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Abstract— In the area of deploying machine learning systems,
Domain Adaptation is an important task which we encounter in
real world. Here the goal is to build our model based on some
fixed source domain and then deploy it to one or more different
target domains. In many applications, it is expensive and time
consuming to collect labeled training samples. On the other
side, classifiers trained with only a limited number of labeled
patterns are usually not robust. In practice, the computational
cost for domain adaptation will grow fast as the data sets
become larger and more unlabelled data is cheaply available.

In this paper, we consider a semi-supervised domain adap-
tation technique named DTMKL(Domain Transfer Multiple
Kernel Learning) which can learn robust classifiers with only a
limited number of labeled patterns from the target domain by
leveraging a large amount of labeled training data from other
auxiliary(which we call source) domains. Under the framework
of DTMKL, we propose an approach based on intelligent
sampling on the unlabled data which reduces the running time
without any significant impact on accuracy.

I. INTRODUCTION

Data mining and machine learning technologies have
already achieved significant success in many knowledge
engineering areas including classification, regression, and
clustering. However, many machine learning methods work
well only under a common assumption: the training and test
data are drawn from the same feature space and the same
distribution. When the distribution changes, most statistical
models need to be rebuilt from scratch using newly collected
training data. In many real-world applications, it is expensive
or impossible to recollect the needed training data and rebuild
the models. It would be nice to reduce the need and effort
to recollect the training data. In such cases, knowledge
transfer or transfer learning between task domains would be
desirable.

In recent years, there has been growing research interest
in developing new domain adaptation and transfer learning
methods. These techniques have been successfully applied
and used in the many real world applications, in which
the domain of interest (the target domain) contains very
few or even no labeled samples, while an existing domain
(the auxiliary/source domain) is often available with a large
number of labeled examples.

In domain adaptation settings, we have three possible
scenarios: supervised which we have labeled data in both
source and target, unsupervised which we have labeled data
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in only source and semi-supervised which we have both
labeled and unlabeled data in target. In this work, we focus
on the semi-supervised domain adaptation.

Fig. 1. Leveraging classifiers from one domain to obtain classifiers for the
other domain

A motivating example Sentiment detection and classifi-
cation has received considerable attention recently [15], [18],
[9]. As a specific simple example, assume we have reviews
for two types of products, for instance Books and DVDs, and
the goal is to classify these reviews to two groups of positive
and negative. These problems can be viewed as cross-domain
adaptation which we leverage classifiers from one domain to
obtain classifiers for the other one (See Figure 1).

While movie reviews have been the most studied domain,
sentiment analysis has extended to a number of new domains,
ranging from stock message boards to congressional floor
debates. Research results have been deployed industrially
in systems that study on market reaction and summarize
opinion from web pages, discussion boards, and blogs. With
such widely-varying domains, researchers and engineers who
build sentiment classification systems need to collect and
curate data for each new domain they encounter. The effort
to annotate corpora for each domain may become prohibitive,
especially since product features change over time. To deal
with this problem, researchers came up with this idea to
annotate corpora for a small number of domains, train
classifiers on those corpora, and then apply them to other
similar corpora. However there are two challenges with this
approach: First, it is well known that trained classifiers
lose accuracy when the test data distribution is significantly
different from the training data distribution. Second, it is not
clear which notion of domain similarity should be used to
select domains to annotate that would be good proxies for
many other domains.
Several domain adaptation techniques have been developed
to address these problems efficiently. However, in this work
we are not designing a new domain adaptation algorithm,
instead we are seeking to improve the speed-up for one of
the existing methods.



The contributions of this paper are mostly on the improv-
ing the speed up for training part in the domain adaptation
process which is achieved by reducing the size of unlabeled
points and taking the most informative points as the sample
for algorithm input, while keeping the accuracy on the same
level.

The rest of the paper is organized as follows: Section 2
gives a brief review about some related and previous work on
different techniques for domain adaptation and speed-up ap-
proaches. Section 3, overview the basic notations, framework
and state the problem definition. Then, section 4 introduces
the main approach and techniques which we are applying. In
particular, we present the two intelligent sampling methods
based on the cluster entropy and base-classifier. Section 5
describes a series of experiments that validate the proposed
approach on domain adaptation problem with real-world
data. Finally, conclusive remarks are presented in Section
6.

II. RELATED WORK

We consider and review the related work in two fol-
lowing categories: the prior work on different cross-domain
adaptations techniques(which shows our specific interest in
exploring DTMKL algorithm [8] among all the existing
algorithms) and the prior work on how to speed up these
techniques to scale up for massive data sets.

There is a significant amount of prior work on the speeding
up the semi-supervised learning algorithms(mostly for only
one domain), but these publications achieve their speed-ups
through novel optimization methods, which are explicitly
designed for some specific learning algorithms. In contrast,
our work is mostly independent of the learning algorithm
and it can be easily adapted to any learning technique.

