Stochastic Modeling of
Flow-Structure Interactions Using
bongbinXiv§ - Generalized Polynomial Chaos
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We present a generalized polynomial chaos algorithm to model the input uncertainty and

C.-H. Su its propagation in flow-structure interactions. The stochastic input is represented spec-
. . 1 trally by employing orthogonal polynomial functionals from the Askey scheme as the trial
George Em Karniadakis basis in the random space. A standard Galerkin projection is applied in the random
o , , dimension to obtain the equations in the weak form. The resulting system of deterministic
Division of Applied Mathematics, equations is then solved with standard methods to obtain the solution for each random
Brown University, mode. This approach is a generalization of the original polynomial chaos expansion,
Providence, Rl 02912 which was first introduced by N. Wiener (1938) and employs the Hermite polynomials (a

subset of the Askey scheme) as the basis in random space. The algorithm is first applied
to second-order oscillators to demonstrate convergence, and subsequently is coupled to
incompressible Navier-Stokes equations. Error bars are obtained, similar to laboratory
experiments, for the pressure distribution on the surface of a cylinder subject to vortex-
induced vibrations[DOI: 10.1115/1.1436089

1 Introduction slowly for turbulent fieldd12-14, so the polynomial chaos ap-

In the last decade there has been substantial progress in s"%rqach did not receive much attention for_ a long time.

lations of flow-structure interactions involving the full Navier- in more recent work15,16 th? polynor_nla_l chaos concept was

- ; : : ._extended to represent many different distribution functions. This
Stokes equations, e.fi1,2]. While such simulations are useful in eneralized polynomial chaos approach, also referred as the
complementing experimental studies in the low Reynolds numb Ekey-chaos employs the orthogonal bolynomials from the
range, they are based aeal boundary conditions anprrecisely gy schemd17] as the trial basis in the random space. The
Qefined propertie§ of the structure. In.practice, SU.Ch flow Con(H'riginal polynomial chaos can be considered as a subset of the
tions and properties can only be defined approximately. AS @Rneralized polynomial chaos, as it employs Hermite polynomi-
example, the internal structural damping for the structure is ty Is, a subset of the Askey scheme, as the trial basigL3h the
cally taken as 1-3 percent of the critical damping since it canngbmework of Askey-chaos was proposed and convergence prop-
be quantified by direct measurements. It is, therefore, of gregies of different random bases were examined.[16] the
interest to formally model such uncertainty of stochastic inputaskey-chaos was applied to model uncertainty in incompressible
and to formulate algorithms that reflect accurately the propagatiffavier-Stokes equations. Various tests were conducted to demon-
of this gncertalnt){:%]. _strate the convergence of the chaos expansion in prototype flows.

To this end, the Monte Carlo approach can be employed but it isfor flow-structure interactions the interest on stochastic model-
computationally expensive and is only used as the last resort. TRg so far has primarily been on the dynamics of lumped systems,
sensitivity method is a more economical approach, based on {he, single- or two-degree-of-freedom second-order oscillators
moments of samples, but it is less robust and depends strongly[@B,19. The effect of the flow has been modeled via an interaction
the modeling assumptiorig]. One popular technique is the per-(source term as either white noise or as a Gaussian distribution if
turbation method where all the stochastic quantities are expandgé loading is caused by win@0-23. However, non-Gaussian
around their mean via Taylor series. This approach, however,dgtribution behavior for the response has been documented with
limited to small perturbations and does not readily provide infothe excess indewell above or below zer¢sharp or flat intermit-
mation on high-order statistics of the response. The resulting sysncy) [18]. For example, even for a velocity field following a
tem of equations becomes extremely complicated beyond seco@dussian distribution, which is a reasonable assumption for mari-
order expansion. Another approach is based on expanding time winds[21], the corresponding force given by the Morison
inverse of the stochastic operator in a Neumann series, but this foomula
is limited to small fluctuations, and even combinations with the
Monte Carlo method seem to result in computationally prohibitive Fy(t)= 3 pDCaV(D)|V(1)]
algorithms for complex systeni§].

