

Once we have the merge tree along with the boundary maxima, we can now join
trees from neighboring patches along these nodes. Before we look at the details of
the join, let us define the inputs to this operator.

Definition 10. Let P ∈ K be a patch and let ∂̂S be a set of boundary components.
The augmented merge tree, AMT (P, ∂̂S), is the merge tree of f restricted to the
patch, P, augmented with the boundary maxima of all boundary components, ∂̂S.

The JoinMT () routine described in Algo. 1 performs this operation on a set of
merge trees. It assembles the resulting tree from the arcs and nodes of input trees by
introducing each arc, along with its end nodes, in a descending order based on the
function value of the lower node. Each time an arc, (u,v), bounded by nodes u and
v, f (u) > f (v), is introduced, it gives rise to one of the following cases in the tree
being constructed, T :
1. u,v /∈ T then arc (u,v) does not attach to any of the existing arcs but gets added

as a disjoint arc in T – this represents the creation of a new super-level set
component

2. u∈ T, v /∈ T and u has no descendants, then we attach (u,v) to u as a descendant
– this represents the growth of an existing super-level set component by addition
of the region represented by (u,v)

3. u ∈ T, v /∈ T and u has descendants with the lowest descendant being u′, then
we attach v as a descendant of u′ by introducing an arc (u′,v) – this means that
the super-level set component containing u has already grown till u′, so grow it
further till v.

4. v ∈ T, u /∈ T , then we attach (u,v) to v making v a saddle – this represents
creation of a super-level set component that merges with another super-level
set component at v. Note that since we are adding arcs in the descending order
based on the function value of the lower node, v will not have any descendants
present in T .

5. u,v ∈ T and v is not a descendant of u, then we add the arc between the lowest
descendant of u, given by u′, and v – this represents merging of super-level
components

Notes on the Distributed Computation of Merge Trees on CW -complexes 5

6. u,v ∈ T and v is a descendant of u, then we discard the arc (u,v) – this mean
that the region of the super-level set component represented by (u,v) is already
present in the domain.

u

vv

u

u' u

v

u'

Fig. 1 Examples for case 3 (left), case 4 (middle), and case 5 (left) from the above description.

The above discussed process can be achieved by a union-find like traversal of
the sorted nodes as seen in Algo. 1. The sorting of the nodes is performed in linear
time as the input AMTs would have their nodes in sorted order. The Find(u,AMT)
routine returns the lowest descendant of u in AMT and adds u if it is not present
in AMT . This is implemented as a union-find data structure and has amortized con-
stant running time. The number of edges for a given node is constant and hence the
Algo. 1 has a linear run time complexity given by the number of nodes in the input
AMT s.

Algorithm 1: Join(AMT(. . .))
Data: Array of AMTs for individual patches
Result: AMT of the union of patches
AMT = [];
Nodes[] = Sorted list of the union of vertices from input AMTs in decreasing order of
function value;
for All nodes v in Nodes do

for Arcs (u,v) in input AMTs do
u′ = Find(u,AMT); // If u not in AMT, add and return u
v′ = Find(v,AMT); // If v not in AMT, add and return v
if u′ 6= v′ then

AddArc(u′,v′);

return AMT;

Definition 11. Given two augmented merge trees, AMT (P, ∂̂P) and AMT (Q, ∂̂Q),
the join operator, (+), joins them along the boundary maxima of P∩Q to form
AMT (P∪Q, ∂̂P∪ ∂̂Q).

Theorem 1. AMT (P, ∂̂P)+AMT (Q, ∂̂Q) = AMT (P∪Q, ∂̂P∪ ∂̂Q).

Proof. From Def. 3 of a merge tree, a point x ∈ P∪Q is mapped to a point on
AMT (P∪Q, ∂̂P∪ ∂̂Q) under the map φ . If x lies on the arc (u,v), where f (u) >
f (v), we say that x has the label u. We now have to show that the join operator on
AMT (P, ∂̂P) and AMT (Q, ∂̂Q) produces the same set of labels for points in P∪Q
as produced by AMT (P∪Q, ∂̂P∪ ∂̂Q). If the points have the correct labels, we have
the correct connectivity of arcs under the join operation.

