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Figure 1: Vortex breakdown bubble in numerical simulation of a cylindrical container. Flow topology is illustrated with stagnat ion points (red),
singularity paths (yellow), and streamlines (blue) on three axially oriented cutting planes. Volume rendering illustrates additional aspects of 
ow
structure, using a two-dimensional transfer function (widget, right) of a Jacobian-related invariant (horizontal axis) and vort icity (vertical axis).

ABSTRACT

Vortex breakdowns and �ow recirculation are essential phenomena
in aeronautics where they appear as a limiting factor in the design
of modern aircrafts. Because of the inherent intricacy of these fea-
tures, standard �ow visualization techniques typically yield clut-
tered depictions. The paper addresses the challenges raised by the
visual exploration and validation of two CFD simulations involving
vortex breakdown. To permit accurate and insightful visualization
we propose a new approach that unfolds the geometry of the break-
down region by letting a plane travel through the structure along
a curve. We track the continuous evolution of the associated pro-
jected vector �eld using the theoretical framework of parametric
topology. To improve the understanding of the spatial relationship
between the resulting curves and lines we use direct volume ren-
dering and multi-dimensional transfer functions for the display of
�ow-derived scalar quantities. This enriches the visualization and
provides an intuitive context for the extracted topological informa-
tion. Our results offer clear, synthetic depictions that permit new
insight into the structural properties of vortex breakdowns.

CR Categories: I.4.7 [Image Processing and Computer Vision]:
Feature Measurement— [I.6.6]: Simulation And Modeling—
Simulation Output Analysis J.2 [Physical Sciences and Engineer-
ing]: Engineering—.

Keywords: �ow visualization, vortex analysis, parametric topol-
ogy, cutting planes, volume rendering

1 INTRODUCTION

Computational Fluid Dynamics (CFD) has become an essential tool
in various engineering �elds. In aeronautics it is a key element
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in the design of modern aircrafts. The speed of today's comput-
ers combined with the increasing complexity of physical models
yields numerical simulations that accurately reproduce the subtle
�ow structures observed in practical experiments and permit to
study their impact on �ight stability. Yet, to fully exploit the huge
amount of information contained in typical data sets, engineers re-
quire post-processing techniques providing insight into the results
of their computation.

In order to meet these needs the research in Flow Visualization
has designed various methods aimed at ef�ciently exploring �uid
�ow data and automatically characterizing their essential proper-
ties. Unfortunately, vortex breakdowns and their associated �ow
recirculation patterns remain challenging structures and none of the
existing visualization techniques can offer satisfying depictions of
these features. Their truly three-dimensional nature is poorly visu-
alized by conventional methods, such as e.g. streamlines and iso-
surfaces. Stream surfaces [6] improve on these basic techniques but
still obscure the intricate internal structures of recirculation bub-
bles.

The work described in this paper has its origins in the col-
laboration between engineering and visualization. The problem
posed was to �nd ef�cient methods to validate two large simula-
tion datasets and analyze the contained features, with an emphasis
on vortices and vortex breakdowns. The approach presented in the
following consists in compounding two kinds of visualization tech-
niques that had little interaction so far. More precisely, we asso-
ciate topology-based �ow visualization methods and volume ren-
dering. This provides depictions that both convey the subtle struc-
tures present in vortical �ows, especially during vortex breakdown,
and provide an intuitive understanding of their spatial context and
associated physical properties.

The central idea of our �ow visualization method is to extend
the basic and widely used cutting plane technique to make it a �ex-
ible and powerful tool for exploring �ow volumes in a continuous
way. Thesemoving cutting planes, as we term them in this pa-
per, smoothly travel along trajectories that can be either obtained
automatically by standard feature extraction schemes or provided
by the user to explore a particular region. Building on an existing



technique we accurately track the vector �eld topology observed on
the cutting planes. This allows us to detect and visualize essential
properties of the �ow, especially for recirculation bubbles. Our ap-
plication of the volume rendering technique is based on the concept
of multidimensional transfer functions. In the processing of our
data sets this methodology proves extremely useful in permitting
the simultaneous and coherent depiction of multiple �ow-derived
scalar �elds, traditionally used to analyze vortical structures. Com-
bined with the topological information gathered by our moving cut-
ting plane this enhances the visualization and facilitates the under-
standing of both the geometry and the physical properties of our
�uid �ow data. Observe that although the data at hand are time-
dependent we chose to restrict our visualization to the analysis of
the structural features contained in individual time steps.

