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Abstract

We present a generalized polynomial chaos algorithm for the solution of stochastic elliptic partial differential

equations subject to uncertain inputs. In particular, we focus on the solution of the Poisson equation with random

diffusivity, forcing and boundary conditions. The stochastic input and solution are represented spectrally by employing

the orthogonal polynomial functionals from the Askey scheme, as a generalization of the original polynomial chaos

idea of Wiener [Amer. J. Math. 60 (1938) 897]. A Galerkin projection in random space is applied to derive the equations

in the weak form. The resulting set of deterministic equations for each random mode is solved iteratively by a block

Gauss–Seidel iteration technique. Both discrete and continuous random distributions are considered, and convergence

is verified in model problems and against Monte Carlo simulations.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: Uncertainty; Random diffusion; Polynomial chaos

1. Introduction

It has been common practice in engineering to analyze systems based on deterministic mathematical
models with precisely defined input data. However, since such ideal situations are rarely encountered in
practice, the need to address uncertainties is now clearly recognized, and there has been a growing interest
in the applications of probabilistic methods [1–4].

The probabilistic methods in engineering can be broadly classified into two major categories: methods
using a statistical approach and methods using a non-statistical approach. The statistical approach includes
Monte Carlo simulation, stratified sampling, Latin hypercube sampling, etc. These methods involve
sampling and estimation and in most cases are straightforward to apply. However, since the accuracy of the
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sampling techniques depends on the sample size, in accordance with the ‘weak law of large number’,
simulations can become prohibitively expensive, especially for the systems that are already complicated in
the deterministic case. Thus, these methods are often used as the last resort and research effort has been
made in developing the non-statistical methods.

The most popular non-statistical method is the perturbation method, where the random field is expanded
via Taylor series around its mean and truncated at certain order. Typically, at most second-order expansion
is employed because the system of equations becomes extremely complicated beyond second-order. This
approach, also called the ‘second moment analysis’ [5–7], has been used extensively in various fields [8]. An
inherent limitation of the perturbation method is that the uncertainties cannot be too large, i.e. variances of
the random field cannot be too large compared with their mean values, e.g. typically less than 10% [5]. Also,
higher-order statistics are not readily available for the second moment method. Another approach is the
Neumann expansion, which is based on the inverse of the stochastic operator in a Neumann series. This
method too is restricted to small uncertainties and attempts have been made to couple it with the Monte
Carlo simulation to obtain more efficient algorithms [9,10].

Another methodology of the non-statistical type is to ‘discretize’ directly the random field. Ghanem and
Spanos pioneered a polynomial chaos expansion method and have successfully applied it to various
problems in mechanics [11]. The polynomial chaos expansion is based on the homogeneous chaos theory of
Wiener [12] and is essentially a spectral expansion of the random variables. It allows high-order repre-
sentation and promises fast convergence; coupled with Karhunen–Loeve (KL) decomposition for the input
and Galerkin projection in random space, it results in computationally tractable algorithms for large en-
gineering systems [13]. More efficient Monte Carlo algorithms can also be designed when combined with the
chaos expansion technique [13,14]. More recently, a theoretical framework of discretizing the random field
via the finite element approach, i.e., piecewise polynomials, was proposed in [15].

The classical polynomial chaos expansion is based on the Hermite polynomials in terms of Gaussian
random variables. Although in theory, it converges to any L2 functionals in the random space [16], it
achieves optimal convergence rate only for Gaussian and near Gaussian random fields [17], and does not
readily apply to the random fields with discrete distribution. A more general framework, called the ‘gen-
eralized polynomial chaos’ or the ‘Askey-chaos’, was proposed in [17]. Here the polynomials are chosen
from the hypergeometric polynomials of the Askey scheme [18], and the underlying random variables are
not restricted to Gaussian random variables. Instead, the type of random variables are chosen according to
the stochastic input and the weighting function of these random variables determines the type of orthogonal
polynomials to be used as the basis in the random space. The convergence properties of different bases were
studied in [17] and exponential convergence rate was demonstrated for model problems. In [19] the gen-
eralized polynomial chaos was applied to modeling uncertainties in incompressible flow and in [20] to flow-
structure interaction problems.

The main objective of this paper is to give a broad algorithmic framework to solve stochastic elliptic
partial differential equations based on the generalized polynomial chaos expansion. The class of problems
we solve has the form

r � ½jðx;xÞruðx;xÞ� ¼ f ðx;xÞ; ðx;xÞ 2 D	 X;
uðx;xÞ ¼ gðx;xÞ; ðx;xÞ 2 oD	 X;

�
ð1Þ

where D is a bounded domain in Rd (d ¼ 1; 2; 3) and X is a probability space. f, g and j are R-values
functions on D	 X. This can be considered as a model of steady state diffusion problems subject to internal
(diffusivity j) and/or external (source term f and/or Dirichlet boundary condition g) uncertainties. Babu�sska
was among the first to study rigorously existence of solutions of the random Dirichlet problem [21]. B�eecus
and Cozzarelli studied the existence and properties of the general solution to (1), see [22–24]. Also, in [15]
the problem subject to random diffusivity and/or random source terms was studied and existence and
uniqueness of the solution in the finite element context, both in physical space and random space, were
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addressed. From a different perspective, problems similar to (1) were studied via homogenization methods
to evaluate the ‘effective diffusivity’ of random media [25].