A more effective approach pioneered by Ghanem and Spar}
[6] in the context of finite elements for solid mechanics is base
on a spectral representation of the uncertainty. This allows hig%
order representation, not just first-order as in most perturbation-
based methods, at high computational efficiency. It is based onthe f,(v)= ———— ;{
original theory of Wiener(1938 on homogeneous cha¢g,8]. 20yy2mv] 2
This approach was employed in turbulence in the 1960s11]. wherem,, and o, are the mean value and standard deviation of
However, it was realized that the chaos expansion converggg the Gaussian distribution for the velocifyt).

- In this paper we apply the chaos expansions to coupled Navier-

!Corresponding author, e-mail: gk@cfm.brown.edu Stokes/structure equations. We first demonstrate the convergence
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oes not follow a Gaussian distribution. This is because the above
?mula defines a nonlineaimemorylesy transformation[20],
nd its first-density function is given by

sign(v) o[- mv)z

Oy

1

Journal of Fluids Engineering Copyright © 2002 by ASME MARCH 2002, Vol. 124 / 51

Downloaded 28 Jan 2013 to 155.98.20.40. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



brations in flow past a cylinder. The algorithms developed here arable 1  Correspondence of the type polynomials and random

general and can be applied to any type of distributions althouyfriables for different Askey-chaos  (N=0 is a finite integer ).

our applications are concentrated on Gaussian type random inptfs:
In the next section we review the theory of the generalized

Random variables Orthogonal polynomials

. . ; . | Support
polynomial chaos. In Section 3 we apply it to second-order oscil-__ £ : {1} : PP
lators, and in Section 4 we present its application to Navier-Stokegntinuous Gaussian Hermite (=o0)
equations. In Section 5 we present the computational results of Ggg}?a LJaagclgek;’ire [[gf)ﬁ
stochastic flow-structure interactions, and we conclude with a Uniform Legendre [ab]
brief discussion in Section 6. Discrete Poisson Charlier {0,1,2...}

Binomial Krawtchouk {0,1,... N}
Negative Binomial Meixner {0,1,2...}
2 The Generalized Polynomial Chaos Hypergeometric Hahn {0.1, ... N}

In this section we introduce the generalized polynomial chaos
expansion along with the Karhunen-LoeW€L) expansion, an-
other classical technique for representing random processes. The
KL expansion can be used in some cases to represent efficientlp 2 The Generalized Polynomial Chaos: Askey-Chaos.
the known stochastic fields, i.e., the stochastic inputs. The original polynomial chad,8] employs the Hermite polyno-
2.1 The Askey Scheme. The Askey scheme, which is Irep_r_nials in the random space as the tr_ial basis to expand the stoch_as-
resented as a tree structure in Figfdllowing [24]), classifies the tic processes. Cameron and Martin proved that such expansion
hypergeometric orthogonal polynomials and indicates the limit rEONVerges to any s_econd-order processes |r1__§hs_ense[26]. It
lations between them. The “tree” starts with the Wilson polynogan be seen from Fig. 1 that Hermite polynomial is a subset of the

mials and the Racah polynomials on the top. The Wilson polyn@SKeY scheme. The generalized polynomial chaos, or the Askey-
haos, was proposed [15,16 and employs more polynomials

mials are continuous while the Racah polynomials are discrefg. the Ask h c i d-order stochasti
The lines connecting different polynomials denote the limit tra rom the Askey scheme. Lonvergence 1o second-order stochastic

sition relationships between them: this implies that the polynonr,rg)({ocesses can be readily obtained as a generalization of Cameron-

als at the lower end of the lines can be obtained by taking the li artin theorem[26].

