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Flow-Structure Interactions Using
Generalized Polynomial Chaos
We present a generalized polynomial chaos algorithm to model the input uncertainty
its propagation in flow-structure interactions. The stochastic input is represented s
trally by employing orthogonal polynomial functionals from the Askey scheme as the
basis in the random space. A standard Galerkin projection is applied in the ran
dimension to obtain the equations in the weak form. The resulting system of determ
equations is then solved with standard methods to obtain the solution for each ra
mode. This approach is a generalization of the original polynomial chaos expan
which was first introduced by N. Wiener (1938) and employs the Hermite polynomia
subset of the Askey scheme) as the basis in random space. The algorithm is first a
to second-order oscillators to demonstrate convergence, and subsequently is coup
incompressible Navier-Stokes equations. Error bars are obtained, similar to labora
experiments, for the pressure distribution on the surface of a cylinder subject to vo
induced vibrations.@DOI: 10.1115/1.1436089#
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1 Introduction
In the last decade there has been substantial progress in s

lations of flow-structure interactions involving the full Navie
Stokes equations, e.g.@1,2#. While such simulations are useful i
complementing experimental studies in the low Reynolds num
range, they are based onideal boundary conditions andprecisely
defined properties of the structure. In practice, such flow con
tions and properties can only be defined approximately. As
example, the internal structural damping for the structure is ty
cally taken as 1–3 percent of the critical damping since it can
be quantified by direct measurements. It is, therefore, of g
interest to formally model such uncertainty of stochastic inpu
and to formulate algorithms that reflect accurately the propaga
of this uncertainty@3#.

To this end, the Monte Carlo approach can be employed but
computationally expensive and is only used as the last resort.
sensitivity method is a more economical approach, based on
moments of samples, but it is less robust and depends strong
the modeling assumptions@4#. One popular technique is the pe
turbation method where all the stochastic quantities are expan
around their mean via Taylor series. This approach, howeve
limited to small perturbations and does not readily provide inf
mation on high-order statistics of the response. The resulting
tem of equations becomes extremely complicated beyond sec
order expansion. Another approach is based on expanding
inverse of the stochastic operator in a Neumann series, but thi
is limited to small fluctuations, and even combinations with t
Monte Carlo method seem to result in computationally prohibit
algorithms for complex systems@5#.

A more effective approach pioneered by Ghanem and Spa
@6# in the context of finite elements for solid mechanics is ba
on a spectral representation of the uncertainty. This allows h
order representation, not just first-order as in most perturbat
based methods, at high computational efficiency. It is based on
original theory of Wiener~1938! on homogeneous chaos@7,8#.
This approach was employed in turbulence in the 1960s@9–11#.
However, it was realized that the chaos expansion conve
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slowly for turbulent fields@12–14#, so the polynomial chaos ap
proach did not receive much attention for a long time.

In more recent work@15,16# the polynomial chaos concept wa
extended to represent many different distribution functions. T
generalized polynomial chaos approach, also referred as
Askey-chaos, employs the orthogonal polynomials from
Askey scheme@17# as the trial basis in the random space. T
original polynomial chaos can be considered as a subset of
generalized polynomial chaos, as it employs Hermite polyno
als, a subset of the Askey scheme, as the trial basis. In@15#, the
framework of Askey-chaos was proposed and convergence p
erties of different random bases were examined. In@16# the
Askey-chaos was applied to model uncertainty in incompress
Navier-Stokes equations. Various tests were conducted to dem
strate the convergence of the chaos expansion in prototype fl

For flow-structure interactions the interest on stochastic mo
ing so far has primarily been on the dynamics of lumped syste
i.e., single- or two-degree-of-freedom second-order oscillat
@18,19#. The effect of the flow has been modeled via an interact
~source! term as either white noise or as a Gaussian distributio
the loading is caused by wind@20–23#. However, non-Gaussian
distribution behavior for the response has been documented
the excess indexwell above or below zero~sharp or flat intermit-
tency! @18#. For example, even for a velocity field following
Gaussian distribution, which is a reasonable assumption for m
time winds @21#, the corresponding force given by the Moriso
formula