Let us assume that the correct label for a point x ∈ P∪Q is u. Then x lies on an
arc (u,v) ∈ AMT (P∪Q, ∂̂P∪ ∂̂Q). Now, there are two cases,

6 Aaditya G. Landge, Peer-Timo Bremer, Attila Gyulassy, and Valerio Pascucci

1. x,u ∈ P. In this case, u must be the label of x in AMT (P, ∂̂P). Let us assume
that the join operation assigns a label w to x. This is possible only if w ∈ Q\P.
Now, if w is to be the label of x, we should have f (u) > f (w) > f (x) and they
must lie on the same super-level set component. This implies that the u and w
must have a common ancestor. In this case, the join operation ensures that u,w
and x lie on the same path to the root. Thus, w should be the label of x, but that
contradicts our assumption that u is the correct label, hence, our assumption that
the join operation assigns w as the label is false.

2. x ∈ P and u ∈ Q\P. Then before the join lets assume that x had a label w in
AMT (P, ∂̂P). Now, if u is the label of x, then f (w) > f (u) > f (x) and u and
x must be on the same super-level set component. But as x has a label w in
AMT (P, ∂̂P) implies that x and w are also on the same super-level set compo-
nent. This implies that w and u have a common ancestor. This is possible only if
all them lie on the same path from the ancestor to the root. If u,w are on the the
same path the algorithm will assign the label u to x since f (w) > f (u) thereby
assigning the correct label.

Thus, the join operator always maintains the correct labels and hence generates the
correct AMT (P∪Q, ∂̂P∪ ∂̂Q). ut

The resulting tree from the join contains valence two nodes from P∩Q that are
no longer required. On the other hand, we need to retain the boundary maxima of
the boundary components of the union of patches, P∪Q. The boundary maxima of
the components of ∂ (P∪Q) are already present in the joined tree. The following
lemma proves this claim.

Lemma 1. Given two neighboring patches P,Q ∈ K and their augmented merge
trees AMT (P, ∂̂P) and AMT (Q, ∂̂Q), then the join of these trees contains the
boundary maxima of ∂̂ (P ∪ Q).

Proof. AMT (P, ∂̂P) and AMT (Q, ∂̂Q) contain the boundary maxima of ∂̂P and
∂̂Q respectively and the join operation does not remove any nodes from the partici-
pating trees while creating the resulting tree. Thus, AMT (P, ∂̂P)+AMT (Q, ∂̂Q) =

AMT (P∪Q, ∂̂P∪ ∂̂Q) contains the boundary maxima of ∂̂ (P ∪ Q). ut

3.3 Obtaining the Boundary Maxima and Pruning the Merge Tree
Definition 12. The Bmax(∂̂P) operator takes a patch and returns the boundary max-
ima for each boundary component, ∂̂P, of P.

The function GetBoundaryMax(P,h) returns the list of boundary maxima for the
patch P at level h. This call takes help of the BuildMT () routine that generates a
merge tree for a patch. We shall define this routine in detail later in this section. As
the merge tree by definition preserves all the maxima of a function on a given do-
main, we obtain the boundary maxima by computing the merge tree of each bound-
ary component of P and extract the maxima from the respective trees. Since, we

Notes on the Distributed Computation of Merge Trees on CW -complexes 7

do not know the function interpolation scheme on K, we take help of an oracle as
defined below to obtain the merge tree of a cell in the CW -complex.

Definition 13. Let αk ∈Kd , 0 ≤ k ≤ d, be a k-dimensional cell. The oracle, given
as OracleMT (f ,α), returns the merge tree, denoted as MT (α) of the cell and its
boundary i.e. α ∪ ∂α .

A similar approach of using an oracle was taken in [12], but the authors did not
include the boundary maxima of the cell in their computation which can result in an
incorrect join.