of one of the parameters from their counterparts on the upper e dr/_lﬁxtiqennegl ?(e)cl())nid-orctiﬁr rrar?gor?: [\)/ror(]:te)ewr)],bw$werd aitad in
For example, the limit relation between Jacobi polynomial ction ot #e (0,4, 1.€., the random event, can be represente

o . . . the form
P{*A)(x) and Hermite polynomialsi(x) is

el ® il
im o~ tnpea| 2| Z Hn(X) X(0)=aglo+ X, ¢ 11(& (0)+ > D il (60).6,(6))
Oca n \/Z = onpr i1=1 i1=1ip=
‘ ® iy i
and between Meixner polynomiald, (x;8,c) and Charlier poly- o : : :
oAl O (nd) o n ﬂ; i; i; Ciyiyigla(&i,(0),6,(0),& () + ...,
. a 1)
Iim M| x; 8, —— | =C,(x;a). .
B atp where 1,(§;, ... & ) denotes the Askey-chaos of orderin
For a detailed account of definitions and properties of hypergel§!™ms ~ of the kr]nultl-.dllmelnsulmal .rzlm(:]om variablesg
metric polynomials, seé17]; for the limit relations of Askey — (&1 - --&i))- In the original polynomial chaogl,} are Her-

scheme, sef25] and[24]. mite polynomials andé are Gaussianrandom variables. In the
The orthogonal polynomials associated with the generalizégkey-chaos expansion, the polynomidjsare not restricted to
polynomial chaos, include: Hermite, Laguerre, Jacobi, Charliddermite polynomials and not Gaussian variables. The corre-

Meixner, Krawtchouk, and Hahn polynomials. sponding type of polynomials and their associated random vari-
ables are listed in Table 1.

For notational convenience, we rewrite Ed) as

Fiold) Wilson Racah X( 0)22 6J¢‘J(§), (2)
j=o0
\ / where there is a one-to-one correspondence between the functions
(&), -6 ) and®;(§), and their coefficients; andc; ;.
F® | Continuous Continuous Hahn Dual Hahn Since each type of polynomials from the Askey scheme form a
v complete basis in the Hilbert space determined by their corre-
sponding support, we can expect each type of Askey-chaos to
converge to any., functional in thelL, sense in the corresponding
PTy— Hilbert functional space as a generalized result of Cameron-
FR ek Jacobi Meixner Krawtchouk Martin theorem([26] and[27]). The orthogonality relation of the
generalized polynomial chaos takes the form
(BiD)=(D}) 8, 3
F() Laguerre Chariier Fol1) where §;; is the Kronecker delta an@,-) denotes the ensemble
average which is the inner product in the Hilbert space of the
random variableg
2Fo(0) Hermite
<f(§)9(§)>=f f(Hg(HW(§d§, 4
Fig. 1 The Askey scheme of orthogonal polynomials or
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where the parameters and forcing are functions of random évent

(f(§)9(§)>:2§ f(I(HW(E) (®)  We assume
in the discrete case. Hel&/(£) is the weighting function corre- c=c+océy, k=ktoyss,
sponding to the Askey polynomials chaos bdsis}. Each type _
of orthogonal polynomials from the Askey-chaos has weighting f(t)=F coq wt)=(f+ o&3)coq wt), (12)
functions of the same form as the probability function of its asso- . _ _
ciated random variableg as shown in Table 1. where €,0.), (k,oy) and (f,o;) are the mean and standard de-

For example, as a subset of the Askey-chaos, the original polsation of ¢, k andF, respectively. The random variablés, &,
nomial chaos, also will be termed the Hermite-chaos, employs thed ¢£; are assumed to be independent stan@adssianrandom

Hermite polynomials defined as variables.
" 3.2 Chaos Expansions. By applying the generalized poly-
T _ T
hn(&ipr - - ‘gin):emg f(—l)“me Y265 (6)  nomial chaos expansion, we expand the solutions as
1 n

- . . P P
where §=(§il, e ,fin) are multi-dimensional independent
Gaussian random variables with zero mean and unit variance. The X(t):; Xi(D)Pi(£), y(t)=; yih®i(g),  (13)
weight function in the orthogonality relatioi) is
where we have replaced the infinite summationéah infinite
W(&)= 1 o 2£T¢ @) dimensions in Eq(2) by a truncated finite-term summation §fn
J2m)" ' finite dimensional space. In this cases (£1,§,,&3) is a three-
) . . . dimensionalGaussianrandom vector according to the random
wheren is the dimension of. It can seen that this is the same @puts. This results in a three-dimensiotdgrmitechaos expan-
the probability density functionPDF) of the n-dimensional ~gjon. The most important aspect of the above expansion is that the
Gaussian random variables. For example, the one-dimensiopgqom processes have been decomposed into a set of determin-

