Designed especially for neurobiologists, FluoRender is an interactive tool for multi-channel fluorescence microscopy data visualization and analysis.
Deep brain stimulation
BrainStimulator is a set of networks that are used in SCIRun to perform simulations of brain stimulation such as transcranial direct current stimulation (tDCS) and magnetic transcranial stimulation (TMS).
Developing software tools for science has always been a central vision of the SCI Institute.

Scientific Computing

Numerical simulation of real-world phenomena provides fertile ground for building interdisciplinary relationships. The SCI Institute has a long tradition of building these relationships in a win-win fashion – a win for the theoretical and algorithmic development of numerical modeling and simulation techniques and a win for the discipline-specific science of interest. High-order and adaptive methods, uncertainty quantification, complexity analysis, and parallelization are just some of the topics being investigated by SCI faculty. These areas of computing are being applied to a wide variety of engineering applications ranging from fluid mechanics and solid mechanics to bioelectricity.


martin

Martin Berzins

Parallel Computing
GPUs
mike

Mike Kirby

Finite Element Methods
Uncertainty Quantification
GPUs
pascucci

Valerio Pascucci

Scientific Data Management
chris

Chris Johnson

Problem Solving Environments

Funded Research Projects:


Publications in Scientific Computing:


Multilevel Designed Quadrature for Partial Differential Equations with Random Inputs
V. Keshavarzzadeh, R. M. Kirby, A. Narayan. In SIAM Journal on Scientific Computing, Vol. 43, No. 2, Society for Industrial and Applied Mathematics, pp. A1412-A1440. 2021.

We introduce a numerical method, multilevel designed quadrature for computing the statistical solution of partial differential equations with random input data. Similar to multilevel Monte Carlo methods, our method relies on hierarchical spatial approximations in addition to a parametric/stochastic sampling strategy. A key ingredient in multilevel methods is the relationship between the spatial accuracy at each level and the number of stochastic samples required to achieve that accuracy. Our sampling is based on flexible quadrature points that are designed for a prescribed accuracy, which can yield less overall computational cost compared to alternative multilevel methods. We propose a constrained optimization problem that determines the number of samples to balance the approximation error with the computational budget. We further show that the optimization problem is convex and derive analytic formulas for the optimal number of points at each level. We validate the theoretical estimates and the performance of our multilevel method via numerical examples on a linear elasticity and a steady state heat diffusion problem.



On the computation of recurrence coefficients for univariate orthogonal polynomials
Subtitled “arXiv preprint arXiv:2101.11963,” Z. Liu, A. Narayan. 2021.

Associated to a finite measure on the real line with finite moments are recurrence coefficients in a three-term formula for orthogonal polynomials with respect to this measure. These recurrence coefficients are frequently inputs to modern computational tools that facilitate evaluation and manipulation of polynomials with respect to the measure, and such tasks are foundational in numerical approximation and quadrature. Although the recurrence coefficients for classical measures are known explicitly, those for nonclassical measures must typically be numerically computed. We survey and review existing approaches for computing these recurrence coefficients for univariate orthogonal polynomial families and propose a novel" predictor-corrector" algorithm for a general class of continuous measures. We combine the predictor-corrector scheme with a stabilized Lanczos procedure for a new hybrid algorithm that computes recurrence coefficients for a fairly wide class of measures that can have both continuous and discrete parts. We evaluate the new algorithms against existing methods in terms of accuracy and efficiency.



An efficient method of calculating composition-dependent inter-diffusion coefficients based on compressed sensing method
Y. Qin, A. Narayan, K. Cheng, P. Wang. In Computational Materials Science, Vol. 188, Elsevier, pp. 110145. 2021.

Composition-dependent inter-diffusion coefficients are key parameters in many physical processes. Due to the under-determinedness of the governing diffusion equations, numerical methods either impose strict physical conditions on the samples or require a computationally onerous amount of data. To address such problems, we propose a novel inverse framework to recover the diffusion coefficients using a compressed sensing method, which in principle can be extended to alloy systems with arbitrary number of species. Comparing to conventional methods, the new approach does not impose any priori assumptions on the functional relationship between diffusion coefficients and concentrations, nor any preference on the locations of the samples, as long as it is in the diffused zone. It also requires much less data compared to least-squares approaches. Through a few numerical examples of ternary and quandary systems, we demonstrate the accuracy and robustness of the new method.