2 RELATED WORK

The study of vortex breakdown is a �eld of its own in the �uid
mechanics community. The corresponding literature mostly uses
streamlines or particles advection to observe and analyze the prop-
erties of breakdown bubbles [22, 26]. From the viewpoint of Scien-
ti�c Visualization the phenomenon has not received much attention
so far and Kenwright and Haimes [12] published one of the few
papers explicitly considering this problem. Vortices, however, are
an essential topic of Flow Visualization and have been treated quite
extensively. In the absence of a formal characterization of vortical
structures, swirling motion around some central region is used as a
working de�nition [20, 24]. Depending on the approach taken, this
leads to features that are either lines, surfaces or volumes. Vortex
core lines appear to be the most prominent feature type. Banks and
Singer [2] extracted them by looking for points with low pressure
and high absolute vorticity. Sujudi and Haimes [28] applied a cell-
wise linear pattern matching strategy to �nd vortex core lines over
tetrahedral grids. This fast method is probably the most widely used
in practice. Peikert and Roth [23] showed that this and most other
line-based feature detection methods can be reformulated using the
concept ofParallel Operator, leading to continuous features. They
also proposed a second order method [25]. A famous region-based
method is thel 2-criterion proposed by Jeong and Hussein [9]. It
connects a vortical region to the negative eigenvalues of a symmet-
ric matrix derived from the Jacobian. Alternative techniques were
introduced recently [10, 6]. Aside from this line of research, vor-
tices are usually characterized by certain physical quantities like
pressure, vorticity or helicity. Finding the corresponding regions
can then be formulated as a level set problem and reduced to iso-
surface extraction. Unfortunately, none of the methods mentioned
above is able to deal with the very complex �ow behaviors associ-
ated with vortex breakdowns.

Although topology-based methods have been widely and suc-
cessfully applied to the visualization of planar vector �elds, the ex-
tension of this technique to three-dimensional �ows is still incom-
plete. Early contributions [8, 7] were restricted to the extraction and
identi�cation of �rst-order critical points and the integration of line-
type separatrices. Recently, Theisel et al. presented a method for
the visualization of so-called saddle connectors [30]. These line-
type features avoid occlusion but provide an incomplete structural
picture. Mahrous et al. [21] described an approach for the topologi-
cal segmentation of 3D data sets in which separatrices are obtained
as implicit stream surfaces [32]. As a consequence, the accuracy is
typically limited in regions of intricate �ow. Concerning unsteady
data, Tricoche et al. proposed a technique for tracking the topology
of planar �ows over time [31]. A different approach was introduced
later by Theisel and Seidel [29]. The method presented in this paper
builds on the original idea of [31].

Direct volume rendering is a powerful tool for the visualization
of scalar volumetric data because of its simplicity and �exibility. Its

simplicity facilitates interactive implementation on graphics hard-
ware while its �exibility is grounded in its reliance on the trans-
fer function, which maps from data values to the colors and opac-
ities. Additional �exibility comes from transfer functions with a
multi-dimensional domain, allowing the rendering to display not
just (soft) isosurfaces of individual data values, but the relation-
ships between them. Multi-dimensional transfer functions were pi-
oneered by Levoy [19], generalized by Kindlmann and Durkin [13],
and more recently advanced by Kniss et al. for the visualization of
scalar datasets [15], as well as for color cryosection data and meteo-
rological simulations [16]. Note that, starting from scalar quantities
provided by CFD simulations, Ebert et al. already proposed to use
volume rendering for the visualization of gases in [4]. We use a dif-
ferent approach in the following and show how multi-dimensional
transfer functions were integrated in our framework to improve the
visualization of vortex breakdown structures.