Hermite polynomials are: istic functions in the spatial-temporal variables multiplied by the
Wo=1, W,=¢ W,=¢—1, W,=&-3¢ ... (8) ra;)rlldom basis polynomials which are independent of these vari-
ables:

2.3 The Karhunen-Loeve Expansion. The Karhunen-
Loeve (KL) expansior[28] is another way of representing a ran-
dom process. It is a spectral expansion based on the decomposi-
tion of the covariance function of the process. Let us denote the
process byn(x, #) and its covariance function B,,(x,y), where P
x andy are the spatial or temporal coordinates. By definition, the 2
covariance function is real, symmetric, and positive definite. All P
eigenfunctions are mutually orthogonal and form a complete set

M-

dx P

K

ar Ok > iy,
i ey

q P P

k

t (I)k‘f‘Z) 20 C,yj(blq)]
=0 j=

0

Q|<

=0

spanning the function space to whitifx,6) belongs. The KL PP P
expansion then takes the following form: +> > kinCDi(Dj:Z f(H D, (14)
=0 =0 k=o
h(x,e):ﬁ(x)+z \/)\—iqsi(x)gi(a), (9) wherec;, ki, andf; are the chaos expansion, similar to Eif),
i=1

of ¢, k, andf, respectively. A Galerkin projection of the above
equation onto each polynomial bagi®;} is then conducted in
order to ensure the error is orthogonal to the functional space
spanned by the finite-dimensional ba§is;}. By projecting with

Whereﬁ(x) denotes the mean of the random process, &0é)
forms a set of independent random variables. Alsgx) and\;
are the eigenfunctions and eigenvalues of the covariance functi

10 A oty e ohogonaly e
J Run(X,Y) ¢i(y)dy=\; i (X). (10) ax _
Among many possible decompositions of a random process, the dt .
ihe e term representation of the process fs minmized. s vse, M, L 15
tho(:;‘/vever, is Iimitepd as the covariancepfunction of the solution pro-’ " (®2) ;) 126 ciyj+kixp) e =fi(t), (15)

cess is often not knowa priori. Nevertheless, the KL expansion

provides an effective means of representing the input random pwheree;; =(P;P;P,). Together with( ®?), the coefficientse;j

cesses when the covariance structure is known. can be evaluated analytically from the definitiondaf. Equation
(15) is a set of P+ 1) coupled ODEs. The total number of equa-
tion is determined by the dimensionality of the chaos expansion

. , in thi =3), and the highest ord f th | -
3 Second-order Random Oscillator &Tr:i)afsn{(b}fs[e%?se'(' ), and the highest ordép) of the polyno

3.1 Governing Equations. We consider the second-order p
linear ordinary differential equatiofODE) system with both ex- P=Z i
s=1

[

s—

ternal and parametric random excitations. sl 1% (n+1). (16)
%:y 3.3 Numerical Results. The above set of equations can be
dt 7’ integrated by any conventional method, e.g., Runge-Kutta. Here

dy we employ the Newmark scheme which is second-order accurate
in time. We define two error measures for the mean and variance

— 4+ + = .

dt c(O)y +k()x=1(t,0), (11) of the solution
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Fig. 2 Solution with Gaussian random inputs by Hermite-chaos. Left: solution of the dominant random
modes, right: error convergence of the mean and the variance.