Fast Barycentric-Based Evaluation Over Spectral/hp Elements
Subtitled “arXiv preprint arXiv:2103.03594,” E. Laughton, V. Zala, A. Narayan, R. M. Kirby, D. Moxey. 2021.

As the use of spectral/hp element methods, and high-order finite element methods in general, continues to spread, community efforts to create efficient, optimized algorithms associated with fundamental high-order operations have grown. Core tasks such as solution expansion evaluation at quadrature points, stiffness and mass matrix generation, and matrix assembly have received tremendousattention. With the expansion of the types of problems to which high-order methods are applied, and correspondingly the growth in types of numerical tasks accomplished through high-order methods, the number and types of these core operations broaden. This work focuses on solution expansion evaluation at arbitrary points within an element. This operation is core to many postprocessing applications such as evaluation of streamlines and pathlines, as well as to field projection techniques such as mortaring. We expand barycentric interpolation techniques developed on an interval to 2D (triangles and quadrilaterals) and 3D (tetrahedra, prisms, pyramids, and hexahedra) spectral/hp element methods. We provide efficient algorithms for their implementations, and demonstrate their effectiveness using the spectral/hp element library Nektar++.



A bandit-learning approach to multifidelity approximation
Subtitled “arXiv preprint arXiv:2103.15342,” Y. Xu, V. Keshavarzzadeh, R. M. Kirby, A. Narayan. 2021.

Multifidelity approximation is an important technique in scientific computation and simulation. In this paper, we introduce a bandit-learning approach for leveraging data of varying fidelities to achieve precise estimates of the parameters of interest. Under a linear model assumption, we formulate a multifidelity approximation as a modified stochastic bandit, and analyze the loss for a class of policies that uniformly explore each model before exploiting. Utilizing the estimated conditional mean-squared error, we propose a consistent algorithm, adaptive Explore-Then-Commit (AETC), and establish a corresponding trajectory-wise optimality result. These results are then extended to the case of vector-valued responses, where we demonstrate that the algorithm is efficient without the need to worry about estimating high-dimensional parameters. The main advantage of our approach is that we require neither hierarchical model structure nor\textit a priori knowledge of statistical information (eg, correlations) about or between models. Instead, the AETC algorithm requires only knowledge of which model is a trusted high-fidelity model, along with (relative) computational cost estimates of querying each model. Numerical experiments are provided at the end to support our theoretical findings.



L1-based reduced over collocation and hyper reduction for steady state and time-dependent nonlinear equations
Y. Chen, L. Ji, A. Narayan, Z. Xu. In Journal of Scientific Computing, Vol. 87, No. 1, Springer US, pp. 1--21. 2021.

The task of repeatedly solving parametrized partial differential equations (pPDEs) in optimization, control, or interactive applications makes it imperative to design highly efficient and equally accurate surrogate models. The reduced basis method (RBM) presents itself as such an option. Accompanied by a mathematically rigorous error estimator, RBM carefully constructs a low-dimensional subspace of the parameter-induced high fidelity solution manifold on which an approximate solution is computed. It can improve efficiency by several orders of magnitudes leveraging an offline-online decomposition procedure. However this decomposition, usually implemented with aid from the empirical interpolation method (EIM) for nonlinear and/or parametric-nonaffine PDEs, can be challenging to implement, or results in severely degraded online efficiency. In this paper, we augment and extend the EIM approach as a direct solver, as opposed to an assistant, for solving nonlinear pPDEs on the reduced level. The resulting method, called Reduced Over-Collocation method (ROC), is stable and capable of avoiding efficiency degradation exhibited in traditional applications of EIM. Two critical ingredients of the scheme are collocation at about twice as many locations as the dimension of the reduced approximation space, and an efficient L1-norm-based error indicator for the strategic selection of the parameter values whose snapshots span the reduced approximation space. Together, these two ingredients ensure that the proposed L1-ROC scheme is both offline- and online-efficient. A distinctive feature is that the efficiency degradation appearing in alternative RBM approaches that utilize EIM for nonlinear and nonaffine problems is circumvented, both in the offline and online stages. Numerical tests on different families of time-dependent and steady-state nonlinear problems demonstrate the high efficiency and accuracy of L1-ROC and its superior stability performance.