In practice, cross-domain learning methods have been
successfully used in many real-world applications, such
as sentiment classification [2], natural language processing
[7], text categorization [6], [13], information extraction [6],
WiFi localization [13], and visual concept classification [11],
[12], [20]. Recall that the feature distributions of training
samples from different domains change tremendously, and
the training samples from multiple sources also have very
different statistical properties(such as mean, intraclass, and
interclass variance). Though a large number of training data
are available in the auxiliary domain, the classifiers trained
from those data or the combined data from both the auxiliary
and target domains may perform poorly on the test data from
the target domain [11], [20].

To take advantage of all labeled patterns from both aux-
iliary and target domains, Daume III [7] proposed a so-
called Feature Replication(FR) method to augment features
for cross-domain learning. The augmented features are then
used to construct a kernel function for Support Vector
Machine(SVM) training. Yang et al. [20] proposed Adaptive
SVM (A-SVM) for visual concept classification, in which
the new SVM classifier fT (x) is adapted from an existing
classifier fS(x) (referred to as source classifier) trained from
the source domain. Cross-domain SVM (CD-SVM) proposed

by Jiang et al. [11] used k-nearest neighbours from the target
domain to define a weight for each auxiliary pattern, and then
the SVM classifier was trained with the reweighted auxiliary
patterns. More recently, Jiang et al. [12] proposed mining
the relationship among different visual concepts for video
concept detection. They first built a semantic graph and the
graph can then be adapted in an online fashion to fit the
new knowledge mined from the test data. However, all these
methods [7], [11], [12], [19], [20] did not utilize unlabeled
patterns from the target domain. Such unlabeled patterns can
also be used to improve the classification performance [3],
[21].

When there are only a few or even no labeled patterns
available in the target domain, the auxiliary patterns or the
unlabeled target patterns can be used to train the target
classifier. Several cross-domain learning methods [10], [17]
were proposed to cope with the inconsistency of data dis-
tributions(such as covariate shift [17] or sampling selection
bias [10]). These methods reweighted the training samples
from the auxiliary domain by using unlabeled data from
the target domain such that the statistics of samples from
both domains are matched. Very recently, Bruzzone and
Marconcini [5] proposed Domain Adaptation Support Vector
Machine(DASVM), which extended Transductive SVM(T-
SVM) to label unlabeled target patterns progressively and
simultaneously remove some auxiliary labeled patterns. In-
terested readers may refer to [14] for the more complete
survey of cross-domain learning methods.

III. PRELIMINARIES AND PROBLEM DEFINITION

Throughout this paper, we denote the labeled and unla-
beled data from the target domain respectively as DT

` and
DT

u , where DT = DT
` ∪ DT

u shows the total data set in
target domain. Similarly, we have DS = DS

` ∪DS
u for source

domain.
In the following, we give a brief overview of kernel trick

(which is the basic for many learning algorithm), DTMKL
algorithm (which is introduced in detail in [8]) and soft
clustering.

A. Kernel Functions

Kernel methods are a class of algorithms for pattern
analysis, whose best known element is the support vector
machine (SVM). The general task of pattern analysis is to
find and study general types of relations in general types of
data. Kernel methods map the data into higher dimensional
spaces in the hope that in this higher-dimensional space
the data could become more easily separated or better
structured. There are also no constraints on the form of
this mapping, which could even lead to infinite-dimensional
spaces. This mapping function, however, hardly needs to
be computed because of a tool called the kernel trick. The
kernel trick is a mathematical tool which can be applied
to any algorithm which solely depends on the dot product
between two vectors. Wherever a dot product is used, it is
replaced by a kernel function. When properly applied, those



candidate linear algorithms are transformed into a non-linear
algorithms.

In DTMKL method [8], base kernels are predetrem-
ined. We consider two types of base kernels: linear kernel
(k(xi, xj) = x′ixj) and polynomial kernel (k(xi, xj) =
(x′ixj + 1)

a
), where we use different values for parameter

a = 1.5, 1.6, ..., 2.0. Thus, we have in total seven base
kernels in learning part, which results in seven base classifier.

B. Domain Transfer Multiple Kernel Learning(DTMKL)

DTMKL framework [8] is based on the SVM and pre-
learned classifiers. This method makes use of the labled
target training data as well as the decision values from the
existing base classifiers on the unlabeled data from the target
domain. These base classifiers can be learned by using any
method like SVM. DTMKL, as stated in [8], is the first semi-
supervised cross-domain kernel learning framework for the
single source domain problem which can incorporate many
existing kernel methods. In fact, DTMKL is different from
other traditional kernel learning methods since it does not
assume that the training and test data are drawn from the
same domain.