X(T) ~ Xexaek T) cA(T)— 02 T) wherell is the pressure and Re the Reynolds number. All flow
Emeal T)= T eval T =|———"757, quantities, i.e., velocity and pressure are considered as stochastic
Xexact T) Texact T) processes. A random dimension, denoted by the paramigtsr
(17) introduced in addition to the spatial-temporal dimensiorg)(
where x(t)=E[x(t)] is the mean value of(t) and ¢*(t) thus
=E[(x(t) —x(t))?] is the variance. Integration is performed up to u=u(x,t:0); T=TI(x.t:0). (20)

T=100(nondimensional time unitsvhen the solution reaches an
asymptotic periodic state. The computation parameters are se4.2 Chaos Expansion. We apply the generalized polyno-
as: (,0.)=(0.1,0.01), k,o0,)=(1.050.105) and f(o;) mial chaos expansion, or the Askey-ch&®js to these quantities
=(0.1,0.01), with frequencyw=1.05 and zero initial conditions. and obtain
Here the standard deviations are set to be reasonably small to
ensure the well-posedness of E@l) in some stochastic sense.
The exact stochastic solution is obtained from the exact determin-
istic solution and the known probability distribution functions of
the random inputs. The exact mean and variance of the solution P
are obtained by integrating the solution over the support defined I(x,t;0)= E ITi(x,1) ®;(£(6)). (21)
by the Gaussian distribution. These integrations are performed -
numerically using a Gauss-Hermite quadrature; a quadrature Wilibstituting(21) into Navier-Stokes equations we obtain the fol-
30 points provides high accuracy. lowing equations
In Fig. 2 (left) we plot the development of the solution of the
mean(zero modgas well as the first three random modes, i.e., the
modes contribution to a Gaussian distribution in this case. On the E
right figure we plot the error in themeanand thevariance We see
from the semi-log plot that as the order of Hermite-chaos expan- (x.1) P P
S 8 i
sion increases, the error of mean and variance decreases exponen- E e 2 2 (U V)u))] DD
tially fast. This is due to the fact that the chaos expansion is a =0 dt =0 j=0
spectral expansion in the random space. Similar exponential con- P P
vergence rate has been demonstrated for first-order ODE for vari- _ 4 2
ous Askey-chaos basis fd5]. It is worth noting that if the appro- - ;) VIL(x,)®;+Re ;) Vaud; . (3)
priate chaos basis, in this case the Hermite-chaos corresponding to
the Gaussian inputs, is not chosen, the exponential convergeM¢é@ then project the above equations onto the random space
may not be maintaineflL5]. spanned by the basis polynomidlb;} by taking the inner prod-
uct of above equation with each basis. By takitg®,) and
utilizing the orthogonality conditiori3), we obtain the following
set of equations:
For eachk=0, .. .P,

P
u<x,t;a>=§) U(x ) D(&0));

o

Ui(X,t)q)iIO, (22)

4 Incompressible Navier-Stokes Equations

In this section we present the solution procedure for solving the
stochastic Navier-Stokes equations by generalized polynomial V-u=0, (24)
chaos expansion. The randomness in the solution can be intro-
duced through boundary conditions, initial conditions, forcing, 7~k
etc.

P P
Z Zo eijk[(ui'V)Uj)]:_VHk+ Re_lvzuk,

4.1 Governing Equations. We employ the incompressible (25)
Navier-Stokes equations whereej;, =(®;®;P,). The set of equations consists & 1)
system of deterministic ‘Navier-Stokes-like’ equations for each

V-u=0, (18) random mode coupled through the convective terms.
4 u=— +Re lvy? . 4.3 Numerlca! Discretization. Dlscret!zatlon in space and
at (u-V)u VII+Re "V, (19) time can be carried out by any conventional method. Here we
54 | Vol. 124, MARCH 2002 Transactions of the ASME
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employ the spectrdip element method in space in order to have d?yp  dy
better control of the numerical errfi29]. The high-order splitting FTARr T knp=1(1), (28)
scheme together with properly defined consistent pressure bound-

ary conditions are employed in tini80]. In particular, the spatial wherec= b/p, k=K/p andf(t)=F(t)/p. The external forcé(t)

discretization is based on Jacobi polynomials on triangles or quames from the flow and we incorporate uncertain components in
rilaterals in two-dimensions, and tetrahedra, hexahedra or prisgiandk in the following simulations.