Optimal design for kernel interpolation: Applications to uncertainty quantification
A. Narayan, L. Yan, T. Zhou. In Journal of Computational Physics, Vol. 430, Academic Press, pp. 110094. 2021.

The paper is concerned with classic kernel interpolation methods, in addition to approximation methods that are augmented by gradient measurements. To apply kernel interpolation using radial basis functions (RBFs) in a stable way, we propose a type of quasi-optimal interpolation points, searching from a large set of candidate points, using a procedure similar to designing Fekete points or power function maximizing points that use pivot from a Cholesky decomposition. The proposed quasi-optimal points results in smaller condition number, and thus mitigates the instability of the interpolation procedure when the number of points becomes large. Applications to parametric uncertainty quantification are presented, and it is shown that the proposed interpolation method can outperform sparse grid methods in many interesting cases. We also demonstrate the new procedure can be applied to constructing gradient-enhanced Gaussian process emulators.



Hyperbolicity-Preserving and Well-Balanced Stochastic Galerkin Method for Two-Dimensional Shallow Water Equations
D. Dai, Y. Epshteyn, A. Narayan. In SIAM Journal on Scientific Computing, Vol. 43, No. 2, Society for Industrial and Applied Mathematics, pp. A929-A952. 2021.

Stochastic Galerkin formulations of the two-dimensional shallow water systems parameterized with random variables may lose hyperbolicity, and hence change the nature of the original model. In this work, we present a hyperbolicity-preserving stochastic Galerkin formulation by carefully selecting the polynomial chaos approximations to the nonlinear terms of , and in the shallow water equations. We derive a sufficient condition to preserve the hyperbolicity of the stochastic Galerkin system which requires only a finite collection of positivity conditions on the stochastic water height at selected quadrature points in parameter space. Based on our theoretical results for the stochastic Galerkin formulation, we develop a corresponding well-balanced hyperbolicity-preserving central-upwind scheme. We demonstrate the accuracy and the robustness of the new scheme on several challenging numerical tests.



A Compressed, Divide and Conquer Algorithm for Scalable Distributed Matrix-Matrix Multiplication
M. Rasouli, R. M. Kirby, H. Sundar. In The International Conference on High Performance Computing in Asia-Pacific Region, pp. 110-119. 2021.

Matrix-matrix multiplication (GEMM) is a widely used linear algebra primitive common in scientific computing and data sciences. While several highly-tuned libraries and implementations exist, these typically target either sparse or dense matrices. The performance of these tuned implementations on unsupported types can be poor, and this is critical in cases where the structure of the computations is associated with varying degrees of sparsity. One such example is Algebraic Multigrid (AMG), a popular solver and preconditioner for large sparse linear systems. In this work, we present a new divide and conquer sparse GEMM, that is also highly performant and scalable when the matrix becomes dense, as in the case of AMG matrix hierarchies. In addition, we implement a lossless data compression method to reduce the communication cost. We combine this with an efficient communication pattern during distributed-memory GEMM to provide 2.24 times (on average) better performance than the state-of-the-art library PETSc. Additionally, we show that the performance and scalability of our method surpass PETSc even more when the density of the matrix increases. We demonstrate the efficacy of our methods by comparing our GEMM with PETSc on a wide range of matrices.



Optimal allocation of computational resources based on Gaussian process: Application to molecular dynamics simulations
J. Chilleri, Y. He, D. Bedrov, R. M. Kirby. In Computational Materials Science, Vol. 188, Elsevier, pp. 110178. 2021.