FV~ t !5
1
2 rDCdV~ t !uV~ t !u

does not follow a Gaussian distribution. This is because the ab
formula defines a nonlinear~memoryless! transformation@20#,
and its first-density function is given by

f 1~v !5
1

2sVA2puvu
expF2

1

2 S sign~v !Auvu2mV

sV
D 2G ,

wheremV and sV are the mean value and standard deviation
the the Gaussian distribution for the velocityV(t).

In this paper we apply the chaos expansions to coupled Nav
Stokes/structure equations. We first demonstrate the converg
of chaos expansions by solving a second-order ordinary diffe
tial equation. We then present the stochastic modeling of the f
coupled flow-structure interaction problem for vortex-induced

n
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brations in flow past a cylinder. The algorithms developed here
general and can be applied to any type of distributions altho
our applications are concentrated on Gaussian type random in

In the next section we review the theory of the generaliz
polynomial chaos. In Section 3 we apply it to second-order os
lators, and in Section 4 we present its application to Navier-Sto
equations. In Section 5 we present the computational result
stochastic flow-structure interactions, and we conclude wit
brief discussion in Section 6.

2 The Generalized Polynomial Chaos
In this section we introduce the generalized polynomial ch

expansion along with the Karhunen-Loeve~KL ! expansion, an-
other classical technique for representing random processes
KL expansion can be used in some cases to represent effici
the known stochastic fields, i.e., the stochastic inputs.

2.1 The Askey Scheme. The Askey scheme, which is rep
resented as a tree structure in Fig. 1~following @24#!, classifies the
hypergeometric orthogonal polynomials and indicates the limit
lations between them. The ‘‘tree’’ starts with the Wilson polyn
mials and the Racah polynomials on the top. The Wilson poly
mials are continuous while the Racah polynomials are discr
The lines connecting different polynomials denote the limit tra
sition relationships between them; this implies that the polyno
als at the lower end of the lines can be obtained by taking the l
of one of the parameters from their counterparts on the upper
For example, the limit relation between Jacobi polynomi
Pn

(a,b)(x) and Hermite polynomialsHn(x) is

lim
a→`

a21/2nPn
~a,a!S x

Aa
D 5

Hn~x!

2nn!
,

and between Meixner polynomialsMn(x;b,c) and Charlier poly-
nomialsCn(x;a) is

lim
b→`

MnS x;b,
a

a1b D5Cn~x;a!.

For a detailed account of definitions and properties of hyperg
metric polynomials, see@17#; for the limit relations of Askey
scheme, see@25# and @24#.

The orthogonal polynomials associated with the generali
polynomial chaos, include: Hermite, Laguerre, Jacobi, Char
Meixner, Krawtchouk, and Hahn polynomials.

Fig. 1 The Askey scheme of orthogonal polynomials
52 Õ Vol. 124, MARCH 2002
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2.2 The Generalized Polynomial Chaos: Askey-Chaos.
The original polynomial chaos@7,8# employs the Hermite polyno-
mials in the random space as the trial basis to expand the stoc
tic processes. Cameron and Martin proved that such expan
converges to any second-order processes in theL2 sense@26#. It
can be seen from Fig. 1 that Hermite polynomial is a subset of
Askey scheme. The generalized polynomial chaos, or the Ask
Chaos, was proposed in@15,16# and employs more polynomial
from the Askey scheme. Convergence to second-order stoch
processes can be readily obtained as a generalization of Cam
Martin theorem@26#.

A general second-order random processX(u), viewed as a
function of uP~0,1!, i.e., the random event, can be represented
the form

X~u!5a0I 01 (
i 151

`

ci 1
I 1~j i 1

~u!!1 (
i 151

`

(
i 251

i 1

ci 1i 2
I 2~j i 1

~u!,j i 2
~u!!