in three-dimensions. ) )
5.2 Transformed Navier-Stokes Equations. To couple the

4.4 Post-Processing. After solving thedeterministicexpan-  flow with moving boundaries of the structure, one can employ
sion coefficients, we obtain the analytical fofin random spade Arbitrary Lagrangian-EuleriatALE) method. Although general,
of the solution process. It is possible to perform a number @is approach is computationally expensive so we consider a
analytical operations on the stochastic solution in order to campundary-fitted coordinate approach for the specific problem we
out other analysis such as the sensitivity analysis. Mleanso- solve here. By attaching the coordinate system to the cylinder, the
lution is contained in the expansion term with index of zero. Theylinder appears stationary in tinfeith respect to that coordinate
second-moment.e., thecovariance functions given by system. Following [31], we define two coordinate systems:

) _ ey TRy (x",y’,t") and (,y,t), where &’,y’,t’) is the original coordinate
Ruu(X1 113Xz, t2) = (U(Xq, t) = (X1, 1), U0k ) ~U(Xe, ) system andX,y,t) is the transformed one. The mapping between

P the two systems is
=2 (U0, t) Ui (0 1) (D], (26) .
i=1 X=X,
Note that the summation starts from indéx=(1) instead of O to y=y' —n(t"),
exclude the mean, and that the orthogonality of the Askey-chaos
basis{®;} has been used in deriving the above equation. Similar t=t’.

expressions can be obtained for the pressure field. ] ) o N
Implementation details and verifications of the stochasti® two-dimensional flow, this simply reduces to thevelocities

Navier-Stokes solver can be found[ib6]. being shifted by the reference frame velocity,
u=u’,
5 Flow-Structure Interactions J
In this section we consider two-dimensional vortex-induced vi- v=v'— _7?
brations of an elastically-mounted circular cylinder subject to sto- dt
chastic inputs. The computational domain is shown in Fig. 3 o,
where the circular cylinder with unit diameteb & 1) is located P=p"

at the origin. The size of the domain(is 15,25x[~9,9]. There |t js worth noting that this mapping is stochastic when the cylinder
are 412 triangular elements and sixth-order Jacobi polynomials #htion is random and needs to be represented by the chaos ex-
each element are found to be sufficient to resolve the flow in t'i.‘)%nsion as well.

physical space in the range of R200. The Reynolds number is" The incompressible Navier-Stokes equations are transformed
defined as ReU..D/v, whereU., is the inflow andv the kine- jnto:

matic viscosity.

5.1 Structure Problem. In this paper we will focus on the v-u=0, (29)
cross-flow displacement of the cylinder, i.e., the cylinder is free to au
move in they-direction but not in thex-direction. For a linear — +(u-V)u=—VII+Re ' Vau+A(t), (30)
structure, the governing equation is the second-order ordinary dif- at
ferential equation whereA,=0 andA, = — d2y/de2.
d?yp dyp In the following simulations, we assume the dampm@nd
s + bm +Kn=F(t1), (27) stiffnessk in Eq. (28) to be random variables. Then the structure

response becomes a random process, so does the psuedoforcing
where p, b and K are the mass, damping and stiffness of tha(t) in the transformed Navier-Stokes equations. This, in turn,
cylinder, and the natural frequency of this systenwjs=K7p. makes the flow field random, which exerts a stochastic dynamic
For clarity, we rewrite Eq(27) in the same form as ifil1): forcing f(t) back onto the cylinder. The entire coupled system

Fig. 3 Schematic of the domain for flow past an elastically mounted circular
cylinder
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Fig. 4 Dominant random modes of the cylinder motion. Upper: modes of the cross-flow displacement yID;
lower: modes of the lift coefficient C,.
then becomes stochastic. The same expansion procedure as in Fo FL
Section 4 is employed, with the psuedo-forciagt) and the map- Cp=7 5 Cl=7 5
ping expanded appropriately, too. 2psDUZ 3 piDUZ