The main task of DTMKL is to learn the decision function
for the target domain:

f(x) = w′φ(x) + b = Σn
i=1αik(xi,x) + b (1)

as well as the kernel function k simultaneously, where w is
the weight vector in the feature space and b is the bias term.
Notice that αis are the coefficients of the kernel expansion
for the decision function f(x) using Representer Theorem
[16].

In practice, DTMKL follows two main objectives:
• Minimizing the distance between the data distributions

of the source and target domains (Data distribution
mismatch)

• Minimizing the structural risk functional of any kernel
method

The learning framework of DTMKL is then formulated as

[k, f ] = arg min
k,f

Ω(DIST 2
k (DS , DT )) + θR(k, f,D) (2)

where Ω(.) is any monotonic increasing function and θ > 0
is a tradeoff parameter to balance the mismatch between data
distributions of two domains and the structural risk functional
R(k, f,D) defined on the labeled patterns.

Instead of learning a non-parametric kernel matrix K in
(2) for cross-domain learning, DTMKL assumes the kernel k
is a linear combination of a set of base kernels kms, namely,

k = ΣM
m=1dmkm (3)

In this framework, the optimal kernel is learned by explicitly
minimizing the distribution mismatch between the source and
target domains by using both labeled and unlabeled patterns
and utilizing the patterns from both source and target which
results in a better classification performance.

More details about different versions of DTMKL and full
algorithm can be found in [8] and we do not go through

all of that again here. We just highlight main features and
ideas about formulation of the algorithm. The sketch of the
DTMKL framework is illustrated in Figure 2:
• To deal with the considerable change between fea-

ture distributions of different domains, DTMKL mini-
mizes the structural risk functional and Maximum Mean
Discrepancy(MMD)[4], a criterion to evaluate the distri-
bution mismatch between the source and target domains.
In practice, DTMKL provides a unified framework to
simultaneously learn an optimal kernel function as well
as a robust classifier. Moreover, it proposes a reduced
gradient descent procedure to efficiently and effectively
learn the linear combination coefficients of multiple
base kernels as well as the target classifier.

• Many kernel learning methods such as SVM can be
readily embedded into DTMKL framework to solve
cross-domain learning problems.

• Kernel matrix is learned in an semi-supervised manner
and as a result, by using the label information will be
a more effective method.

• DTMKL simultaneously learns a kernel function and
SVM classifier.

• In contrast to other cross-domain learning approaches,
which are nonparametric and cannot be applied to
unseen data, DTMKL can handle any new test data.

• The complexity of DTMKL algorithm is less than other
cross-domain learning algorithms and it makes it more
convenient and effective to be used in medium or large-
scale real-world applications.

C. Soft Clustering

A clustering algorithm takes a set D of input data points
and partitions them into k groups C1, ..., Ck of similar
objects by minimizing some specific cost function based on
the problem. We can interpret the clustering in two different
ways: In hard clustering, the data is divided into distinct
partitions and the output from clustering algorithm is an
assignment function f : D → [1...k] which maps each point
to exactly one of the groups Ci. In soft clustering the data
points can belong to multiple groups and associated with
each point is a vector of membership probabilities sum to
one, which stands for the weights of assignment to each
cluster. We can represent a soft clustering as a function
f : D → ∆k which in ∆k = {(p1, ..., pk)|pi ≥ 0; Σipi = 1}.

IV. APPROACH

In this section we discuss about our main contribution in
this work, which includes using the intelligent sampling ideas
and adapt it to DTMKL algorithm to improve its efficiency
for domain adaptation task.

To find the relevant unlabeled points from target domain
for our sampling purpose, we apply three different sampling
strategies as follows:
• Uniform sampling: Here all the points, regardless of

position, will be picked with the same probability.



Fig. 2. [8] Illustration of virtual labels in DTMKL algorithm. The base
classifier fB,m is learned with base kernel function km and the labeled
training data from D, where m = 1, ...,M . For each of the unlabeled target
pattern x from DT

u , we can obtain its decision value fB,m(x) from each
base classifier. Then, the virtual label ŷ is defined as the linear combination
of its decision values fB,m(x)s weighted by the coefficients dms, i.e.,
ŷ = ΣM

m=1dmfB,m(x).

• Entropy-based sampling: Here the points will be picked
with probability proportional to the cluster entropy
score.

• Base-classifier based sampling: Here the points with
decision probability values in some specific range will
be picked.

In the following, we describe in detail the sampling
approaches which perform in a more intelligent manner:

A. Entropy-based Sampling

In this approach, we are interested in identifying the unsta-
ble points which do not obtain a sharp cluster assignment and
typically these points are the ones which lies close around
the cluster boundary. We can find these points by making
use of a soft clustering algorithms. Among all the several
algorithms which exist for this purpose, we use the fuzzy
k-means algorithm developed by Bezdek [1], which scales
well with the size of unlabeled point set. For our purpose
which is a binary classification task, we set the number of
clusters k = 2.