1 (
i 151

`

(
i 251

i 1

(
i 351

i 2

ci 1i 2i 3
I 3~j i 1

~u!,j i 2
~u!,j i 3

~u!!1 . . . ,

(1)

where I n(j i 1
, . . . ,j i n

) denotes the Askey-chaos of ordern in
terms of the multi-dimensional random variablesj
5(j i 1

, . . . ,j i n
). In the original polynomial chaos,$I n% are Her-

mite polynomials andj are Gaussianrandom variables. In the
Askey-chaos expansion, the polynomialsI n are not restricted to
Hermite polynomials andj not Gaussian variables. The corre
sponding type of polynomials and their associated random v
ables are listed in Table 1.

For notational convenience, we rewrite Eq.~1! as

X~u!5(
j 50

`

ĉ jF j~j!, (2)

where there is a one-to-one correspondence between the func
I n(j i 1

, . . . ,j i n
) andF j (j), and their coefficientsĉ j andci 1 , . . . ,i r

.
Since each type of polynomials from the Askey scheme form
complete basis in the Hilbert space determined by their co
sponding support, we can expect each type of Askey-chao
converge to anyL2 functional in theL2 sense in the correspondin
Hilbert functional space as a generalized result of Camer
Martin theorem~@26# and @27#!. The orthogonality relation of the
generalized polynomial chaos takes the form

^F iF j&5^F i
2&d i j , (3)

whered i j is the Kronecker delta and̂•,•& denotes the ensembl
average which is the inner product in the Hilbert space of
random variablesj

^ f ~j!g~j!&5E f ~j!g~j!W~j!dj, (4)

or

Table 1 Correspondence of the type polynomials and random
variables for different Askey-chaos „NÐ0 is a finite integer ….

Random variables
j

Orthogonal polynomials
$I n% Support

Continuous Gaussian Hermite ~2`,`!
Gamma Laguerre @0,̀ !

Beta Jacobi @a,b#
Uniform Legendre @a,b#

Discrete Poisson Charlier $0,1,2, . . . %
Binomial Krawtchouk $0,1, . . . ,N%

Negative Binomial Meixner $0,1,2, . . . %
Hypergeometric Hahn $0,1, . . . ,N%
Transactions of the ASME

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



i
s

a

i

n
p

t
A

,
o
u

n
p

nt

e-

-

m

t the
rmin-
he
ari-

e

ace

-

a-
ion

e
ere
rate
nce

D

^ f ~j!g~j!&5(
j

f ~j!g~j!W~j! (5)

in the discrete case. HereW(j) is the weighting function corre-
sponding to the Askey polynomials chaos basis$F i%. Each type
of orthogonal polynomials from the Askey-chaos has weight
functions of the same form as the probability function of its as
ciated random variablesj, as shown in Table 1.

For example, as a subset of the Askey-chaos, the original p
nomial chaos, also will be termed the Hermite-chaos, employs
Hermite polynomials defined as

I n~j i 1
, . . . ,j i n

!5e1/2jTj~21!n
]n

]j i 1
. . . ]j i n

e21/2jTj, (6)

where j5(j i 1
, . . . ,j i n

) are multi-dimensional independen
Gaussian random variables with zero mean and unit variance.
weight function in the orthogonality relation~4! is

W~j!5
1

A~2p!n
e21/2jTj, (7)

wheren is the dimension ofj. It can seen that this is the same
the probability density function~PDF! of the n-dimensional
Gaussian random variables. For example, the one-dimens
Hermite polynomials are:

C051, C15j, C25j221, C35j323j, . . . (8)