In this paper, we solve the steady state diffusion problem (1) by generalized polynomial chaos expansion,
where the uncertainties can be introduced through j, f, or g, or some combinations. It is worth noting that
when both j and u are random, it is not obvious how to give a mathematical meaning or justification to the
product of two stochastic processes if they are not smooth. However, the product is well defined in terms of
the chaos expansion by using the concept of Wick product and Kondratiev space [26,27].

In Section 2, we present the concept of the generalized polynomial chaos, and in section 3 we apply the
expansion to the solution of the steady state diffusion problem. Numerical results are presented in Section
4, and we conclude the paper with a discussion.

2. The generalized polynomial chaos

In this section we introduce the generalized polynomial chaos expansion along with the KL decompo-
sition, another classical technique for representing random processes. The KL decomposition can be used
in some cases to represent efficiently the known stochastic fields, i.e., the stochastic inputs.

2.1. The Askey scheme

The generalized hypergeometric series rFs is defined by

rFsða1; . . . ; ar; b1; . . . ; bs; zÞ ¼
X1
k¼0

ða1Þk � � � ðarÞk
ðb1Þk � � � ðbsÞk

zk

k!
; ð2Þ

where bi 6¼ 0;�1;�2; . . . for i ¼ f1; . . . ; sg to ensure the denominator factors in the terms of the series are
not zero. The Pochhammer symbol ðaÞn defined as

ðaÞn ¼
1; if n ¼ 0;
aðaþ 1Þ � � � ðaþ n� 1Þ; if n ¼ 1; 2; 3; . . .

�
ð3Þ

If one of the numerator parameters ai, i ¼ 1; . . . ; r is a negative integer, say a1 ¼ �n, the hypergeometric
series (2) terminates at the nth-term and becomes a hypergeometric polynomial in z.

The Askey scheme, which is represented as a tree structure in Fig. 1 (following [28]), classifies the
hypergeometric orthogonal polynomials and indicates the limit relations between them. The ‘tree’ starts
with the Wilson polynomials and the Racah polynomials on the top. The Wilson polynomials are con-
tinuous while the Racah polynomials are discrete. The lines connecting different polynomials denote the
limit transition relationships between them; this implies that the polynomials at the lower end of the lines
can be obtained by taking the limit of one of the parameters from their counterparts on the upper end. For
example, the limit relation between Jacobi polynomials P ða;bÞ

n ðxÞ and Hermite polynomials HnðxÞ is

lim
a!1

a�ð1=2ÞnP ða;aÞ
n

xffiffiffi
a

p
� �

¼ HnðxÞ
2nn!

;

and between Meixner polynomials Mnðx; b; cÞ and Charlier polynomials Cnðx; aÞ is

lim
b!1

Mn x; b;
a

aþ b

� �
¼ Cnðx; aÞ:

For a detailed account of definitions and properties of hypergeometric polynomials, see [18]; for the limit
relations of Askey scheme, see [28,29].
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The orthogonal polynomials associated with the generalized polynomial chaos, include:

• Hermite, Laguerre and Jacobi polynomials for continuous distributions;
• Charlier, Meixner, Krawtchouk and Hahn polynomials for discrete distributions.

2.2. The generalized polynomial chaos: Askey-chaos

The original polynomial chaos [12,30] employs the Hermite polynomials in the random space as the trial
basis to expand the stochastic processes. Cameron and Martin proved that such expansion converges to any
second-order processes in the L2 sense [16]. It can be seen from Fig. 1 that the Hermite polynomials are a
subset of the Askey scheme. The generalized polynomial chaos, or the Askey-chaos, was proposed in
[17,19,20] and employs more types of orthogonal polynomials from the Askey scheme. Convergence to
second-order stochastic processes can be possibly obtained as a generalization of Cameron–Martin theorem
[16].

The chaos expansion is essentially a representation of a function f 2 L2ðXÞ where X is the properly
defined probability space. We denote by f/kg

1
k¼0 the orthogonal polynomials from the Askey scheme, which

form an orthogonal basis in L2ðRnÞ.
A general second-order random process X ðxÞ can be represented in the form

X ðxÞ ¼ c0W0 þ
X1
i1¼1

ci1W1ðni1ðhÞÞ þ
X1
i1¼1

Xi1
i2¼1

ci1i2W2ðni1ðhÞ; ni2ðhÞÞ

þ
X1
i1¼1

Xi1
i2¼1

Xi2
i3¼1

ci1i2i3W3ðni1ðhÞ; ni2ðhÞ; ni3ðhÞÞ þ � � � ; ð4Þ

Fig. 1. The Askey scheme of orthogonal polynomials.