3 CFD DATASETS

The following two CFD data sets are the basis of the work presented
in this paper. They were both obtained using the DLR Tau Code
solver.

Can dataset This simulation corresponds to a cylindrical con-
tainer of aspect ratio 1 �lled with an incompressible and highly
viscous liquid. The objective was to study vortex breakdown un-
der ideal conditions (highly viscous �uid and high symmetry in the
problem), yielding very accurate and smooth numerical data. The
cylinder's top lid rotates, resulting in lid-driven �ow showing a vor-
tex on the cylinder symmetry axis. The gradually increased angular
velocity of the lid leads to the appearance and successive vanish-
ing of two vortex breakdowns over the 500 time steps. This case
has been examined experimentally in great detail [5]. The compu-
tational grid contains approximatively 750.000 elements. Available
data attributes include velocity, pressure and kinetic energy.

Delta wing This simulation describes a sharp-edged prismatic
delta wing at subsonic speed (0.2 mach) with the characteristic vor-
tical systems above the wing. The angle of attack increases over
time, eventually leading to vortex breakdown in later timesteps.
The viscous simulation of the full con�guration was performed
without the assumption of symmetry. The grid consists of 11.1
million unstructured grid cells and about 3 million vertices. The
variables are the same as previously, provided for 90 time steps.
This data set features secondary and tertiary vortices on the wing
and corresponding separation and attachment structures.

4 TOPOLOGICAL EXPLORATION OF VORTICAL REGIONS

4.1 Moving Cutting Planes

4.1.1 Trajectories

To visualize both vortices and vortex breakdowns present in our
data sets we considered three types of trajectories, each applying to
a speci�c context.

Vortex Core Lines The most natural choice for exploring vor-
tical structures is to follow vortex core lines, i.e. the line-type center
of �ow rotation. To extract them we use an implementation of the
method of Sujudi and Haimes [28] based on theParallel Opera-
tor [23]. This method provides satisfying results for the principal
vortices in the delta wing dataset. A smoothing step applied in pre-
processing was found to improve the results.

Straight Line Alternatively, straight lines across the grid can
be selected by the user. This has two major applications. First, if
the focus is on large-scale vortices, the mean �ow direction in the
corresponding region can be selected along with a convenient start



position. We use this technique for visualizing the primary vortices
in the delta wing. The second application arises when automatic
vortex core extraction fails for a particular vortex but its approxi-
mative trajectory is known.

Recirculation Bubble Axis The last type of trajectory di-
rectly �ts the main feature of our analysis, namely the recirculation
bubbles induced by the vortex breakdown. Since this phenomenon
entails a dramatic change in the vortex structure, vortex core line
extraction cannot be used here. Fortunately, recirculation bubbles,
though asymmetric in general, typically exhibit a medium axis cor-
responding to their overall orientation. More speci�cally, each re-
circulation bubble is delimited by two stagnation points and we ex-
plore them by rotating the cutting plane around the axis connecting
them.

Figure 2: Di�erent types of moving cutting planes

4.1.2 Cutting Plane Orientation

The orientation of the plane is the second critical parameter of our
�ow exploration technique. It can be seen on Fig. 2 that choosing
the recirculation bubble axis as exploratory curve fully determines
the plane orientation. Similarly a straight line is also used as plane
normal when it is selected to capture large-scale features, as ex-
plained previously. In contrast, when dealing with a vortex core
line the inaccuracy in the extraction method results in an approxi-
mated position of the actual vortex core which can have a negative
impact on the resulting normal value. The same holds true when
approximating the curved, possibly complex path of a vortex by
a straight line segment. In both cases we need an automatic way
to compute a suitable normal at each point along the discrete path
according to the local �ow orientation. Practically, the quality of
a normal is evaluated with respect to the amounta of normalized
�ow crossing the plane, integrated over a small region around the
considered point. To maximize this quantity we adopt the following
iterative scheme. The plane's normal is initialized as the velocity
vector at the considered point along the line. Next the vector �eld is
sampled at a few locations evenly distributed around this point on
the initial plane. The mean vector of the normalized sample values
is computed along with the corresponding value ofa . The mean
vector then replaces the current normal in the next iteration. We
proceed until no signi�cant improvement ofa can be achieved. Ob-
serve that more elaborate techniques can be used to determine the
plane orientation, like those involving Principal Component Analy-
sis [11, 1], but we found that this simple technique gives very good
results.