2.3 The Karhunen-Loeve Expansion. The Karhunen-
Loeve ~KL ! expansion@28# is another way of representing a ra
dom process. It is a spectral expansion based on the decom
tion of the covariance function of the process. Let us denote
process byh(x,u) and its covariance function byRhh(x,y), where
x andy are the spatial or temporal coordinates. By definition,
covariance function is real, symmetric, and positive definite.
eigenfunctions are mutually orthogonal and form a complete
spanning the function space to whichh(x,u) belongs. The KL
expansion then takes the following form:

h~x,u!5h̄~x!1(
i 51

`

Al if i~x!j i~u!, (9)

where h̄(x) denotes the mean of the random process, andj i(u)
forms a set of independent random variables. Also,f i(x) andl i
are the eigenfunctions and eigenvalues of the covariance func
respectively, i.e.,

E Rhh~x,y!f i~y!dy5l if i~x!. (10)

Among many possible decompositions of a random process
KL expansion is optimal in the sense that the mean-square err
the finite term representation of the process is minimized. Its
however, is limited as the covariance function of the solution p
cess is often not knowna priori. Nevertheless, the KL expansio
provides an effective means of representing the input random
cesses when the covariance structure is known.

3 Second-order Random Oscillator

3.1 Governing Equations. We consider the second-orde
linear ordinary differential equation~ODE! system with both ex-
ternal and parametric random excitations.

dx

dt
5y,

dy

dt
1c~u!y1k~u!x5 f ~ t,u!, (11)
Journal of Fluids Engineering
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where the parameters and forcing are functions of random eveu.
We assume

c5 c̄1scj1 , k5 k̄1skj2 ,

f ~ t !5F cos~vt !5~ f̄ 1s fj3!cos~vt !, (12)

where (c̄,sc), (k̄,sk) and (f̄ ,s f) are the mean and standard d
viation of c, k andF, respectively. The random variablesj1 , j2 ,
andj3 are assumed to be independent standardGaussianrandom
variables.

3.2 Chaos Expansions. By applying the generalized poly
nomial chaos expansion, we expand the solutions as

x~ t !5(
i 50

P

xi~ t !F i~j!, y~ t !5(
i 50

P

yi~ t !F i~j!, (13)

where we have replaced the infinite summation ofj in infinite
dimensions in Eq.~2! by a truncated finite-term summation ofj in
finite dimensional space. In this case,j5(j1 ,j2 ,j3) is a three-
dimensionalGaussianrandom vector according to the rando
inputs. This results in a three-dimensionalHermite-chaos expan-
sion. The most important aspect of the above expansion is tha
random processes have been decomposed into a set of dete
istic functions in the spatial-temporal variables multiplied by t
random basis polynomials which are independent of these v
ables:

(
k50

P
dxk

dt
Fk5(

k50

P

ykFk ,

(
k50

P
dyk

dt
Fk1(

i 50

P

(
j 50

P

ciyjF iF j

1(
i 50

P

(
j 50

P

kixjF iF j5(
k50

P

f k~ t !Fk , (14)

whereci , ki , and f i are the chaos expansion, similar to Eq.~13!,
of c, k, and f, respectively. A Galerkin projection of the abov
equation onto each polynomial basis$F i% is then conducted in
order to ensure the error is orthogonal to the functional sp
spanned by the finite-dimensional basis$F i%. By projecting with
Fk for eachk5$0, . . . ,P% and employing the orthogonality rela
tion ~3!, we obtain for eachk50, . . . ,P,

dxk

dt
5yk ,

dyk

dt
1

1

^Fk
2& (i 50

P

(
j 50

P

~ciyj1kixj !ei jk5 f k~ t !, (15)

whereei jk5^F iF jFk&. Together witĥ F i
2&, the coefficientsei jk

can be evaluated analytically from the definition ofF i . Equation
~15! is a set of (P11) coupled ODEs. The total number of equ
tion is determined by the dimensionality of the chaos expans
~n!, in this case (n53), and the highest order~p! of the polyno-
mials $F% @6#:

P5(
s51

p
1

s! )r 50

s21

~n1r !. (16)

3.3 Numerical Results. The above set of equations can b
integrated by any conventional method, e.g., Runge-Kutta. H
we employ the Newmark scheme which is second-order accu
in time. We define two error measures for the mean and varia
of the solution
MARCH 2002, Vol. 124 Õ 53
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Fig. 2 Solution with Gaussian random inputs by Hermite-chaos. Left: solution of the dominant random
modes, right: error convergence of the mean and the variance.
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«mean~T!5Ux̄~T!2 x̄exact~T!

x̄exact~T!
U, «var~T!5Us2~T!2sexact

2 ~T!

sexact
2 ~T!