4930 D. Xiu, G. Em Karniadakis / Comput. Methods Appl. Mech. Engrg. 191 (2002) 4927–4948



where Wnðni1 ; . . . ; ninÞ denotes the generalized polynomial chaos of order n in terms of the multi-dimensional
random variables n ¼ ðn1; . . . ; nn; . . .Þ. Note that this is an infinite summation in the infinite dimensional
space of n. The expansion bases fWng are multi-dimensional hypergeometric polynomials defined as tensor-
products of the corresponding one-dimensional polynomials bases f/kg

1
k¼0. Let v be the space of index

sequences ða1; a2; . . . ; an; . . .Þ 2 NN
0 and n :¼

P
k ak. Then

Wnðn1; n2; . . . ; nnÞ ¼
Yn
k¼1

/ak
ðnkÞ: ð5Þ

For notational and computational convenience, Eq. (4) is often rewritten, according to some numbering
scheme, in the form with only one index as

X ðxÞ ¼
X1
j¼0

ajUjðnðxÞÞ; ð6Þ

where there is a one-to-one correspondence between the coefficients and basis functions in (4) and (6).
The family fUng is an orthogonal basis in L2ðXÞ with orthogonality relation

hUiUji ¼ hU2
i idij; ð7Þ

where dij is the Kronecker delta and h�; �i denotes the ensemble average which is the inner product in the
Hilbert space of the variables n

hf ðnÞgðnÞi ¼
Z

f ðnÞgðnÞW ðnÞdn; ð8Þ

or

hf ðnÞgðnÞi ¼
X

n

f ðnÞgðnÞW ðnÞ ð9Þ

in the discrete case. Here W ðnÞ is the weighting function corresponding to the Askey polynomials chaos
basis fUig.

In the original polynomial chaos, fUng are the Hermite polynomials and n are the Gaussian random
variables. In the Askey-chaos expansion, the orthogonal polynomials fUng are not restricted to Hermite
polynomials, instead they are determined by the weighting function of the corresponding random variables
n, which are not necessarily Gaussian variables. The corresponding type of polynomials and their associ-
ated random variables are listed in Table 1. Since each type of polynomials from the Askey scheme form a
complete basis in the Hilbert space determined by their corresponding support, we can expect each type of
Askey-chaos to converge to any L2 functional in the L2 sense in the corresponding Hilbert functional space

Table 1

Correspondence of the orthogonal polynomials and random variables for different Askey-chaos (N P 0 is a finite integer)

Random variables n Orthogonal polynomials fUng Support

Continuous Gaussian Hermite ð�1;1Þ
Gamma Laguerre ½0;1Þ
Beta Jacobi ½a; b�
Uniform Legendre ½a; b�

Discrete Poisson Charlier f0; 1; 2; . . .g
Binomial Krawtchouk f0; 1; . . . ;Ng
Negative Binomial Meixner f0; 1; 2; . . .g
Hypergeometric Hahn f0; 1; . . . ;Ng
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as a generalized result of the Cameron–Martin theorem [16,31]. Each type of orthogonal polynomials from
the Askey-chaos has weighting functions of the same form as the probability function of its associated
random variables n, as shown in Table 1.

The original polynomial chaos, the Hermite-chaos, is a subset of the continuous chaos and has been
studied in the literature extensively. Here we show the Laguerre-chaos as another example of the continuous
chaos. In one dimension, the nth-order Laguerre polynomials are defined as

LðaÞ
n ðnÞ ¼ ð�1Þn

n!
enn�a d

dn

� �n

ðe�nnnþaÞ; n > 0; ð10Þ

where parameter a > �1 is a real positive number. The weight function in the orthogonality relation (7) is

W ðn; aÞ ¼ na e�n

Cðaþ 1Þ : ð11Þ

It can be seen that this is the same as the probability density function (PDF) of a Gamma random variable.
The first few members of the one-dimensional Laguerre-chaos are:

U0 ¼ 1; U1 ¼ n � ðaþ 1Þ; U2 ¼
1

2!
n2 � nðaþ 2Þ þ 1

2
ðaþ 1Þðaþ 2Þ; . . . ð12Þ

As an example of the discrete chaos, the Charlier-chaos employs the Charlier orthogonal polynomials as the
basis in the random space. In one dimension, the nth-order Charlier polynomial can be written as

Cnðn; kÞ ¼ kn
Xn

r¼0

ð�1Þn�r n
r

� �
nðrÞ

kr ; n ¼ 0; 1; 2; . . . ; ð13Þ

where k > 0 and nðrÞ � nðn � 1Þ � � � ðn � r þ 1Þ. The weighting function of Charlier polynomials is the
probability function of the Poisson distribution with mean k

W ðn; kÞ ¼ e�k kn

n!
: ð14Þ

The first few members of the one-dimensional Charlier-chaos are:

U0 ¼ 1; U1 ¼ n � 1; U2 ¼ nðn � 1Þ � 2kn þ k2; . . . ð15Þ

2.3. The Karhunen–Loeve decomposition

The KL expansion is another way of representing a random process [32]. It is based on the spectral
expansion of the correlation function of the process. It is particularly useful for the generalized polynomial
chaos expansion as it provides a means of reducing the dimensionality of the random space. Let us denote
the process by hðx;xÞ and its correlation function by Rhhðx; yÞ, where x and y are the spatial or temporal
coordinates. By definition, the correlation function is real, symmetric, and positive definite. All eigen-
functions are mutually orthogonal and form a complete set spanning the function space to which hðx;xÞ
belongs. The KL expansion then takes the following form:

hðx;xÞ ¼ �hhðxÞ þ
X1
i¼1

ffiffiffiffi
ki

p
/iðxÞniðxÞ; ð16Þ

where �hhðxÞ denotes the mean of the random process, and niðxÞ forms a set of uncorrelated random vari-
ables. Also, /iðxÞ and ki are the eigenfunctions and eigenvalues of the correlation function, respectively, i.e.,
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Z
Rhhðx; yÞ/iðyÞdy ¼ ki/iðxÞ: ð17Þ

Among other possible decompositions of a random process, the KL expansion is optimal in the sense
that the mean-square error of the finite representation of the process is minimized. Its use, however, is
limited as the correlation function of the solution process is often not known a priori. Nevertheless, the KL
expansion provides an effective means of representing the input random processes when the correlation
structure is known.

3. Galerkin projection

In this section we present the detailed algorithm for the application of the generalized polynomial chaos
expansion to Eq. (1). By applying the chaos expansion, we expand the variables as

jðx;xÞ ¼
XM
i¼0

jiðxÞUiðnÞ; uðx;xÞ ¼
XM
i¼0

uiðxÞUiðnÞ; f ðx;xÞ ¼
XM
i¼0

fiðxÞUiðnÞ; ð18Þ

where we have replaced the infinite summation of n in infinite dimensions in Eq. (6) by a truncated finite-
term summation of fUg in the finite dimensions of n ¼ ðn1; . . . ; nnÞ. The dimensionality n of n is determined
by the random inputs. The random parameter x is absorbed into the polynomial basis UðnÞ, thus the
expansion coefficients ki, ui and fi are deterministic. By substituting the expansion into governing equation
(1), we obtain

r �
XM
i¼0

jiðxÞUir
XM
j¼0

ujðxÞUj

 !" #
¼
XM
i¼0

fiðxÞUi: ð19Þ

Upon simplification, it can be written as

XM
i¼0

XM
j¼0

jiðxÞr2ujðxÞ
�

þrjiðxÞ � rujðxÞ
�
UiUj ¼

XM
i¼0

fiðxÞUi: ð20Þ

A Galerkin projection of the above equation onto each polynomial basis fUig is then conducted in order to
ensure that the error is orthogonal to the functional space spanned by the finite-dimensional basis fUig. By
projecting with Uk for each k ¼ f0; . . . ;Mg and employing the orthogonality relation (7), we obtain for each
k ¼ 0; . . . ;M ,

XM
i¼0

XM
j¼0

jiðxÞr2ujðxÞ
�

þrjiðxÞ � rujðxÞ
�
eijk ¼ fkðxÞhU2

ki; ð21Þ

where eijk ¼ hUiUjUki. Together with hU2
i i, the coefficients eijk can be evaluated analytically from the def-

inition of Ui. By defining

bjkðxÞ ¼
XM
i¼0

jiðxÞeijk; hjkðxÞ ¼
XM
i¼0

rjiðxÞeijk ¼ rbjkðxÞ;

we can rewrite the above equation as

XM
j¼0

bjkðxÞr2ujðxÞ
�

þ hjkðxÞ � rujðxÞ
�
¼ fkðxÞhU2

ki; 8k 2 ½0;M �: ð22Þ
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Eq. (22) is a set of (M þ 1) coupled elliptic partial differential equations. These equations are deterministic
and can be solved by any conventional method, e.g., finite elements. In this paper we employ the spectral/hp
element method [33]. The total number of equations (M þ 1) is determined by the dimensionality of the
chaos expansion (n) and the highest order (p) of the polynomials fUg, where

ðM þ 1Þ ¼ ðnþ pÞ!=ðn!p!Þ: ð23Þ
While it is possible to solve Eq. (22) via a direct solver, we choose to use an iterative method to take
advantage of the diagonal dominance of the block matrix B ¼ fbjkg. In particular, we employ the block
Gauss–Seidel iteration in the following form: for all k ¼ 0; . . . ;M ,

bkkðxÞr2unþ1
k ðxÞ þ hkkðxÞ � runþ1

k ðxÞ ¼ fkðxÞhU2
ki �

Xk�1

j¼0

½bjkðxÞr2unþ1
j ðxÞ þ hjkðxÞ � runþ1

j ðxÞ�

�
XM
j¼kþ1

½bjkðxÞr2un
j ðxÞ þ hjkðxÞ � run

j ðxÞ�; ð24Þ

where the superscript n denotes the iteration number. The convergence criterion is defined as

kunþ1
k ðxÞ � un

kðxÞk
ku1kðxÞ � u0kðxÞk

6 e; 8k 2 ½0;M �; ð25Þ

where e is a small positive number and different types of norm k � k can be used. In this paper the L1 norm is
used and e is set to be 10�5–10�7. For all the results we present here, the block Gauss–Seidel iteration
normally converges within about 10 steps. A similar iteration technique was used in [34] for stochastic
modeling of elasto-plastic body problems with the Hermite-chaos and fast convergence was reported too.