Simulation models have been utilized in a wide range of real-world applications for behavior predictions of complex physical systems or material designs of large structures. While extensive simulation is mathematically preferable, external limitations such as available resources are often necessary considerations. With a fixed computational resource (i.e., total simulation time), we propose a Gaussian process-based numerical optimization framework for optimal time allocation over simulations at different locations, so that a surrogate model with uncertainty estimation can be constructed to approximate the full simulation. The proposed framework is demonstrated first via two synthetic problems, and later using a real test case of a glass-forming system with divergent dynamic relaxations where a Gaussian process is constructed to estimate the diffusivity and its uncertainty with respect to the temperature.



Deep coregionalization for the emulation of simulation-based spatial-temporal fields
W. W. Xing, R. M. Kirby, S. Zhe. In Journal of Computational Physics, Academic Press, pp. 109984. 2021.

Data-driven surrogate models are widely used for applications such as design optimization and uncertainty quantification, where repeated evaluations of an expensive simulator are required. For most partial differential equation (PDE) simulations, the outputs of interest are often spatial or spatial-temporal fields, leading to very high-dimensional outputs. Despite the success of existing data-driven surrogates for high-dimensional outputs, most methods require a significant number of samples to cover the response surface in order to achieve a reasonable degree of accuracy. This demand makes the idea of surrogate models less attractive considering the high-computational cost to generate the data. To address this issue, we exploit the multifidelity nature of a PDE simulation and introduce deep coregionalization, a Bayesian nonparametric autoregressive framework for efficient emulation of spatial-temporal fields. To effectively extract the output correlations in the context of multifidelity data, we develop a novel dimension reduction technique, residual principal component analysis. Our model can simultaneously capture the rich output correlations and the fidelity correlations and make high-fidelity predictions with only a small number of expensive, high-fidelity simulation samples. We show the advantages of our model in three canonical PDE models and a fluid dynamics problem. The results show that the proposed method can not only approximate simulation results with significantly less cost (by bout 10%-25%) but also further improve model accuracy.



Multi-Fidelity High-Order Gaussian Processes for Physical Simulation
Z. Wang, W. Xing, R. Kirby, S. Zhe. In International Conference on Artificial Intelligence and Statistics, PMLR, pp. 847-855. 2021.

The key task of physical simulation is to solve partial differential equations (PDEs) on discretized domains, which is known to be costly. In particular, high-fidelity solutions are much more expensive than low-fidelity ones. To reduce the cost, we consider novel Gaussian process (GP) models that leverage simulation examples of different fidelities to predict high-dimensional PDE solution outputs. Existing GP methods are either not scalable to high-dimensional outputs or lack effective strategies to integrate multi-fidelity examples. To address these issues, we propose Multi-Fidelity High-Order Gaussian Process (MFHoGP) that can capture complex correlations both between the outputs and between the fidelities to enhance solution estimation, and scale to large numbers of outputs. Based on a novel nonlinear coregionalization model, MFHoGP propagates bases throughout fidelities to fuse information, and places a deep matrix GP prior over the basis weights to capture the (nonlinear) relationships across the fidelities. To improve inference efficiency and quality, we use bases decomposition to largely reduce the model parameters, and layer-wise matrix Gaussian posteriors to capture the posterior dependency and to simplify the computation. Our stochastic variational learning algorithm successfully handles millions of outputs without extra sparse approximations. We show the advantages of our method in several typical applications.



An open-source parallel code for computing the spectral fractional Laplacian on 3D complex geometry domains
M. Carlson, X. Zheng, H. Sundar, G. E. Karniadakis, R. M. Kirby. In Computer Physics Communications, Vol. 261, North-Holland, pp. 107695. 2021.

We present a spectral element algorithm and open-source code for computing the fractional Laplacian defined by the eigenfunction expansion on finite 2D/3D complex domains with both homogeneous and nonhomogeneous boundaries. We demonstrate the scalability of the spectral element algorithm on large clusters by constructing the fractional Laplacian based on computed eigenvalues and eigenfunctions using up to thousands of CPUs. To demonstrate the accuracy of this eigen-based approach for computing the factional Laplacian, we approximate the solutions of the fractional diffusion equation using the computed eigenvalues and eigenfunctions on a 2D quadrilateral, and on a 3D cubic and cylindrical domain, and compare the results with the contrived solutions to demonstrate fast convergence. Subsequently, we present simulation results for a fractional diffusion equation on a hand-shaped domain discretized with 3D hexahedra, as well as on a domain constructed from the Hanford site geometry corresponding to nonzero Dirichlet boundary conditions. Finally, we apply the algorithm to solve the surface quasi-geostrophic (SQG) equation on a 2D square with periodic boundaries. Simulation results demonstrate the accuracy, efficiency, and geometric flexibility of our algorithm and that our algorithm can capture the subtle dynamics of anomalous diffusion modeled by the fractional Laplacian on complex geometry domains. The included open-source code is the first of its kind.



Towards an Extrinsic, CG-XFEM Approach Based on Hierarchical Enrichments for Modeling Progressive Fracture
Subtitled “arXiv preprint arXiv:2104.14704,” M. K. Ballard, R. Amici, V. Shankar, L. A. Ferguson, M. Braginsky, R. M. Kirby. 2021.

We propose an extrinsic, continuous-Galerkin (CG), extended finite element method (XFEM) that generalizes the work of Hansbo and Hansbo to allow multiple Heaviside enrichments within a single element in a hierarchical manner. This approach enables complex, evolving XFEM surfaces in 3D that cannot be captured using existing CG-XFEM approaches. We describe an implementation of the method for 3D static elasticity with linearized strain for modeling open cracks as a salient step towards modeling progressive fracture. The implementation includes a description of the finite element model, hybrid implicit/explicit representation of enrichments, numerical integration method, and novel degree-of-freedom (DoF) enumeration algorithm. This algorithm supports an arbitrary number of enrichments within an element, while simultaneously maintaining a CG solution across elements. Additionally, our approach easily allows an implementation suitable for distributed computing systems. Enabled by the DoF enumeration algorithm, the proposed method lays the groundwork for a computational tool that efficiently models progressive fracture. To facilitate a discussion of the complex enrichment hierarchies, we develop enrichment diagrams to succinctly describe and visualize the relationships between the enrichments (and the fields they create) within an element. This also provides a unified language for discussing extrinsic XFEM methods in the literature. We compare several methods, relying on the enrichment diagrams to highlight their nuanced differences.



Residual Gaussian process: A tractable nonparametric Bayesian emulator for multi-fidelity simulations
W. W. Xing, A. A. Shah, P. Wang, S. Zhe, Q. Fu, R. M. Kirby. In Applied Mathematical Modelling, Vol. 97, Elsevier, pp. 36-56. 2021.

Challenges in multi-fidelity modelling relate to accuracy, uncertainty estimation and high-dimensionality. A novel additive structure is introduced in which the highest fidelity solution is written as a sum of the lowest fidelity solution and residuals between the solutions at successive fidelity levels, with Gaussian process priors placed over the low fidelity solution and each of the residuals. The resulting model is equipped with a closed-form solution for the predictive posterior, making it applicable to advanced, high-dimensional tasks that require uncertainty estimation. Its advantages are demonstrated on univariate benchmarks and on three challenging multivariate problems. It is shown how active learning can be used to enhance the model, especially with a limited computational budget. Furthermore, error bounds are derived for the mean prediction in the univariate case.



Evaluation of GPU Volume Rendering in PyTorch Using Data-Parallel Primitives
N. Marshak, P. Grosset, A. Knoll, J. P. Ahrens, C. R. Johnson. In Eurographics Symposium on Parallel Graphics and Visualization (EGPGV), 2021.

Data-parallel programming (DPP) has attracted considerable interest from the visualization community, fostering major software initiatives such as VTK-m. However, there has been relatively little recent investigation of data-parallel APIs in higherlevel languages such as Python, which could help developers sidestep the need for low-level application programming in C++ and CUDA. Moreover, machine learning frameworks exposing data-parallel primitives, such as PyTorch and TensorFlow, have exploded in popularity, making them attractive platforms for parallel visualization and data analysis. In this work, we benchmark data-parallel primitives in PyTorch, and investigate its application to GPU volume rendering using two distinct DPP formulations: a parallel scan and reduce over the entire volume, and repeated application of data-parallel operators to an array of rays. We find that most relevant DPP primitives exhibit performance similar to a native CUDA library. However, our volume rendering implementation reveals that PyTorch is limited in expressiveness when compared to other DPP APIs. Furthermore, while render times are sufficient for an early ''proof of concept'', memory usage acutely limits scalability.