U,
(17)

where x̄(t)5E@x(t)# is the mean value ofx(t) and s2(t)
5E@(x(t)2 x̄(t))2# is the variance. Integration is performed up
T5100 ~nondimensional time units! when the solution reaches a
asymptotic periodic state. The computation parameters are
as: (c̄,sc)5(0.1,0.01), (k̄,sk)5(1.05,0.105) and (f̄ ,s f)
5(0.1,0.01), with frequencyv51.05 and zero initial conditions
Here the standard deviations are set to be reasonably sma
ensure the well-posedness of Eq.~11! in some stochastic sense
The exact stochastic solution is obtained from the exact determ
istic solution and the known probability distribution functions
the random inputs. The exact mean and variance of the solu
are obtained by integrating the solution over the support defi
by the Gaussian distribution. These integrations are perform
numerically using a Gauss-Hermite quadrature; a quadrature
30 points provides high accuracy.

In Fig. 2 ~left! we plot the development of the solution of th
mean~zero mode! as well as the first three random modes, i.e.,
modes contribution to a Gaussian distribution in this case. On
right figure we plot the error in themeanand thevariance. We see
from the semi-log plot that as the order of Hermite-chaos exp
sion increases, the error of mean and variance decreases exp
tially fast. This is due to the fact that the chaos expansion
spectral expansion in the random space. Similar exponential
vergence rate has been demonstrated for first-order ODE for
ous Askey-chaos basis in@15#. It is worth noting that if the appro-
priate chaos basis, in this case the Hermite-chaos correspondi
the Gaussian inputs, is not chosen, the exponential converg
may not be maintained@15#.

4 Incompressible Navier-Stokes Equations
In this section we present the solution procedure for solving

stochastic Navier-Stokes equations by generalized polyno
chaos expansion. The randomness in the solution can be i
duced through boundary conditions, initial conditions, forcin
etc.

4.1 Governing Equations. We employ the incompressibl
Navier-Stokes equations

¹•u50, (18)

]u

]t
1~u•¹!u52¹P1Re21 ¹2u, (19)
l. 124, MARCH 2002
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whereP is the pressure and Re the Reynolds number. All fl
quantities, i.e., velocity and pressure are considered as stoch
processes. A random dimension, denoted by the parameteru, is
introduced in addition to the spatial-temporal dimensions (x,t),
thus

u5u~x,t;u!; P5P~x,t;u!. (20)

4.2 Chaos Expansion. We apply the generalized polyno
mial chaos expansion, or the Askey-chaos~2!, to these quantities
and obtain

u~x,t;u!5(
i 50

P

ui~x,t !F i~j~u!!;

P~x,t;u!5(
i 50

P

P i~x,t !F i~j~u!!. (21)

Substituting~21! into Navier-Stokes equations we obtain the fo
lowing equations

(
i 50

P

¹•ui~x,t !F i50, (22)

(
i 50

P
]ui~x,t !

]t
F i1(

i 50

P

(
j 50

P

@~ui•¹!uj !]F iF j

52(
i 50

P

¹P i~x,t !F i1Re21 (
i 50

P

¹2uiF i . (23)

We then project the above equations onto the random sp
spanned by the basis polynomials$F i% by taking the inner prod-
uct of above equation with each basis. By taking^•,Fk& and
utilizing the orthogonality condition~3!, we obtain the following
set of equations:

For eachk50, . . .P,

¹•uk50, (24)

]uk

]t
1

1

^Fk
2& (i 50

P

(
j 50

P

ei jk@~ui•¹!uj !] 52¹Pk1Re21 ¹2uk ,

(25)

whereei jk5^F iF jFk&. The set of equations consists of (P11)
system of deterministic ‘Navier-Stokes-like’ equations for ea
random mode coupled through the convective terms.