4. Numerical results

In this section we present numerical results of the proposed generalized polynomial chaos expansion to
stochastic diffusion problem. We first consider an one-dimensional model problem where the exact solution
is available; then a more complicated two-dimensional problem where we use Monte Carlo simulation to
validate the chaos solution. Among the types of chaos expansions listed in Table 1, we choose two con-
tinuous chaos: Hermite-chaos and Jacobi-chaos; and two discrete chaos: Charlier-chaos and Krawtchouk-
chaos for demonstration purposes. Finally, we solve the random heat conduction problem in a grooved
channel as an example of a more practical application.

4.1. One-dimensional model problem

Consider the following problem

d

dx
jðx;xÞ du

dx
ðx;xÞ

� �
¼ 0; x 2 ½0; 1�; ð26Þ

with boundary conditions

uð0;xÞ ¼ 0; uð1;xÞ ¼ 1:

The random diffusivity has the form

jðx;xÞ ¼ 1þ �ðxÞx; ð27Þ
where �ðxÞ is a random variable, and jðx;xÞ > 0. The exact solution to this problem is
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ueðx;xÞ ¼ ln½1þ �ðxÞx�= ln½1þ �ðxÞ�; for �ðxÞ 6¼ 0;
x; for �ðxÞ ¼ 0:

�
ð28Þ

The ‘mean-square’ error of the numerical solution from the generalized chaos expansion upðx;xÞ is com-
puted

e2ðxÞ ¼ E½upðx;xÞ
�

� ueðx;xÞ�2
�1=2

;

where E denotes the ‘expectation’ operator and p is the order of the chaos expansion. Specifically, we
examine the ‘mean-square’ convergence (L2 convergence in random space) of the L1 norm (in physical
space) of e2ðxÞ as p increases.

4.1.1. Jacobi-chaos and beta distribution
We assume �ðxÞ in Eq. (27) is a Beta random variable, i.e., its PDF has the form

f ð�; a; bÞ ¼ ð1� �Það1þ �Þb

2aþbþ1Bða þ 1; b þ 1Þ ; � 2 ½�1; 1�; a; b > �1; ð29Þ

where Bða; bÞ is the b function defined as Bðp; qÞ ¼ CðpÞCðqÞ=Cðp þ qÞ. The corresponding generalized
polynomial chaos, according to Table 1, is the Jacobi-chaos. An important special case is when a ¼ b ¼ 0,
then �ðxÞ becomes an uniform random variable and the corresponding chaos becomes the Legendre-chaos
(see Table 1).

In Fig. 2 the mean-square convergence of the Jacobi-chaos solution is shown with different standard
deviation r of the input as a measure of the magnitude of the input uncertainty. It can be seen on the semi-
log scale that the Jacobi-chaos solution, including the Legendre-chaos for uniform random variables,
converges exponentially fast as the expansion order p increases. The exponential convergence rate is re-
tained for large input uncertainty such as r ¼ 0:9, which is close to the limit of the existence of the solution
(r < 1). This is in contrast to the perturbation-based method which normally works for r < 0:1.

Fig. 2. Convergence of Jacobi-chaos for the one-dimensional model problem.
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4.1.2. Hermite-chaos and Gaussian distribution
We now assume �ðxÞ in Eq. (27) is a Gaussian random variable with PDF

f ð�Þ ¼ 1ffiffiffiffiffiffi
2p

p e��2=2; � 2 ð�1;1Þ: ð30Þ

The corresponding generalized polynomial chaos is the Hermite-chaos (Table 1).
While the random input has infinite support and rigorous analysis of the existence and uniqueness of the

solution is lacking to ensure jðx;xÞ > 0 in Eq. (27) in some stochastic sense, it is intuitive to assume that the
solution exists for random input with small deviation r. In this paper, we assume r ¼ 0:1 and the mean-
square convergence of the Hermite-chaos solution is shown in Fig. 3. Again, exponential convergence rate
is achieved.

4.1.3. Charlier-chaos and Poisson distribution
We now assume �ðxÞ in Eq. (27) is a discrete random variable with Poisson distribution

f ð�; kÞ ¼ e�k k�

�!
; � ¼ 0; 1; 2; . . . ; k > 0: ð31Þ

The corresponding generalized polynomial chaos is the Charlier-chaos (Table 1). Again we assume rela-
tively small deviation r ¼ 0:1 to ensure the existence of the solution. The exponential convergence of the
Charlier-chaos expansion is shown in Fig. 4 for two different values of the parameter k.

4.1.4. Krawtchouk-chaos and binomial distribution
In this section �ðxÞ in Eq. (27) is assumed to be a discrete random variable with binomial distribution

f ð�; p;NÞ ¼ N
�

� �
q�ð1� qÞN��; 06 q6 1; � ¼ 0; 1; . . . ;N : ð32Þ

Fig. 3. Convergence of Hermite-chaos for the one-dimensional model problem.
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The corresponding generalized polynomial chaos is the Krawtchouk-chaos (Table 1). Exponential con-
vergence of the Krawtchouk-chaos expansion can be seen in Fig. 5 with different values of the parameters
ðN ; qÞ.