The output of fuzzy k-mean algorithm is the vectors
p(xi) = [pi1, pi2] of assigned probabilities for every point
xi. Given these vectors, we can measure the uncertainty
score of each point by computing the entropy of the resulted
clustering distribution:

H(p(xi)) = −Σk
j=1pij log(pij)

Note that the points with higher uncertainty(which we call
them unstable points) have the maximum values of entropy
score. Some examples of these points are illustrated in Figure
3. Now we make use of these scores as weights and apply
a standard acceptance/rejection sampling algorithm to pick a
subset of the data points.

Fig. 3. Unstable points have maximum entropy score H(x) and more
likely are near decision boundary.

B. Base-classifier based Sampling

As explained before, each base classifier is learned with
some base kernel function and the labeled training data
from D. Each base classifier outputs the decision probability
values for every unlabled point from the target domain. We
pick all the points with decision values within some specific
range [0.5−R, 0.5 +R] which identifies the unstable points
with respect to each base classifier. Then we take the union
of these samples for the final sample from target unlabeled
set as illustrated in Figure 4.

  Union  

     of 

Samples 

Fig. 4. Illustration of base-classifier based sampling.

V. EXPERIMENTAL RESULTS

A. Datasets and Methodology

The data sets which we use include three Email spam
datasets which are differentiated by three different users
(denoted by User1, User2 and User3) from the email data set
(available at: http://www.ecmlpkdd2006.org/challenge.html).
Each of these subsets contains 2500 emails, in which half of
them are spam and the other half are nonspam. Here our task
is to apply a binary classification on the set of emails to find
the group of spams and nonspams. Each email is represented



as word-frequency tokens. The data sets are in the format
of 200000 dimensional but still sparse in nature. Note that
since these sets of emails are annotated as spam and nonspam
by different users, the distributions of three subsets will be
related in some sense but the same time different and this
makes it a good setting for applying the domain adaptation
task.

For our experiments, we consider three settings between
three users as source and target domains, which are illus-
trated in table 5. In each setting, we take all the labeled points
from the source domain along with five negative and five
positive random samples from the target domain to serve as
the training data set. The remaining points in target domain
will be used as the unlabeled training data and test data as
well.

Fig. 5. Experimental settings of the Email spam data set for cross-domain
adaptation algorithm.

B. Performance

We implemented the sampling algorithms in Matlab and
used the available Matlab code for DTMKL algorithm. The
performance results in terms of running time and accuracy
of classification is presented in Figures 6 and 7.

For entropy-based sampling, we take 10 percent of the
unlabled data in target domain as the input sample for
DTMKL and for base-classifier based sampling we take
R = 0.2 and pick the unlabled points with probability
decision values within range [0.3, 0.7] as the sample.

As you can see we achieve over 3x speed-ups with little
impact on accuracy and we believe that with more efficient
implementation of algorithms we can even get better results
in speed. However, we observe that uniform sampling also
gives some close result to other sampling methods. At this
moment, we do not have a strong reason about this, but we
claim that probably it is related to the inherent distribution
of current data set which we are using in our experiments.
For future work, we are planing to apply our algorithm on
different data sets and explore the effect of our approach.

Fig. 6. Effect of sampling techniques on speed-up for DTMKL algorithm.

Fig. 7. Effect of sampling techniques on accuracy for DTMKL algorithm.

This work is an extension to some similar work which
is done in Theory and Algorithm lab under supervision of
Dr. Suresh Venkatasubramanian. They have proposed some
adaptive subsampling methods and studied the effect on
the Transductive SVM (which is a semi-supervised learning
algorithm which is used for classification task on only one
domain) and is submitted to ICML and currently is under
review. We hope that with extending our experiments and re-
sults to other Domain Adaptation algorithms and considering
more parameters in scoring function for sampling process,
we can claim a strong statement about the effectiveness of
intelligent sampling for large scale semi-supervised learning
algorithms.

VI. DISCUSSION AND CONCLUSION

In this work, we have proposed a scalable domain adap-
tation approach based on intelligent sampling. We apply
our sampling technique to some existing algorithm, Domain
Transfer Multiple Kernel Learning (DTMKL), which is in-
troduced in [8] as the first semi-supervised cross-domain
kernel learning framework. Our approaches identify the
most relevant and informative unlabled points to pick as an
effective input sample for domain adaptation algorithm. This
is achieved by utilizing cluster entropy and also uncertainty
information resulted from the base-kernel classifiers. These
two parameters help us to predict the regions of importance
to the DTMKL algorithm and reduce the size of the unla-
beled data by ignoring the other regions, while maintaining
the accuracy.



Although our approach is based on DTMKL as a specific
algorithm, it can be generalized and applied to other domain
adaptation algorithms as well.
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