Laplacian smoothing stochastic gradient markov chain monte carlo
B. Wang, D. Zou, Q. Gu, S. J. Osher. In SIAM Journal on Scientific Computing, Vol. 43, No. 1, SIAM, pp. A26-A53. 2021.

As an important Markov chain Monte Carlo (MCMC) method, the stochastic gradient Langevin dynamics (SGLD) algorithm has achieved great success in Bayesian learning and posterior sampling. However, SGLD typically suffers from a slow convergence rate due to its large variance caused by the stochastic gradient. In order to alleviate these drawbacks, we leverage the recently developed Laplacian smoothing technique and propose a Laplacian smoothing stochastic gradient Langevin dynamics (LS-SGLD) algorithm. We prove that for sampling from both log-concave and non-log-concave densities, LS-SGLD achieves strictly smaller discretization error in 2-Wasserstein distance, although its mixing rate can be slightly slower. Experiments on both synthetic and real datasets verify our theoretical results and demonstrate the superior performance of LS-SGLD on different machine learning tasks including posterior …



Stability and Generalization of the Decentralized Stochastic Gradient Descent
Subtitled “arXiv preprint arXiv:2102.01302,” T. Sun, D. Li, B. Wang. 2021.

The stability and generalization of stochastic gradient-based methods provide valuable insights into understanding the algorithmic performance of machine learning models. As the main workhorse for deep learning, stochastic gradient descent has received a considerable amount of studies. Nevertheless, the community paid little attention to its decentralized variants. In this paper, we provide a novel formulation of the decentralized stochastic gradient descent. Leveraging this formulation together with (non) convex optimization theory, we establish the first stability and generalization guarantees for the decentralized stochastic gradient descent. Our theoretical results are built on top of a few common and mild assumptions and reveal that the decentralization deteriorates the stability of SGD for the first time. We verify our theoretical findings by using a variety of decentralized settings and benchmark machine learning models.



Robust Certification for Laplace Learning on Geometric Graphs
Subtitled “arXiv preprint arXiv:2104.10837,” M. Thorpe, B. Wang. 2021.

Graph Laplacian (GL)-based semi-supervised learning is one of the most used approaches for classifying nodes in a graph. Understanding and certifying the adversarial robustness of machine learning (ML) algorithms has attracted large amounts of attention from different research communities due to its crucial importance in many security-critical applied domains. There is great interest in the theoretical certification of adversarial robustness for popular ML algorithms. In this paper, we provide the first adversarial robust certification for the GL classifier. More precisely we quantitatively bound the difference in the classification accuracy of the GL classifier before and after an adversarial attack. Numerically, we validate our theoretical certification results and show that leveraging existing adversarial defenses for the -nearest neighbor classifier can remarkably improve the robustness of the GL classifier.



Decentralized Federated Averaging
Subtitled “arXiv preprint arXiv:2104.11375,” T. Sun, D. Li, B. Wang. 2021.

Federated averaging (FedAvg) is a communication efficient algorithm for the distributed training with an enormous number of clients. In FedAvg, clients keep their data locally for privacy protection; a central parameter server is used to communicate between clients. This central server distributes the parameters to each client and collects the updated parameters from clients. FedAvg is mostly studied in centralized fashions, which requires massive communication between server and clients in each communication. Moreover, attacking the central server can break the whole system's privacy. In this paper, we study the decentralized FedAvg with momentum (DFedAvgM), which is implemented on clients that are connected by an undirected graph. In DFedAvgM, all clients perform stochastic gradient descent with momentum and communicate with their neighbors only. To further reduce the communication cost, we also consider the quantized DFedAvgM. We prove convergence of the (quantized) DFedAvgM under trivial assumptions; the convergence rate can be improved when the loss function satisfies the P\L property. Finally, we numerically verify the efficacy of DFedAvgM.