4.2. Two-dimensional model problem

In this section we consider the two-dimensional problem

r � ½jðx; y;xÞruðx; y;xÞ� ¼ f ðx; y;xÞ; ðx; yÞ 2 ½�1; 1� 	 ½�1; 1�; ð33Þ

Fig. 5. Convergence of Krawtchouk-chaos for the one-dimensional model problem.

Fig. 4. Convergence of Charlier-chaos for the one-dimensional model problem.
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with boundary conditions

uð�1; y;xÞ ¼ 1;
ou
ox

ð1; y;xÞ ¼ 0; uðx;�1;xÞ ¼ 0;
ou
oy

ðx; 1;xÞ ¼ 0:

The diffusivity jðx; y;xÞ and source term f ðx; y;xÞ are stochastic processes with certain distribution and
given correlation function Cðx1; y1; x2; y2Þ. The mean fields are: �jjðx; y;xÞ ¼ 1 and �ff ðx; y;xÞ ¼ 0. The KL
decomposition is applied to the correlation function to reduce the dimensionality in the random space; the
generalized polynomial chaos expansion is then applied to the solution.

4.2.1. The Bessel correlation function
The most commonly used correlation function for stochastic processes is the exponential function. In the

one-dimensional case, it takes the form

Cðx1; x2Þ ¼ e�jx1�x2j=b; ð34Þ

where b is the correlation length. This correlation function is the result of first-order autoregression

nt ¼ ant�1 þ �t; a > 0; ð35Þ

where nt is the random series at t ¼ . . . ;�2;�1; 0; 1; 2; . . . and �t is an independent identically distributed
random series. This is a unilateral type of scheme where the dependence is extended only in one direction,
and it is the simplest realistic time series. For space series, a bilateral autoregression is more realistic

nt ¼ ant�1 þ bntþ1 þ �t; ð36Þ

where it is intuitively clear that a and b cannot be too large. It is shown that the bilateral type of scheme is
not necessary in one dimension as it can be effectively reduced to a unilateral one [35]. Thus the exponential
correlation function can be considered as the ‘elementary’ correlation in one dimension. It has been used
extensively in the literature and its KL decomposition can be solved analytically [11].

In two dimensions, the exponential correlation function can be written as CðrÞ ¼ e�r=b where r is the
distance between two spatial points. This function has been also used in the literature. However, as Whittle
pointed out in [35], it is necessary to introduce autoregression schemes with dependence in all directions for
more realistic models of random series in space. The simplest such model is

nst ¼ aðnsþ1;t þ ns�1;t þ ns;tþ1 þ ns;t�1Þ þ �st; ð37Þ

where nst is random field at grid ðs; tÞ and �st is independent identically distributed random field. This model
corresponds to a stochastic Laplace equation in the continuous case:

o

ox

� �2
"

þ o

oy

� �2

� 1

b2

#
nðx; yÞ ¼ �ðx; yÞ; ð38Þ

where 1=b2 ¼ 1=a� 4. The ‘elementary’ correlation function in two dimensions can be solved from the
above equation:

CðrÞ ¼ r
b
K1

r
b

� �
; ð39Þ

where K1 is the modified Bessel function of the second kind with order 1, b scales as the correlation length
and r is the distance between two points. On the other hand, the exponential correlation function
CðrÞ ¼ e�r=b in two dimensions corresponds to a rather artificial system
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o

ox

� �2
"

þ o

oy

� �2

� 1

b2

#3=4
nðx; yÞ ¼ �ðx; yÞ: ð40Þ

It is difficult to visualize a physical mechanism which would lead to such a relation. For a detailed dis-
cussion on this subject, see [35].

In this paper, we employ (39) as the correlation function of j and f. Since no analytical solution is
available for the eigenvalue problem (17) of the KL decomposition for this correlation function, a
numerical eigenvalue solver is employed. Fig. 6 shows the distribution of the first 20 eigenvalues. Here the

Fig. 7. Eigenfunctions of the KL decomposition with the Bessel correlation function (39), b ¼ 20; left: first eigenfunction, right: second

eigenfunction (dashed lines denote negative values).

Fig. 6. Eigenvalues of KL decomposition with Bessel correlation function (39), b ¼ 20.
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parameter b is set to b ¼ 20. In Figs. 7 and 8 the eigenfunctions corresponding to the first four eigenvalues
are plotted.

4.2.2. Legendre-chaos and uniform distribution
In this section we assume jðx; y;xÞ and f ðx; y;xÞ are random fields resulted from the KL decomposition

(16) of the Bessel correlation function (39), and with the underlying random variables having uniform
distributions. For computational simplicity, we further assume k and f are fully cross-correlated. Due to the
fast decay of eigenvalues as shown in Fig. 6, we choose the first four eigenmodes from the KL decom-
position. This results in a four-dimensional (in random space) chaos expansion. The corresponding chaos in
this case is the Legendre-chaos (Table 1).