5.3 Numerical Results. We assume that the Reynolds num-

ber is fixed at Re:100, and we also assume that the input param- In Fig. 4 we plot the time evolution of the first few coefficients
- ’ L = — of the dominant random modes of the nondimensional cross-flow
eters of the cylinder are uncertain, i.e=c+o.¢; and k=k

. ._displacement {{/D) and the lift coefficient C, ), together with
+oyé,, whereg, and¢, are two independent standard Gaussia o jeterministic solution. We see that due to the effective diffu-

random varial_)Ie_s with zero mean and unit variance. The mean and, of the randomness, the mean responsg/Bf has smaller
standard deviation of and.k are set as¢.o.)=(0.1,0.01) and amplitude compared to its deterministic counterpart. The first and
(k,00)=(1.0,0.2), respectively. We chooke-1.0 such that the second random modes, as shown in the figure, correspond to the
natural frequency of the oscillator is close to the frequency of thgaussian part of the response.
vortex shedding of the fixed cylinder at R&00, and the cylinder | Fig, 5 we show the time evolution of the variances of the
response is maximized. According to the uncertain inputs, we egtpss-flow displacement/D and lift coefficientC, . We see that
ploy the two-dimensionalr(=2) Hermite-chaos, the correspond+he variance peaks at the early transition stage before it settles to
ing Askey-chaos for Gaussian inputs as shown in Table 1, as #@ asymptotic periodic state. The peak value is 2—3 times larger
trial basis in random space. A third-order Hermite-chgns 8) is  than that of the final periodic state. This suggests that the system
employed which results in a 10-term chaos expans®® 9 ac-  responses to the uncertain inputs are important in the early tran-
cording to Eq.(16)). Therefore, the computational cdseria) of  sition stage and also non-negligible in the final asymptotic state.
this run is about 10 times more than the cost of the correspondingrigure 6 shows the instantaneous contours of the rms of the
deterministic simulation. In particular, the cost of the structurgorticity field att=600 (nondimensional time unitscorrespond-
solver, even if it is nonlinear, is negligible compared to the flowhg to more than 100 shedding cycles. The center location of the
solver. The fluid forces on the cylinder are computed using  cylinder is not at the origin as shown in the figure. It is interesting
that the regions with the largest uncertainty are regions of the
F= 3@ [—nIl+Re Y{(Vu+Vu")-n]ds, most importance from the fluid dynamical point of view, i.e., the
shear layer and near-wake but not the far-field.
wheren is the outward normal on the cylinder add is the arc In Fig. 7 the instantaneous pressure distribution along the sur-
length on the surface of the cylinder. The corresponding fordace of the cylinder at=600 is shown. Her@ is the angle of the
coefficients are computed by nondimensionalizing the forces wilihcation on the surface witl#=0 the rear stagnation point and
the fluid densityp;, free-stream velocityJ.. and the cylinder 6= the front stagnation point. The error-bar curve is centered at
diameterD: the mean of the stochastic pressure solution and the length of the
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Fig. 6 Regions of uncertainty: instantaneous rms of vorticity

bars indicates two standard deviations around the nfieanone cally, we have generalized the original polynomial chaos idea of
above and one below the mgafor comparison, the determinis-Wiener and proposed a broader framework, i.e., the Askey-chaos,
tic pressure distribution at the same instance is shown as well. ThBich includes Wiener's Hermite-chaos as a subset. Numerical

?iff%:enc;]e compared_tw(i;h stcf)cha_stic mefatr; SOL”“?]” if_ ”_Oticetabé%gmples were presented for relatively simple systems, such as a
or the chosen magnitudes ot variance ot the stochastic inputs, ond-order ordinary differential equation and a more compli-

deterministic signal remains inside the “envelope” of the stochasc-ated flow-structure interaction oroblem at relatively low Rev-
tic solution at this instance. structu P y y

] ) nolds number. We do not yet have experience with such stochastic
6 Summary and Discussion simulations at high Reynolds number.

We have developed a stochastic spectral method to model unThe method we developed here is general and can also be ap-
certainty and its propagation in flow simulations. More specifplied to model uncertainty in the boundary domain, e.g., a rough
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