4.3 Numerical Discretization. Discretization in space and
time can be carried out by any conventional method. Here
Transactions of the ASME
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employ the spectral/hp element method in space in order to ha
better control of the numerical error@29#. The high-order splitting
scheme together with properly defined consistent pressure bo
ary conditions are employed in time@30#. In particular, the spatia
discretization is based on Jacobi polynomials on triangles or qu
rilaterals in two-dimensions, and tetrahedra, hexahedra or pr
in three-dimensions.

4.4 Post-Processing. After solving thedeterministicexpan-
sion coefficients, we obtain the analytical form~in random space!
of the solution process. It is possible to perform a number
analytical operations on the stochastic solution in order to ca
out other analysis such as the sensitivity analysis. Themeanso-
lution is contained in the expansion term with index of zero. T
second-moment, i.e., thecovariance functionis given by

Ruu~x1 ,t1 ;x2 ,t2!5^u~x1 ,t1!2u~x1 ,t1!,u~x2 ,t2!2u~x2 ,t2!&

5(
i 51

P

@ui~x1 ,t1!ui~x2 ,t2!^F i
2&#. (26)

Note that the summation starts from index (i 51) instead of 0 to
exclude the mean, and that the orthogonality of the Askey-ch
basis$F i% has been used in deriving the above equation. Sim
expressions can be obtained for the pressure field.

Implementation details and verifications of the stochas
Navier-Stokes solver can be found in@16#.

5 Flow-Structure Interactions
In this section we consider two-dimensional vortex-induced

brations of an elastically-mounted circular cylinder subject to s
chastic inputs. The computational domain is shown in Fig
where the circular cylinder with unit diameter (D51) is located
at the origin. The size of the domain is@215,25#3@29,9#. There
are 412 triangular elements and sixth-order Jacobi polynomia
each element are found to be sufficient to resolve the flow in
physical space in the range of Re,200. The Reynolds number i
defined as Re5U`D/n, whereU` is the inflow andn the kine-
matic viscosity.

5.1 Structure Problem. In this paper we will focus on the
cross-flow displacement of the cylinder, i.e., the cylinder is free
move in they-direction but not in thex-direction. For a linear
structure, the governing equation is the second-order ordinary
ferential equation

r
d2h

dt2
1b

dh

dt
1Kh5F~ t !, (27)

where r, b and K are the mass, damping and stiffness of t
cylinder, and the natural frequency of this system isvn5AK/r.
For clarity, we rewrite Eq.~27! in the same form as in~11!:
Journal of Fluids Engineering
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d2h

dt2
1c

dh

dt
1kh5 f ~ t !, (28)

wherec5b/r, k5K/r and f (t)5F(t)/r. The external forcef (t)
comes from the flow and we incorporate uncertain component
c andk in the following simulations.

5.2 Transformed Navier-Stokes Equations. To couple the
flow with moving boundaries of the structure, one can emp
Arbitrary Lagrangian-Eulerian~ALE! method. Although general
this approach is computationally expensive so we conside
boundary-fitted coordinate approach for the specific problem
solve here. By attaching the coordinate system to the cylinder,
cylinder appears stationary in time~with respect to that coordinate
system!. Following @31#, we define two coordinate system
(x8,y8,t8) and (x,y,t), where (x8,y8,t8) is the original coordinate
system and (x,y,t) is the transformed one. The mapping betwe
the two systems is

x5x8,

y5y82h~ t8!,

t5t8.

In two-dimensional flow, this simply reduces to thev velocities
being shifted by the reference frame velocity,

u5u8,

v5v82
dh

dt8
,

p5p8.