The spectral/hp element method is used for spatial discretization. For detailed account of spectral/hp
element method, see [33]. Specifically, an array of 5	 5 elements are used in the domain and sixth-order
polynomials are employed as the (spatial) expansion basis in each element. 1 Numerical tests show that this
is sufficient to resolve the solution in space. The standard deviations of the random inputs are rj ¼
rf ¼ 0:4. Resolution checks in random space were conducted, and it was shown that third-order (p ¼ 3)
Legendre-chaos results in converged solution. For four-dimensional chaos (n ¼ 4), the total number of
expansion terms is 35 (see Eq. (23)).

Since no analytical solution is available, we employ Monte Carlo simulations to validate the chaos
solution. Here we conduct the Monte Carlo computation after the KL decomposition, i.e., we generate the
random number ensemble on the reduced basis from the KL decomposition. In this way the error from
generalized polynomial chaos expansion is isolated, while the error introduced by the finite-term truncation
of KL decomposition, which is well understood, is excluded.

The solution profile along the horizontal centerline through the domain is considered in Fig. 9. The mean
solution of Legendre-chaos and Monte Carlo simulation with different number of realizations are shown,
together with the corresponding deterministic solution. A noticeable difference between the stochastic mean

Fig. 8. Eigenfunctions of the KL decomposition with the Bessel correlation function (39), b ¼ 20; left: third eigenfunction, right:

fourth eigenfunction (dashed lines denote negative values).

1 We note here that the Jacobi polynomials of mixed weights are used in the spectral/hp element method.
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profile and the deterministic profile is observed. In Fig. 10 the variance of the stochastic solution along the
horizontal centerline is shown. It is seen that the Monte Carlo solution converges to the chaos solution as
the number of realizations increases. Good agreement is obtained with 50,000 realizations.

Similar results are obtained for other solution profiles in the domain, for example, the vertical centerline.

Fig. 9. Two-dimensional model problem: uniform random distribution and Legendre-chaos; left: mean solution along the horizontal

centerline, right: close-up view.

Fig. 10. Two-dimensional model problem: uniform random distribution and Legendre-chaos; left: variance along the horizontal

centerline, right: close-up view.
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4.2.3. Hermite-chaos and Gaussian distribution
We now assume the random field jðx; y;xÞ and f ðx; y;xÞ are Gaussian processes with rj ¼ rf ¼ 0:2. All

the remaining parameters are the same as the above example. The corresponding generalized polynomial
chaos is the Hermite-chaos.

The same solution profiles along the horizontal centerline of the domain are shown in Figs. 11 and 12,
for the mean solution and the variance, respectively. In this case, a fourth-order Hermite-chaos (p ¼ 4) is

Fig. 11. Two-dimensional model problem: Gaussian random distribution and Hermite-chaos; left: mean solution along the horizontal

centerline, right: close-up view.

Fig. 12. Two-dimensional model problem: Gaussian random distribution and Hermite-chaos; left: variance along the horizontal

centerline, right: close-up view.
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required to obtain converged result in random space. This corresponds to a 70-term expansion from for-
mula (23) for n ¼ 4, p ¼ 4. The corresponding solution of the Monte Carlo simulation converges relatively
fast in this case, and for 20,000 realizations it converges to the Hermite-chaos solution.

4.2.4. Charlier-chaos and Poisson distribution
As an example of the discretely distributed random fields, we now assume the diffusivity jðx; y;xÞ and

source term f ðx; y;xÞ are processes resulted from Poisson random variables in the KL decomposition (16),
with rj ¼ rf ¼ 0:2. The parameter k ¼ 1 as in Eq. (31).

The third-order (p ¼ 3) corresponding generalized chaos, the Charlier-chaos, results in resolution-
independent solution in random space. The Monte Carlo solution converges to the solution of Charlier-
chaos; with 100,000 realizations we obtain good agreement. The solution profiles of the mean and variance
along the horizontal centerline are shown in Figs. 13 and 14, respectively.

4.2.5. Krawtchouk-chaos and binomial distribution
Finally, the random field of jðx; y;xÞ and f ðx; y;xÞ are assumed to have the binomial distributed

random variables with (N ¼ 5, q ¼ 0:5) from Eq. (32) in their KL expansion. The standard deviations are
rj ¼ rf ¼ 0:2.

Fig. 15 shows the mean solution along the horizontal centerline of the domain, while Fig. 16 shows the
variance profile. The third-order (p ¼ 3) Krawtchouk-chaos is sufficient to resolve the problem in random
space. On the other hand, the solution of Monte Carlo simulation converges to the chaos solution with
50,000 realizations.