4.1.3 Planar Resampling

The remaining task consists in resampling the 3D vector �eld on the
cutting plane while ensuring consistency of the coordinate frames
between consecutive positions along the followed curve. This is
mandatory to obtain meaningful results during the topology track-
ing procedure described next. To do so, it is suf�cient to assign a

single basis vector to each plane, the second one being readily ob-
tained by cross product with the normal. Practically we select an
arbitrary vector in the �rst plane and we iteratively transport this
vector from one plane to the next by successive projections and
renormalization, similar to e.g. [27].

The resulting basis along with a user-prescribed step size al-
lows us to resample the vector �eld on a raster grid on each cutting
plane. The last issue concerns the size of the raster grid. Namely,
the radius of the sample grid around the trajectory should be small
enough to prevent the inclusion of samples lying outside the con-
sidered vortex. Indeed, such samples would lead to topological ar-
tifacts and must be avoided. On the other hand, the radius must
be large enough to enclose the outer boundary of the vortical re-
gion. To solve this problem, our implementation provides two con-
trol mechanisms over the radius. The �rst one consists in letting
the user set a constant radius for the whole path. This is convenient
if the vortex is well isolated and has a roughly constant shape. A
second and more elaborate technique involves a scheme that Garth
et al. presented in [6]. In a nutshell, the vortex outer boundary is
automatically detected as the curve where the swirl or circumfer-
ential velocity is maximum. This allows for non-circular regions
with variable radius, which gives us the required �exibility to prop-
erly process the data. Given a maximum size for our raster grid we
eventually mark every sample point asinvalid if it lies outside the
boundary that we just identi�ed.

4.2 Topology Tracking

The previous step collects the successive values of the projected
vector �eld as the cutting plane moves through the volume. We now
abstract them from their original embedding in three-space and con-
sider them as the successive states of a parameter-dependent planar
vector �eld. This construction allows us to apply an existing algo-
rithm for topology tracking of two-dimensional vector �elds to the
visualization of three-dimensional �ow structures. It is equivalent
to splitting the continuous three-dimensional physical space of the
original data into the two-dimensional space of the cutting plane
and the one-dimensional, parametric space of its trajectory.

4.2.1 Planar Vector Field Topology

The topology of a steady, planar vector �eld (also known astopo-
logical skeleton) is de�ned as a graph whose vertices arecritical
pointsand whose edges are particular streamlines, calledsepara-
trices. Critical points are positions where the vector �eld magni-
tude vanishes. They are classi�ed with respect to the eigenvalues
of the Jacobian matrix (the �rst order derivative of the vector �eld).
Among the existing types only saddle points, spirals and centers
are relevant in the scope of the method, see Fig. 3. Separatrices
are obtained by integrating the vector �eld along the eigenvectors
of saddle points. Closed streamlines, also called cycles, play a role
similar to separatrices.

Figure 3: Critical points: saddle, spiral and center point

4.2.2 Tracking Scheme

In the case of a parameter-dependent vector �eld the structures de-
scribed previously undergo transformations called bifurcations. To



keep track of the �ow structures and monitor their evolution we ap-
ply the scheme presented by Tricoche et al. [31]. The basic idea
consists in tracking the critical points and associated separatrices
over a continuousspace-timedomain spanned by a grid connect-
ing the cells of the planar triangulation over the 1D parameter line.
The resulting cells are prisms and a piecewise linear interpolation,
both in space and time, of the discrete vector values allows for an
ef�cient computation of the singularities' paths and types on a cell-
wise basis. Changes correspond to bifurcations and are easily de-
tected and characterized.