As we have seen in Theorem 1 that the boundary maxima are required in order
to perform the correct join operation so we must include them in the merge tree re-
turned by the oracle. Since, K is a regular CW -complex, the boundary components,
∂̂α , are (d−k)-dimension sub-complexes where 1≤ k≤ d. To obtain the boundary
maxima of ∂̂α , we make use of the oracle to give us the merge trees of individual
cells in ∂̂α . We can then extract the maxima from these trees.

The GetMaxFromMT () is a trivial routine that returns the maxima nodes from a
merge tree. Algo. 2 describes the GetBoundaryMax(P,h) function. As long as the
BuildMT () and the OracleMT generate the correct merge tree this routine shall
identify the correct boundary maxima.

Algorithm 2: GetBoundaryMax(P, h)
Data: Patch, P, and level, h, in the hierarchy
Result: Array with references to maxima, max[]
for all patch-boundary components ∂iPh ∈ P do

if h > h0 then
MT = BuildMT(∂iPh, h);
max[. . .] = GetMaxFromMT(MT); // Returns maxima from MT

else
for all cells α j in ∂iPh do

MT = OracleMT(α j);
max[. . .] = GetMaxFromMT(MT); // Returns maxima from MT

return max[. . .];

The max need to be relabeled in AMT (P∪Q, ∂̂P∪ ∂̂Q). The following operator
performs this operation.

Definition 14. The mark boundary max operator, M(AMT (P, ∂̂S), Bmax(∂̂R)),
such that ∂̂R⊆ ∂̂S, returns the AMT (P, ∂̂R), with the boundary max of all compo-
nents of ∂̂R marked as boundary.

The MarkBoundary() routine performs the above operation. It first traverses the
tree and unmarks all the nodes. It then finds the boundary maxima in the tree and
marks them as boundary. This results in a tree that has only the boundary maxima
marked as boundary.

Finally, we need to remove the redundant valence two or regular nodes that are
not boundary. These are no longer required as they are not critical and do not lie on
the boundary. We remove them from tree using the following operator.

8 Aaditya G. Landge, Peer-Timo Bremer, Attila Gyulassy, and Valerio Pascucci

Definition 15. The prune operator, P(AMT), removes the regular nodes that are not
on the boundary from the AMT .

This is a trivial operation and can be performed by simply traversing the tree and
deleting the regular nodes that are not boundary.

3.4 Recursive Computation
Now that the above operations have been defined, the merge tree for the entire do-
main K can be built in a recursive fashion. We compute the merge tree for every
patch at the finest level in the patch hierarchy, h = 0, and join them using the join
operator, find the boundary maxima of the union of the patches using the Bmax oper-
ator, mark them using the M operator and finally prune the tree using the P operator
to form the merge tree of a patch at the next coarser level, h = 1. We perform this
operation recursively till we have obtained the merge tree of the final level, h= hmax.
The recursive solution is given in the following theorem.

Theorem 2. Given a patch, Ph ∈Kd at level h, the AMT (Ph, ∂̂Ph) is given by,

AMT (Ph, ∂̂Ph) = P
{
M
[(n

∑
i=0

AMT (Ph−1
i , ∂̂Ph−1

i)
)
, Bmax(∂̂Ph)

]}
, where

n

∑
i=0

AMT (Ph−1
i , ∂̂Ph−1

i) = AMT (Ph−1
0 , ∂̂Ph−1

0)+ · · ·+AMT (Ph−1
n , ∂̂Ph−1

n)

i.e. the join of all the merge trees of patches at level, h−1, within the patch Ph.

Proof. This can be proved using induction. At h = 0, the patch, P0 = αd ∪∂αd , is
a d-cell and its boundary. We make use of the oracle to obtain MT (α). By using the
Bmax operator on ∂̂α we can obtain the boundary maxima, which can be added to
MT (α) to give us AMT (P0, ∂̂P0).