It is worth noting that this mapping is stochastic when the cylind
motion is random and needs to be represented by the chao
pansion as well.

The incompressible Navier-Stokes equations are transfor
into:

¹•u50, (29)

]u

]t
1~u•¹!u52¹P1Re21 ¹2u1A~ t !, (30)

whereAx50 andAy52d2h/dt2.
In the following simulations, we assume the dampingc and

stiffnessk in Eq. ~28! to be random variables. Then the structu
response becomes a random process, so does the psuedof
A~t! in the transformed Navier-Stokes equations. This, in tu
makes the flow field random, which exerts a stochastic dyna
forcing f (t) back onto the cylinder. The entire coupled syste
Fig. 3 Schematic of the domain for flow past an elastically mounted circular
cylinder
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Fig. 4 Dominant random modes of the cylinder motion. Upper: modes of the cross-flow displacement y ÕD;
lower: modes of the lift coefficient CL .
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then becomes stochastic. The same expansion procedure
Section 4 is employed, with the psuedo-forcingA(t) and the map-
ping expanded appropriately, too.

5.3 Numerical Results. We assume that the Reynolds num
ber is fixed at Re5100, and we also assume that the input para
eters of the cylinder are uncertain, i.e.,c5 c̄1scj1 and k5 k̄
1skj2 , wherej1 andj2 are two independent standard Gauss
random variables with zero mean and unit variance. The mean
standard deviation ofc and k are set as (c̄,sc)5(0.1,0.01) and
( k̄,sk)5(1.0,0.2), respectively. We choosek̄51.0 such that the
natural frequency of the oscillator is close to the frequency of
vortex shedding of the fixed cylinder at Re5100, and the cylinder
response is maximized. According to the uncertain inputs, we
ploy the two-dimensional (n52) Hermite-chaos, the correspond
ing Askey-chaos for Gaussian inputs as shown in Table 1, as
trial basis in random space. A third-order Hermite-chaos (p53) is
employed which results in a 10-term chaos expansion~P59 ac-
cording to Eq.~16!!. Therefore, the computational cost~serial! of
this run is about 10 times more than the cost of the correspon
deterministic simulation. In particular, the cost of the structu
solver, even if it is nonlinear, is negligible compared to the flo
solver. The fluid forces on the cylinder are computed using

F5 R @2nP1Re21~¹u1¹uT!•n#ds,

wheren is the outward normal on the cylinder andds is the arc
length on the surface of the cylinder. The corresponding fo
coefficients are computed by nondimensionalizing the forces w
the fluid densityr f , free-stream velocityU` and the cylinder
diameterD:
ol. 124, MARCH 2002

ed 28 Jan 2013 to 155.98.20.40. Redistribution subject to ASM
s in

-
m-

an
and

the

m-
-
the

ing
re
w

rce
ith

CD5
FD

1
2r fDU`

2
, CL5

FL

1
2 r fDU`

2
.

In Fig. 4 we plot the time evolution of the first few coefficien
of the dominant random modes of the nondimensional cross-fl
displacement (y/D) and the lift coefficient (CL), together with
the deterministic solution. We see that due to the effective di
sion of the randomness, the mean response ofy/D has smaller
amplitude compared to its deterministic counterpart. The first
second random modes, as shown in the figure, correspond to
Gaussian part of the response.

In Fig. 5 we show the time evolution of the variances of t
cross-flow displacementy/D and lift coefficientCL . We see that
the variance peaks at the early transition stage before it settle
the asymptotic periodic state. The peak value is 2–3 times la
than that of the final periodic state. This suggests that the sys
responses to the uncertain inputs are important in the early t
sition stage and also non-negligible in the final asymptotic sta

Figure 6 shows the instantaneous contours of the rms of
vorticity field at t5600 ~nondimensional time units! correspond-
ing to more than 100 shedding cycles. The center location of
cylinder is not at the origin as shown in the figure. It is interesti
that the regions with the largest uncertainty are regions of
most importance from the fluid dynamical point of view, i.e., t
shear layer and near-wake but not the far-field.