4.3. Random heat conduction in a grooved channel

In this section we consider the steady state heat conduction in a grooved channel subject to uncertainties
in boundary conditions and diffusivity.

r � jðx; y;xÞruðx; y;xÞ½ � ¼ 0; ðx; yÞ 2 D; ð41Þ

Fig. 13. Two-dimensional model problem: Poisson random distribution and Charlier-chaos; left: mean solution along the horizontal

centerline, right: close-up view.
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where the computational domain D is shown in Fig. 17. The boundary of the domain consists of four
segments: the top of the channel CT, the bottom of the channel CB, the two sides of the channel CS and the
boundaries of the cavity CC. The diffusivity jðx; y;xÞ is a random field with uniformly distributed random
variables in its KL decomposition, with mean field �jjðx; y;xÞ ¼ 1 and the same Bessel correlation function
as in Section 4.2.1. The boundary conditions are

Fig. 15. Two-dimensional model problem: binomial random distribution and Krawtchouk-chaos; left: mean solution along the

horizontal centerline, right: close-up view.

Fig. 14. Two-dimensional model problem: Poisson random distribution and Charlier-chaos; left: variance along the horizontal cen-

terline, right: close-up view.
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ujCT
¼ 0; ujCB

¼ 1;
ou
ox

����
CS

¼ 0; ujCC
¼ 1þ n; ð42Þ

where n is a random variable with uniform distribution. For the spectral/hp element solver in space, four
elements are used in the domain, as shown in Fig. 17. Within each mesh, 10th-order (Jacobi) polynomi-
als are employed. In the random space, the third-order Legendre-chaos, corresponding to the uniformly

Fig. 16. Two-dimensional model problem: binomial random distribution and Krawtchouk-chaos; left: variance along the horizontal

centerline, right: close-up view.

Fig. 17. Schematic of the domain of the grooved channel.
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distributed random inputs, is used. Resolution checks indicate that the above discretization is sufficient to
resolve the problem, both in physical and random spaces.

We consider two cases: the first case is when only the diffusivity j is random, while the boundary
condition along CC is deterministic, i.e., ujCC

¼ 1. Same as in section 4.2.1, the first four eigenmodes of the
KL decomposition are employed to represent j. This results in a four-dimensional (n ¼ 4) chaos expansion.
For third-order chaos (p ¼ 3), a total of 35 expansion terms are needed from (23). In the second case, we
further assume the boundary condition along the wall of cavity CC is random as in (42), and is independent
of the random field j. This introduces one more dimension in the random space and a total of 56 expansion
terms are needed for third-order chaos expansion; n ¼ 5, p ¼ 3 from (23).

In Fig. 18, the contours of the standard deviations of the solution are plotted. The solution of the first
case is shown on the left, while solution of the second case on the right. In both cases, the standard de-
viations of the random inputs are r ¼ 0:2. No noticeable difference is observed between the mean solutions
of the two cases, and that of the corresponding deterministic case. However, the standard deviations of the
solutions are very different for the two cases. From Fig. 18, we can see that the effect of uncertainty in the
diffusivity is subdominant (maximum deviation about only 0.15%). By introducing the uncertainty in
boundary condition along the walls of the cavity, the output uncertainty is greatly enhanced in the entire
domain (maximum deviation about 12%), and its structure is changed; the maximum of the output un-
certainty moves from the center of the channel to the lower wall of the cavity.

5. Summary

We have developed a stochastic spectral method to model uncertainty in steady state diffusion problems.
The generalized polynomial chaos we introduced includes the original polynomial chaos, the Hermite-
chaos, as a subset, and is an extension of the original chaos idea of Wiener [12] and of the work of Ghanem
and Spanos [11]. The important feature of the new broader framework is that it incorporates different types
of chaos expansion corresponding to several important distribution functions, including some discrete
distributions which cannot be readily handled by the original polynomial chaos directly.

Fig. 18. Standard deviations of heat conduction in the grooved channel; left: solution subject to random diffusivity only; right: solution

subject to random diffusivity and random boundary conditions.
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We have applied the generalized polynomial chaos to the solution of steady state random diffusion
problems, as a natural extension of our earlier work [17,19,20]. In particular, we employed a block Gauss–
Seidel iteration technique to solve the system of equations efficiently. An ‘elementary’ correlation function
in two dimensions, the Bessel correlation function, was studied and applied in the computations. The KL
decomposition is used to reduce the dimensionality of the random space.

We have shown that, when the appropriate chaos expansion is chosen according the random input, the
generalized polynomial chaos solution converges exponential fast due to the fact that it is a spectral ex-
pansion in the random space. The exponential convergence rate is demonstrated for one-dimensional model
problem, and is in accordance with the result of [17]. For more complicated problems, the Monte Carlo
simulation is employed to validate the chaos solution. We observe good agreement between the well-
resolved chaos expansion solution and the converged Monte Carlo simulation results. For this particular
problem, tens of thousands realizations are needed for the Monte Carlo computation, and the generalized
polynomial chaos expansion is at least two to three orders faster. In particular, we confine our applications
to problems within finite domain in the physical space. Fast convergence of the chaos expansion is observed
with relatively large variance of the random input. Problems with infinite physical domain require separate
treatment.

The efficiency of the chaos expansion is problem specific and depends greatly upon the dimensionality of
the random space. Although KL decomposition, among other possible techniques, can be used to reduce
the dimensionality, it can be large for systems with very short correlation length, e.g., the white noise. To
this end, the number of expansion terms may be very large, thus reducing the efficiency of the chaos ex-
pansion drasticly. This problem also deserves further research.
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