4.2.3 Application to Cutting Plane Topology

We now apply this technique to the vector data gathered along the
path of the moving cutting plane. First, we account for the variable
size of the sampled region by discarding cells containing a vertex
associated with aninvalid value. Second we have to deal with the
lack of smoothness of the vector �eld projected on the moving cut-
ting plane. This is induced by the technique used to determine the
normal of the cutting plane since it does not take into account the
normal of the previous planes but rather relies on the local orienta-
tion of the �ow. Speci�cally this may cause spiraling critical points
to oscillate between sink and source behavior, creating numerous
bifurcations. We correct this effect by �ltering out low-scale fea-
tures like pairs of critical points vanishing shortly after their cre-
ation or type swap between sources and sinks. The latter is handled
by assigning the typecenterto the critical point. Although this is an
unstable structure in planar topology, this may be monitored in cut-
ting plane topology when inspecting a vortex whose spiraling �ow
neither converges nor diverges with respect to its core line.

5 VOLUME RENDERING OF COMPLEX FLOW STRUCTURES

5.1 Sampling

To apply the volume rendering technique to our CFD data sets we
�rst resample them on raster grids - although methods exist that
permit volume rendering directly on unstructured grids [18]. This
choice is motivated by the extreme complexity of CFD grids and the
need for an accurate and robust computation of �ow-derived quan-
tities in the next step. However, since the grids at hand exhibit cell
sizes varying by up to �ve orders of magnitude, obtaining a reliable
resampling that allows for insightful analysis of the visualization
results turns out to be a challenging task.
The technique we applied in this context is based on the idea of
scale-space interpolation and organized in three successive steps.

Cell-based Sampling Our �ow visualization tool provides a
data structure that permits fast data interpolation at any given po-
sition inside the grid [17]. This is done by �rst locating the cell
containing the position and then computing a cell-wise interpola-
tion. The grids we considered consist of prisms, pyramids and
tetrahedra which implies that the interpolation may be either lin-
ear or correspond to some special type of trilinear function. Our
cell-based sampling uses this interpolation to collect initial vector
values. At the same time we compute the scale of the cell, i.e. its
size with respect to the prescribed voxel size. To get a smooth cell
scale value over the whole grid we average this cell-centered values
around each vertex and apply a cell-wise interpolation of this quan-
tity. Observe that to avoid aliasing artifacts in very small cells we
use a jittered sampling technique to average the surrounding values.

Multi-scale Smoothing To prevent artifacts due to visible
faces of big cells in the original grid some smoothing is required.
This is a critical aspect since derivative computation as described
in the next section is going to emphasize such artifacts, leading to
very poor results. Yet, the smoothing must be strictly limited to
preserve the properties of the original data. Therefore we compute,

after sampling, a set of smoothed vector �elds with masks of differ-
ent scales. The range of the mask sizes is chosen to account for all
the cell scales encountered during previous sampling. Practically,
we use cubic B-spline �lters whose support sizes are powers of 2.

Scale Interpolation The last step consists in computing the
�nal sample value as an interpolation of the pre-computed blurred
vector �elds. To this end we simply use the cell scale values gath-
ered previously to determine the interpolation coef�cients in scale
space.

5.2 Flow-derived Scalar Quantities

The scalar quantities we compute for volume rendering are those
traditionally used in �uid dynamics when investigating vortical
phenomena. More precisely we consider divergence, vorticity, he-
licity (i.e. the dot product of velocity and vorticity), thel 2 crite-
rion [9], and the imaginary part of the Jacobian eigenvalues. Their
common property is to be based on the Jacobian matrix of the vector
�eld which requires derivative computation. To ensure a level of ac-
curacy suited for visualization and analysis, we apply the method-
ology �rst presented by Kindlmann et al. [14] that permits the mea-
sure of high-quality derivatives by means of convolution �lters.

5.3 Multidimensional Transfer Function

We found that multi-dimensional transfer functions are especially
effective in visualization of complex �ow structures because of the
large number of simulation-related variables used to characterize
and quantify local properties of the �uid �ow data (section 5.2).
As observed in previous work [16], having more than two domain
variables in the transfer function greatly complicates the user in-
terface, so we have restricted ourselves to two-dimensional trans-
fer functions. Thus, the exploratory visualization process involves
(1) �nding the pair of CFD variables which proves most effective
in capturing important features, and (2) experimenting with trans-
fer functions to highlight different structures, namely vortex system
and breakdown bubble.

Non-trivial �ow features do not always have simple and univer-
sally accepted de�nitions in terms of numerical properties like vor-
ticity and l 2. Thus, �nding a transfer function which appropriately
highlights a region of interest in the �ow feature can be a fairly non-
intuitive task. We have found thatdual-domain interactionis a sig-
ni�cant bene�t. Following previous work [15], we start by placing
a cutting plane roughly within the feature of interest. Then, inter-
active probing (with the cursor) on that plane determines a position
in the volume dataset, which in turn determines a point in the trans-
fer function domain. By assigning opacity to a small region around
that point, the volume rendering highlights the selected volume po-
sition, as well as all other voxels which share its data properties. By
moving the cursor into and out of the volume feature, different as-
pects of its structure are dynamically visualized with the changing
transfer function, and the relationship to the pre-computed feature
lines can be explored.

6 RESULTS

6.1 Validation

The parametric topology scheme from Section 4.2 was applied to
both datasets (cf. 3) with the aim of verifying that the simulations
correspond to physical experiments that are similar in nature. Note
that we do not claim that our visualization results ensure the cor-
rectness or, as in the case of the cylindric container, establish an
error in the data. Rather our approach consists in highlighting the
existing structures and pointing at problematic aspects of the data



sets that require further investigation, e.g. with other visualization
methods.

For the delta wing dataset, the reproduction of primary, sec-
ondary and tertiary vortices is crucial. Figure 6 left gives an
overview of the wing created with parallel cutting planes along the
wing symmetry axis. The primary vortices are presented promi-
nently, and the vortex axis results from the tracking of the corre-
sponding singularities. Using the cutting plane orientation scheme
described in Section 4.1.2 with the vortex core as input curve for
the plane generation, both secondary and tertiary vortices are visi-
ble. Moreover, the planar cut reveals interactions between the three
vortices that are hard to determine by other means. This includes
the separation surface between the primary and secondary vortices
and the so-calledprimary separation, i.e. the �ow sheet that em-
anates from the wing edge and divides the �ow above the wing from
the surrounding �ow. Both appear as a separatrix in the plane.

The dataset had been examined for the presence of the vortical
system before, using the method of Sujudi and Haimes [28]. How-
ever, this scheme requires careful computation of derivatives and
involves smoothing. The result is a set of disconnected line seg-
ments and is hard to interpret. In comparison, the approach em-
ployed here was easily applied. This can be attributed in part to the
fact that the approximate location of the sought features was a priori
known, which is usually the case in the veri�cation of datasets.

Application of the planar topology to the can dataset has revealed
a peculiarity. The simulation exhibits vortex breakdown, hence
a so-calledbreakdown bubbleis visible. Over time, this bubble
grows, merges and successively re-splits with a second bubble, and
shrinks until it vanishes as the breakdown is resolved. The growing
of the bubble is attributed to absorption of external material into the
bubble (this is sometimes calledfeeding). The reverse process is re-
sponsible for the shrinking of the bubble. However, we discovered
that for all timesteps in which the bubble is present, a planar cut
on the vortex axis reveals that material is leaving the bubble (see
Figure 5). This can be seen from the con�guration of separatri-
ces. For further illustration, a streamline is started inside the bubble
and leaves through the downstream end, both during the growing
(left) and shrinking (right) phases. Aside from this, the simulation
behaves as expected (see Figure 4). There are two possibilities: ei-
ther the simulation is wrong (it does not correspond to the sketches
of Dallmann[3]), or the feeding is accomplished by a mechanism
that cannot be understood from looking at stationary data, which
is an interesting statement in itself. The given method has helped
in uncovering this anomaly by presenting an intuitive visualization.
Although the dataset had been subject to analysis for some time,
this had gone unnoticed so far.

Aside from the strict validation of datasets, parametric planar
topology can also serve as a feature extraction method for vortex
core lines under limited circumstances. For example, the primary
vortex axes in the delta wing dataset can be extracted in this man-
ner (cf. Figure 6). Although it is in this case equivalent to other
algorithms, it excels in the extraction of recirculation cores. As the
vortex breakdown bubble encloses a mostly rotation symmetric re-
gion of recirculation, there is essentially a bent vortex inside the
bubble. Its core appears as a singularity in the section planes re-
volving around the original vortex axis. Hence, tracking provides a
connection between different planes and thus constructs the core of
the recirculation vortex. Figures 4 and 8 show these recirculation
rings.

6.2 Volume rendering/grid resampling and in-context visual-
ization

As described in Section 5, subsections of interest (mainly the vortex
breakdown regions) of both datasets were resampled and displayed
using direct volume rendering. The renderings were computed us-

ing a modi�ed version of Simian [16] that can render arbitrary ge-
ometries into the volume rendering with correct blending. This is
necessary for the in-context visualization that allows us to show
the basic features of a vector �eld (as extracted by the moving cut-
ting planes) together with a selection of scalar quantities. Here, it
turns out that providing this kind of simultaneous visualization of
different properties eases the comprehension of images that depict
complicated �ow structures. Moreover, interrelations between vari-
ables are derived more readily. The use of direct volume rendering
and real-time transfer function modi�cation leads to improved in-
teractivity in the general visualization of three-dimensional �ows.

The use of two-dimensional transfer functions to isolate �ow fea-
tures is illustrated in Figure 7. Using a transfer function ofl 2 alone
(left, top image), it is possible to emphasize (in blue) the stable vor-
tex prior to breakdown as it comes in from the left, but attempts
to show the vortex bubble (in orange) are not revealing. However,
adding normalized helicity as a second transfer function domain
variable (the vertical axis in the transfer function widget), allows
much better emphasis of the vortex bubble. Finally, by comparison
with the streamline geometry, we con�rm that the vortex bubble has
been successfully isolated. Applying a 2D transfer function ofl 2
and helicity yields the picture of the vortical system shown on the
right of Figure 7. This very intuitive visualization depicts all the
key features of the �ow, including primary, secondary and tertiary
vortices and core regions [20, 6], as well as the surface of primary
separation emanating from the sharp edge of the wing and the re-
circulation bubble.

Additional examples of effective visualization achieved by the
developed methods are proposed in Figure 6. The upper left im-
age shows how a combination of vortex magnitude and rotation
direction in the transfer function can distinguish the vortical sys-
tem above the delta wing. Although the resampling of the very �ne
simulation grid (11.1 million unstructured elements with very �ne
resolution directly above the wing) to a much coarser grid (1283

uniform points) suggests a loss in accuracy, the vortices are cleanly
separated. Asymmetric breakdown of the primary vortices is clearly
visible. In the left and middle images, a close-up of the right break-
down bubble is presented. The geometry is obtained by parametric
topology on a set of planes that revolve around a straight line con-
necting the two stagnation points related to the breakdown. The
left vortex breakdown (lower row) is highly chaotic and consists of
multiple recirculation zones accompanied by the typical rings.

7 CONCLUSION AND FUTURE WORK

In this paper we have applied and extended a number of methods
to advance the visualization of complicated three-dimensional �ow
patterns. Parametric topology tracking greatly helps in unraveling
the geometry of these structures by reducing the complexity of the
generated images. By modifying its original setup to permit its ap-
plication to an arbitrary 1D parameter space we are able to use it for
the exploration of essential �ow regions along curves of interest. A
subsequent application of volume rendering serves to examine vari-
ables that are derived from the �ow in an intuitive and interactive
manner. Through the use of multidimensional transfer functions in-
terrelations of these variables are easily expressed and visualized.
In combination with the vector �eld analysis provided by paramet-
ric topology it is a powerful tool that can dramatically enhance visu-
alizations based on the composition of streamlines and isosurfaces
that are typically used in practice. We have demonstrated its useful-
ness in examples that concerned both the veri�cation of numerical
simulations and the inquiry of the vortex breakdown phenomenon.

Future work will address following topics.

� Parametric topology need not be restricted to planes; other
curved shapes could be more useful for certain problems.



� In the present work we have focused on individual time steps
to investigate the features of the �ow. This work must be ex-
tended to account for the time-dependency of the original data
and the evolution of the visualized structures.

� Because the input data for volume rendering must typically
be given in quantized form, it is essentially dimensionless and
carries little connection to the original scale. This complicates
the interpretation of transfer functions. Some work could be
done to provide engineers with a tool more speci�cally tai-
lored to their needs.

� Concerning multi-dimensional transfer function, there is still
a lack of experience as to how they should be chosen appro-
priately or even automatically. Future research must address
this limitation and further investigate the potential of direct
volume rendering as a �ow visualization tool in practical ap-
plications.
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Figure 4: Left: An overview of the can dataset. Right: Parametric topology shows the essentials of vortex breakdown including the recirculation
ring (blue) and a secondary vortex breakdown. To show that the separatrices accurately model the 
ow behavior, the breakdown bubbles are
surrounded with transparent stream surfaces (light blue/light red) originating at the upstream stagnation points that are repro duced as saddle
points in the topology of the planes (red).

Figure 5: Can dataset feeding anomaly: the breakdown bubble is showduring the growing (left) and shrinking (right) phases. The con�guration
of the separatrices implies that material is leaving the bubble, and a streamline (red) started inside the bubble con�rms this.

Figure 6: Left: An overview of the delta wing dataset: parametric topology visualizes the primary vortices. The planes are computed along the
symmetry axis of the wing and are parallel. Each planes shows two sinks/sources (primary vortices) and a number of saddle points (separation
from the wing). Note how the separatrices end in cycles. This indicates very weak attracting/repelling behavior of the vortices. Right: Primary,
secondary and tertiary vortices visualized by planar topology.Here, the planes are on the primary vortex core and oriented to the 
ow. Note how
plane orientation a�ects the resulting structures. Green arrows indicate the three vortices in the top image. The red arrow shows the separation
sheet between primary and secondary vortex. The primary separation at the wing edge is indicated by the blue arrow. All three vortices are
present as expected.



Figure 7: Use of two-dimensional transfer functions for exploration of vortical structures. Left: from top to bottom: 1D transfer function of
l 2 alone, 2D transfer function of l 2 and normalized helicity, and 2D transfer function with streamline and critical point geometry. Right: 2D
transfer function of l 2 and helicity permits to highlight primary, secondary, and tertiary vortices along with the surface of primary separation
(from the edge of the wing) and the vortex breakdown structure.

Figure 8: Volume rendering and in-context visualization on the delta wing. Through an appropriate choice of transfer function di�erent aspects
of the dataset can be visualized. The supporting geometry (planar topology) allows an exact spatial location of the volume rendered image.
Upper row: Vortical systems of the wing, colored by direction of rotation. Note the asymmetric vortex breakdown (left). Right side vort ex
breakdown with a clearly visible bubble. Zones of high velocity are colored according to rotational behavior (l � 2). High-velocity 
ow with
slow rotation exits the breakdown bubble at the downstream end (middle). The bubble covers the recirculation (red) in the recirculation ring
(yellow). The separatrices indicate that the vortex breakdown takes in material from behind (right). Lower row: Chaotic vortex breakdown on
the left side of the wing. Zones of upstream 
ow (red) located near the recirculation rings obtained through parametric topology. The blue
parts of the image indicate zones of high (dark) and low (light). I t can be observed that the 
ow decelerates in a jump-like manner in front
of the �rst recirculation zone (left). Zones of di�erent veloci ties from high (red) to low (blue). Again, the jump is visible. Note the strong
recirculation behavior indicated by the separatrices near the �rst recirculation ring (right).