At h = k, let Pk = ∪Pk−1
i , 0≤ i≤ n. Lets assume that

AMT (Pk, ∂̂Pk) = P
{
M
[(n

∑
i=0

AMT (Pk−1
i , ∂̂Pk−1

i)
)
, Bmax(∂̂Pk)

]}
(1)

At h= k+1, let Pk+1 =∪Pk
j , 0≤ j≤m. Now, since we can compute AMT (Pk

j , ∂̂Pk
j)

using Eq.(1) and join them to get,

n

∑
j=0

AMT (Pk
j , ∂̂Pk

j) = AMT (∪Pk
j , ∪∂̂Pk

j) = AMT (Pk+1, ∪∂̂Pk
j) (2)

From (2), we have obtained the AMT of the union of patches, ∪Ph
i = Pk+1, that

contains the boundary maxima of the union of the boundaries, ∪(∂̂Pk
i). But we

need The boundary maxima of components of the boundary of the union i.e.
∂̂ (∪Pk

j) = ∂̂ (Pk+1), which need to be marked in AMT (Pk+1, ∪∂̂Pk
j). The bound-

ary max is obtained from Bmax(∂̂Pk). These can then be marked by using the M

operator followed by a prune giving,

Notes on the Distributed Computation of Merge Trees on CW -complexes 9

P
{
M
[
AMT (Pk, ∪∂̂Pk−1

i), Bmax(∂̂Pk)
]}

= AMT (Pk+1, ∂̂Pk+1) (3)

T hus, AMT (Pk+1, ∂̂Pk+1) = P
{
M
[(n

∑
j=0

AMT (Pk
j , ∂̂Pk

j)
)
,Bmax(∂̂Pk+1)

]}
(4)

ut

The function BuildMT (P,h), described in Algo. 3, where P is a patch or patch-
boundary component and h is the level in the hierarchy shows the recursive con-
struction. The merge tree for all patches within a higher level patch are computed
and joined. The boundary maxima are computed and marked followed by pruning
the tree. This is done recursively. Note that at the base level of the recursion the
patch is a single d-cell. The oracle returns the merge tree of the cell but we still need
to explicitly add the boundary maxima for the cell. Hence, we make the extra call to
GetBoundaryMax() and MarkBoundary() within the else after we have invoked the
oracle. At the end of the recursive computation, the BuildMT () routine computes
the AMT (K, ∂̂K). We can easily delete the boundary nodes to obtain the MT (K).

Algorithm 3: BuildMT(P, h)
Data: Patch, P, and level, h, in the hierarchy
Result: MT (P)
for all patches Ph−1

i ∈ P do
if h > 0 then

MT[i] = BuildMT(Ph−1
i , h−1);

else
MT[i] = OracleMT(Ph

i);
max[. . .] = GetBoundaryMax(Ph

i , h);
MarkBoundary(MT[i], max[. . .]);

if h > 0 then
MT = Join(MT[. . .]);

max[] = GetBoundaryMax(P, h);
MarkBoundary(MT, max[. . .]);
Prune(MT);
return MT (P);

3.5 Distributed Computation
In the above section, we have shown that we can compute the merge tree of a do-
main K by decomposing into a hierarchy of patch levels and recursively computing
the tree on each level. In the distributed scenario, we unroll the recursion so as to
perform the computation of every patch on to an individual compute resource. This
results into a patch containing multiple d-cells being allocated to every compute
resource. The information between patches is exchanged using a message passing
interface. The merge tree of K can be computed by joining the merge trees from
the distributed patches in a successive join hierarchy corresponding to the patch hi-
erarchy, until the merge tree of the whole domain, denoted as the global tree, is
computed.

10 Aaditya G. Landge, Peer-Timo Bremer, Attila Gyulassy, and Valerio Pascucci

The computation of the global tree, by simply unrolling the recursive algorithm is
not an efficient distributed solution as it involves communicating entire intermediate
merge trees by every patch incurring heavy communication costs. At the same time,
the computation is highly load imbalanced as fewer compute resources are in use
as one approaches higher levels in the hierarchy. This technique has been used by
Pascucci et. al. [12] for computing merge trees of 3d regular grids. A more efficient
strategy is used by [6, 10] where the global tree is distributed where each patch
maintaining only the part of the global tree pertaining to that patch, referred as local
merge tree. Here we extend the technique from [6] to d-dimensional, finite, regular
CW -complexes and present its proof of correctness. This proof can be extended to
all other existing parallel merge tree computation approaches like [10, 12].

Definition 16. Let P and S be d-dimensional sub-complexes of K. The local merge
tree, LT (K, P, ∂̂S), of f on the domain K, local to the patch P with respect to the
boundary of S⊆K is given by:

– the arcs and/or nodes of MT (K) that contain at least one point corresponding
to the image of point/s in P under the map φ ;

– the upper and lower nodes of the above arcs;
– these arcs and/or nodes are augmented with the maxima of f when f is restricted

to individual boundary-components, ∂̂S, of S.

Given a domain decomposition of K into patches Pi, our goal is to compute the
LT (K, Pi, ∂̂K) for each Pi ∈ K. By Def. 16, MT (K) can be easily obtained once
we have the individual LT (K, Pi, ∂̂K).

In order to compute the LT (K, Pi, ∂̂K), we start by computing the LT (Pi, Pi, ∂̂Pi),
for each patch. We compute these using the recursive algorithm from section 3.4 by
invoking the BuildMT (Pi, h = 1) for each of the patch. Now instead of joining
these trees with neighboring patches, we can modify the algorithm to reduce the
communication cost of the distributed computation.

Definition 17. Given an arc with end nodes (u,v) in a merge tree, we say that u is the
parent of v if f (u)> f (v). Given a patch P⊆ S⊆ R ∈K and having LT (R, P, ∂̂S),
the boundary merge tree, denoted as BT (R, P, ∂̂S), is the set of nodes and arcs that
lie on the monotonic descending paths from the parents of the boundary maxima of
components of ∂̂S to the root in LT (R, P, ∂̂S). Thus, BT (R, P, ∂̂S)⊆ LT (S, P, ∂̂S).

Theorem 3. Given patches P,Q ∈ K such that P ∩ Q 6= /0. The nodes and arcs of
LT (P, P, ∂̂P) that are not part of BT (P, P, ∂̂P) remain unchanged in
LT (P∪Q, P∪Q, ∂̂ (P∪Q)).

Proof. We refer the reader to [10] for the proof. As the components of the super-
level sets that reside entirely in P\Q and are not connected to the boundary, they
cannot be affected by the join operation. ut

The following operator extracts the boundary merge tree from a given merge tree
augmented with boundary maxima of boundary components.

Notes on the Distributed Computation of Merge Trees on CW -complexes 11

Definition 18. Given a local merge tree, LT (P, P, ∂̂S) or a boundary merge tree,
BT (P, P, ∂̂S), the extract boundary operator, E, with respect to ∂̂R, extracts
the boundary merge tree, BT (P, P, ∂̂R), where ∂̂R ⊆ ∂̂S from LT (P, P, ∂̂S) or
BT (P, P, ∂̂S) . Thus, E(LT (P, P, ∂̂S), ∂̂R) = BT (P, P, ∂̂R).

The boundary merge trees can be easily extracted by traversing the tree from the
leaves, identifying the boundary maxima and selecting the nodes and arcs from the
parents of these maxima till the root of the tree.

3.5.1 Join Hierarchy of Boundary Trees

As the nodes and arcs that lie in the interior of a patch do not change after a join,
this implies that only the BT is affected by the join. We exploit this property by
joining only the boundary trees of patches to form boundary trees of patches at the
next level. These in turn are joined successively creating a hierarchy of join stages.

Theorem 4. Given the boundary merge trees of two patches P and Q as BT (P, P, ∂̂P)
and BT (Q, Q, ∂̂Q) then,
BT (P, P, ∂̂P)+BT (Q, Q, ∂̂Q) = BT (P ∪ Q, P ∪ Q, ∂̂P∪ ∂̂Q)

Proof. Let RP = LT (P, P, ∂̂P) \ BT (P, P, ∂̂P),
RQ = LT (Q, Q, ∂̂Q) \ BT (Q, Q, ∂̂Q),
R = LT (P ∪ Q, P ∪ Q, ∂̂P∪ ∂̂Q) \ BT (P ∪ Q, P ∪ Q, ∂̂P∪ ∂̂Q)
From Theorem 3,
RP and RQ remain unchanged in the join LT (P, P, ∂̂P) + LT (Q, Q, ∂̂Q). Thus,
LT (P, P, ∂̂P)+LT (Q, Q, ∂̂Q) = RP ∪ RQ ∪ (BT (P, P, ∂̂P)+BT (Q, Q, ∂̂Q))

Also, LT (P, P, ∂̂P)+LT (Q, Q, ∂̂Q) = LT (P∪Q, P∪Q, ∂̂P∪ ∂̂Q)
The boundary maxima in the above join remain unchanged as the join operation
does not give rise to new maxima or does not alter the existing boundary maxima.
Thus, BT (P ∪ Q, P ∪ Q, ∂̂P∪ ∂̂Q) contains all boundary maxima from ∂̂P and
∂̂Q. This implies, R = RP ∪RQ. Hence, BT (P, P, ∂̂P)+BT (Q, Q, ∂̂Q) = BT (P ∪
Q, P ∪ Q, ∂̂P∪ ∂̂Q) ut

After every join stage, the resulting tree is used by the patches to update their LT s
with respect to the grown boundary. We refer to this as the localization described in
the next section. After this the BT s are pruned and the BT for the next level patches
are extracted. These are used by the next stage of the merge. As we consider K to
have no boundary, BT (K, K, ∂̂K) is empty. An example of this process is shown
in Fig. 3.5.1.

3.5.2 Localization of Merge Trees to Patches

After every join stage of the BT s, the resulting boundary trees are joined with cor-
responding patches to obtain the LT s. This way a patch can obtain the connectivity
information of its super-level set components that grow into neighboring patches by
using the boundary trees of its neighbors.

12 Aaditya G. Landge, Peer-Timo Bremer, Attila Gyulassy, and Valerio Pascucci

LT (P0
0,P0

0, ∂̂P0
0) LT (P1

0,P1
0, ∂̂P1

0) LT (P2
0,P2

0, ∂̂P2
0) LT (P3

0,P3
0, ∂̂P3

0)

BT (P0
0,P0

0, ∂̂P0
0) BT (P1

0,P1
0, ∂̂P1

0) BT (P2
0,P2

0, ∂̂P2
0) BT (P3

0,P3
0, ∂̂P3

0)

BT (P0
0∪P1

0,P0
0∪P1

0, ∂̂P0
0∪∂̂P1

0) BT (P2
0∪P3

0,P2
0∪P3

0, ∂̂P2
0∪∂̂P3

0)

BT (P0
1,P0

1, ∂̂P0
1) BT (P1

1,P1
1, ∂̂P1

1)

BT (P0
1∪P1

1,P0
1∪P1

1, ∂̂P0
1∪∂̂P1

1)

BT (P0
2,P0

2, ∂̂P0
2)

Ε Ε Ε Ε

Ε

Ε

Ε

(h = 0) (h = 0)

(h =1) (h =1)

(h = 2)

+ +

+

Localization Stage 1
Localization Stage 2

Fig. 2 An overview of the distributed computation for a domain consisting of four patches at level
h = 0, two patches at level h = 1, and the whole domain at h = 2.

Theorem 5. Given neighboring patches P,Q ∈K, then
LT (P∪Q, P, ∂̂ (P∪Q)) ⊆ LT (P, P, ∂̂P)+BT (Q, Q, ∂̂Q).

Proof. We know from def. 11 that
LT (P, P, ∂̂P)+LT (Q, Q, ∂̂Q) = LT (P∪Q, P∪Q, ∂̂P∪ ∂̂Q).
We also know from theorem 3 that the arcs that lie entirely in the interior of Q
do not get affected by the join. So, only BDT (Q, Q, ∂̂Q) which contains all the
connectivity information participates in the join.
Thus, LT (P, P, ∂P)+BT (Q, Q, ∂̂Q)⊆ LT (P∪Q, P∪Q, ∂̂P∪ ∂̂Q).
Now, by definition of LT ,
LT (P∪Q, P, ∂̂ (P∪Q))⊆ LT (P∪Q, P∪Q, ∂̂P∪ ∂̂Q)) and contains all arcs local
to P along with the correct connectivity with the arcs from BT (Q, Q, ∂̂Q).
Thus, LT (P∪Q, P, ∂̂ (P∪Q))⊆ LT (P, P, ∂̂P)+BT (Q, Q, ∂̂Q). ut

From the resulting tree of LT (P, P, ∂̂P)+BT (Q, Q, ∂̂Q), we have to mark the
boundary maxima of the components ∂̂ (P∪Q) and prune the regular nodes. Let the
tree obtained after marking the boundary maxima and prune operations be T . But
T 6= LT (P∪Q, P, ∂̂ (P∪Q)) as T might contain arcs from Q that do not correspond
to any point in P and hence cannot be in LT (P∪Q, P, ∂̂ (P∪Q)). To obtain the
LT (P∪Q, P, ∂̂ (P∪Q)) from T we restrict it to P in the following way

– Let X is the set of nodes in T that correspond to the image of points in P under
the map φ . Let m ∈ X be the node with the minimum value in X . Let Y be all
nodes and arcs that lie on monotonic descending paths from X to m

– We now add arcs, (u,v), f (u) > f (v), along with the end nodes to Y such that
u /∈ Y, v ∈ Y .

– Lastly, we add an arc, (m,v), f (m) > f (v) to Y , if it exists, such that m ∈ X is
the node with the minimum function value in X and v /∈ Y .

The tree Y is the LT (P∪Q, P, ∂̂ (P∪Q)). After every join stage we carry out this
localization to obtain LT (K, P, ∂̂K).

3.5.3 Time Complexity Analysis of the Distributed Merge Tree Computation

Let us assume that K has n cells distributed over p processors. Also, let us assume
the patch hierarchy to be a k-way hierarchy, where k low level patches combine to

Notes on the Distributed Computation of Merge Trees on CW -complexes 13

form a higher level patch. Assume the oracle of a cell with v vertices on average
generates a tree with m nodes in t time. We expect the output trees to be sorted so
t is at least O(v · log(v)). However, if v is bounded, i.e. for regular grids, t will be
constant. Thus, generating the merge trees for all of the CW -cells on each processor
is O(t ·n/p) and assuming a linear merge of the trees the time to construct the level 0
trees is O((t +m) ·n/p). The additional steps to identify boundary maxima, extract
the boundary tree, etc. are all linear in the size of the tree and thus do not add to the
overall complexity. For known mesh types one could substitute any of the existing
algorithms.

The expected size of a boundary tree is proportional to the size of the boundary.
Assuming we merge spatial coherent patches, i.e. blocks of a regular grid or groups
creates from a mesh partitioning scheme, the boundary trees of level 0 are expected
to be of size O((n/p)

2
3). The merge on level 1 will thus take O((n/p)

2
3 · k · log(k))

with the additional logk factor corresponding to the priority queue needed during
the merge. The resulting tree will be of size O((k ·n/p)

2
3). Thus the expected total

time for all merges of all levels will be

O

k · log(k)
(

n
p

) 2
3
·

logk p−1

∑
i=0

k
2i
3

= O

k · log(k)
(

n
p

) 2
3
· (p

2
3 −1)

(k
2
3 −1)



= O

k · log(k)(n
2
3)

(k
2
3 −1)

 .

The localization step, which is derived from the join operator, occurs after every
join operation in the hierarchy and is linear in the number nodes of the participating
local tree and boundary tree. Furthermore, it is performed in parallel by each of the
processor and hence does not add to the time complexity.

Complexity-wise the behavior for increasing mesh sizes is therefore dominated
by the potentially O((n/p)2) behavior of the initial local compute, in case m is of
order O(n/p). In practice, this cost turns out to be negligible and the behavior is
dominated by the number of merges and the increasing size of the boundary trees.
Note, that in this respect the size of the boundary tree is a conservative estimate as
the global domain boundaries actually do not contribute to the size of the boundary
trees.

4 Conclusion
Topological analysis techniques have been extensively to analyze and visualize data
generated by scientific simulations. But the growing compute power and enormity
of data has created a need for scalable distributed algorithms. Furthermore, scientific
simulations are moving towards using more sophisticated meshes in place of regular
grids. For example, adaptive mesh refinement meshes are being adopted by various
large scale scientific simulations.

14 Aaditya G. Landge, Peer-Timo Bremer, Attila Gyulassy, and Valerio Pascucci

In this paper, we have presented a distributed algorithm for computing merge
trees on regular CW -complexes, which provides a theoretical foundation for com-
puting merge trees for various types of meshes. We rely on an oracle to provide the
merge tree of a single cell within a mesh and state the conditions and requirements
from the oracle. Hence, as long as the oracle satisfies those conditions, the merge
tree can be computed using the presented algorithm for any type of meshes that are
regular CW -complexes.

Acknowledgements This work was performed under the auspices of the U.S. Department of En-
ergy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-
PROC-XXXXX).

References

1. M. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. Journal
of Computational Physics, 82(1):64 – 84, 1989.

2. P.-T. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. B. Bell. Interactive exploration
and analysis of large scale simulations using topology-based data segmentation. IEEE Trans.
on Visualization and Computer Graphics, 17(99), 2010.

3. H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions. Comput.
Geom. Theory Appl., 24(3):75–94, 2003.

4. J. H. Chen. Petascale direct numerical simulation of turbulent combustionfundamental insights
towards predictive models. Proceedings of the Combustion Institute, 33(1):99 – 123, 2011.

5. Y.-J. Chiang, T. Lenz, X. Lu, and G. Rote. Simple and optimal output-sensitive construction
of contour trees using monotone paths. Computational Geometry, 30(2):165 – 195, 2005.
Special Issue on the 19th European Workshop on Computational Geometry.

6. A. G. Landge, V. Pascucci, A. Gyulassy, J. C. Bennett, H. Kolla, J. Chen, and P.-T. Bremer. In-
situ feature extraction of large scale combustion simulations using segmented merge trees. In
Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’14, pages 1020–1031, Piscataway, NJ, USA, 2014. IEEE Press.

7. S. Maadasamy, H. Doraiswamy, and V. Natarajan. A hybrid parallel algorithm for computing
and tracking level set topology. 20th Annual International Conference on High Performance
Computing, 0:1–10, 2012.

8. A. Mascarenhas, R. W. Grout, P.-T. Bremer, E. R. Hawkes, V. Pascucci, and J. Chen. Topologi-
cal feature extraction for comparison of terascale combustion simulation data, pages 229–240.
Mathematics and Visualization. Springer, 2011.

9. W. S. Massey. A basic course in algebraic topology. 1991.
10. D. Morozov and G. Weber. Distributed merge trees. SIGPLAN Not., 48(8):93–102, Feb. 2013.
11. D. Morozov and G. Weber. Distributed contour trees. In P.-T. Bremer, I. Hotz, V. Pascucci, and

R. Peikert, editors, Topological Methods in Data Analysis and Visualization III, Mathematics
and Visualization, pages 89–102. Springer International Publishing, 2014.

12. V. Pascucci and K. Cole-McLaughlin. Parallel computation of the topology of level sets.
Algorithmica, 38(1):249–268, 2004.

13. J. A. Rathkopf, D. S. Miller, J. Owen, L. Stuart, M. Zika, P. Eltgroth, N. Madsen, K. McCan-
dless, P. Nowak, M. Nemanic, et al. Kull: Llnls asci inertial confinement fusion simulation
code. Physor 2000, ANS Topical Meeting on Advances in Reactor Physics and Mathematics
and Computation into the Next Millennium, 2000.

14. T. J. Tautges, C. Ernst, C. Stimpson, R. J. Meyers, and K. Merkley. MOAB: a mesh-oriented
database. Apr 2004.

15. S. Williams, M. Petersen, P.-T. Bremer, M. Hecht, V. Pascucci, J. Ahrens, M. Hlawitschka,
and B. Hamann. Adaptive extraction and quantification of atmospheric and oceanic vortices.
IEEE Trans. Vis. Comp. Graph., 17(12):2088–2095, 2011.