In Fig. 7 the instantaneous pressure distribution along the
face of the cylinder att5600 is shown. Hereu is the angle of the
location on the surface withu50 the rear stagnation point an
u5p the front stagnation point. The error-bar curve is centered
the mean of the stochastic pressure solution and the length o
Transactions of the ASME
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Fig. 6 Regions of uncertainty: instantaneous rms of vorticity

Fig. 5 Variance of the cylinder motion. Upper: variance of the cross-flow displacement y ÕD, lower, variance of
the lift coefficient CL .
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bars indicates two standard deviations around the mean~i.e., one
above and one below the mean!. For comparison, the determinis
tic pressure distribution at the same instance is shown as well.
difference compared with stochastic mean solution is noticea
for the chosen magnitudes of variance of the stochastic inputs
deterministic signal remains inside the ‘‘envelope’’ of the stoch
tic solution at this instance.

6 Summary and Discussion
We have developed a stochastic spectral method to mode

certainty and its propagation in flow simulations. More spec
l of Fluids Engineering

ed 28 Jan 2013 to 155.98.20.40. Redistribution subject to ASM
he
le;
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cally, we have generalized the original polynomial chaos idea
Wiener and proposed a broader framework, i.e., the Askey-ch
which includes Wiener’s Hermite-chaos as a subset. Numer
examples were presented for relatively simple systems, such
second-order ordinary differential equation and a more com
cated flow-structure interaction problem at relatively low Re
nolds number. We do not yet have experience with such stocha
simulations at high Reynolds number.

The method we developed here is general and can also be
plied to model uncertainty in the boundary domain, e.g., a rou
MARCH 2002, Vol. 124 Õ 57
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Fig. 7 Instantaneous pressure distribution along the surface of the cylinder; error-bar:
stochastic solution, dashed line: deterministic solution
y
m

n

t

n

n

n

n

s

del

an-

an-

un-

er-

os

-

ials
vi-

y
s,’’

of
n

he
e of
ff-

ed
.,

ls

eo-
17,
of
surface, in the transport coefficients, e.g., the eddy viscosit
large eddy simulations, and other problems. It provides a for
procedure for constructing acomposite error barfor CFD appli-
cations, as proposed in@32#, that includes, in addition to the dis
cretization errors, contributions due to imprecise physical inp
to the simulations.

As regards efficiency, a single Askey-chaos based simulat
albeit computationally more expensive than the corresponding
terministic solver, is able to generate the solution statistics i
single run. In contrast, for the Monte Carlo simulation, tens
thousands of realizations are required for converged statis
which is prohibitively expensive for most CFD problems in pra
tice. Further work will include simulations with different distribu
tion functions and their corresponding Askey-chaos expansio
presented here.
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@28# Loève, M., 1977,Probability Theory, Fourth edition, Springer-Verlag.
@29# Karniadakis, G. E., and Sherwin, S. J., 1999,Spectral/hp Element Methods fo

CFD, Oxford University Press.
Journal of Fluids Engineering

ownloaded 28 Jan 2013 to 155.98.20.40. Redistribution subject to ASM
of
.,

EE

@30# Karniadakis, G. E., Israeli, M., and Orszag, S. A., 1991, ‘‘High-Order Splitti
Methods for Incompressible Navier-Stokes Equations,’’ J. Comput. Phys.,97,
p. 414.

@31# Newman, D. J., and Karniadakis, G. E., 1997, ‘‘Simulations of Flow Pas
Freely Vibrating Cable,’’ J. Fluid Mech.,344, pp. 95–136.

@32# Karniadakis, G. E., 1995, ‘‘Towards an Error Bar in CFD,’’ ASME J. Fluid
Eng.,117, pp. 7–9.
MARCH 2002, Vol. 124 Õ 59

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm


