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Abstract

Monitor intensity ranges are much lower than the range
of intensities in the real world or even in high quality
renderings. Rendering in high dynamic range (HDR) is be-
coming more common in computer graphics. HDR video
cameras are also available. The process of compressing a
single frame of HDR data (real or synthetic) into a range
displayable by monitors is called tone mapping. Videos (a
real or synthetic sequence of images) require this technique
as well. Tone mapping video introduces a temporal con-
straint to maintain consistent intensities between frames.
We present a novel method, called adaptive temporal tone
mapping, which provides smooth intensity transitions
in tone mapped video, while allowing for discontinuous
dynamic lighting changes (such as turning on a light or
exiting a tunnel).
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1 Introduction

High dynamic range (HDR) images and video (a real or
synthetic sequence of images) are becoming more common
and important in computer graphics. The dynamic range
of most display devices (such as monitors, printers, and
projectors) is much lower than the dynamic range found
in real-world scenes and in high quality renderings. The
ability to display these HDR images and sequences on low
dynamic range devices is desirable. The process of map-
ping high dynamic range images to be displayed on low
dynamic range devices is known as tone mapping.

While tone mapping has been a research focus in re-
cent years [1, 2, 3], work in this field is not new [4, 5]. HDR
images have shown to be useful in a variety of applications
[6, 7, 8, 9, 10, 11]. Tone mapping has been accomplished
through explicit models, human visual system models, and
luminance mapping.

In computer graphics, two temporal tone mapping
methods have been developed. In work presented by Kang
et al. [12], video with alternating exposure time is con-
verted into tone mapped HDR video. In their method, two
seconds of video (at fifteen frames per second) is used to
compute a log average luminance. This method assumes a
slowly changing scene intensity and is dependent upon the
method presented by Reinhard et al. [1]. In Pattanaik et
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al. [13], temporal tone mapping is based on the human vi-
sual system (HVS). When an abrupt lighting change occurs
in an image sequence, the tone mapping operator requires
multiple frames to adjust to the overall luminance change.
This temporal constraint is modeled after the hysteresis of
the HVS. Our model quickly adapts to luminance changes
to allow for the greatest perceptual clarity in each frame
while maintaining temporal coherence.

We also have chosen to extend the method presented
in [1] due to its simplicity and speed. However, our tem-
poral method extends to any tone mapping operator which
uses a luminance mapping operator. Given a sequence of
HDR images, the luminance between tone mapped frames
without temporal coherence may vary enough to cause
flickering. In an HDR video, adaptivity of the key map
[14, 15, 16] may be required to allow for the highest qual-
ity low dynamic range video. Our method allows for quick
luminance changes where expected (e.g., turning on a light)
while maintaining smooth transitions.

2 Background

The method of Reinhard et al. [1] uses the luminance of
pixel values to compute a global log average luminance
value. Using RGB values, the pixel luminance Lp(x,y) is
computed by:

Lp(x,y) = 0.27 R+0.67 G+0.06 B (1)

This method was developed for tone mapping strictly single
frames through the use of log average luminance L f . Each
frame is considered to have N pixels. This frame luminance
is computed by:

L f = exp

(

1
N ∑

x,y
log(δ+Lp(x,y))

)

(2)

L(x,y) defines the scaled pixel luminance. We obtain
L(x,y) by a user-defined key value a and the frame lumi-
nance.

L(x,y) =
a

L f
Lp(x,y) (3)

The key value is generally set in the range of 0 to 1 although
in very dark scenes, higher values may bring desirable con-
trast to a scene. To perform tone mapping, a value Lwhite

is required. Lwhite defines the maximum luminance that is
set to white in the scene. By setting Lwhite lower than in-
finity, burn out may occur, but contrast in the scene is often



improved. The tone mapping operator is then:

Lt(x,y) =

L(x,y)

(

1+ L(x,y)
L2

white

)

1+L(x,y)
(4)

This is the tone mapping operator (without dodging and
burning) presented in [1]. To acquire final RGB values, one
can simply multiply the original pixel high dynamic range
[HDR] values by Lt of the same pixel.

3 Algorithm

Temporal sequences of video requires several changes to
the tone mapping algorithm. The first major change cre-
ates a luminance Li dependent on a number of frames. Li

replaces L f in Equation 3. The approach presented in [12]
forces L f to depend on a static number of frames n. N̄ now
represents the number of pixels in n frames. Their method
is implemented by:

Li = exp

(

1
N̄ ∑

x,y,i

log(δ+L(x,y))

)

(5)

Our method allows the number of frames n to adapt ac-
cording to the scene luminance. This adaptation allows
swift changes in luminance when necessary (e.g., a light is
switched on). To ensure that all transitions are smooth, we
force a small number of frames (5) to be averaged. We limit
the maximum number of frames (60) averaged to prevent
over-computation and other temporal artifacts. We store
the average log luminance per frame (L fi), as computed in
Equation 2. Our technique produces a new value La to re-
place the value Li as presented in Algorithm 3.1.

Algorithm 3.1, describes in detail how to obtain La.
Simply, we average the luminance of the last few frames as
long as the frame’s luminance is within a tolerance limit of
the current frame luminance. When we find a frame outside
of our temporal window or is outside of our luminance win-
dow, we do not average this frame or any further frames.

The value La is now used in the place of L f in equa-
tion 3. For scenes with changing luminance, changes in the
key value a may also be necessary. Setting the key value
in still frames or photographs requires some knowledge of
the desired brightness in the final images. In a video, some
knowledge of the change in key value is also required. We
acquire frame specific key values with the following for-
mula:

a =−α arctan(β(La− γ))+α
π
2

(6)

The constants in Equation 6 are designed according to taste
and preference. The effects of changing these constants can
be seen in Figure 1.

To determine the key value for a frame in an image se-
quence, we use a low-pass filter algorithm. First, we store
the key values from Equation 6 as ai. Then, using the num-
ber of frames (NumFrames) from Algorithm 3.1, we per-
form the low-pass filter to acquire the new key value an as
shown in Algorithm 3.2.

Algorithm 3.1: La(L fi)

range = 0.1∗L fi
minL = L fi − range
maxL = L fi + range
j = i
while ( j > 0 and i− j < 60)

(
if (L f j > minL and L f j < maxL)

j = j−1
else if (i− j) < 5

j = j−1
else

break
)

NumFrames = i− j +1
totallog = 0
for (k = i; k ≥ j; k = k−1)

totallog = totallog +L fk
La = exp(totallog/NumFrames)

Figure 1. The results of different constants in Equation
6. As α increases, the amplitude of the curve increases
(changing affective key-values). As β increases, the slope
of the curve is affected. Changing β allows for slower or
faster key-value changes based on log average luminance.

Algorithm 3.2: KEY-VALUE(ai)

an = 0;
for ( j = i; i− j < NumFrames; j = j−1)

an = an +a j

an = an/NumFrames



We combine algorithms 3.1 and 3.2 into one function
with optimizations for greater efficiency. We now complete
the tone mapping operation as before.

Lp(x,y) = 0.27 R+0.67 G+0.06 B

L′(x,y) =
an

La
Lp(x,y)

L′

t(x,y) =

L′(x,y)

(

1+ L′(x,y)
L2

white

)

1+L′(x,y)

4 Results

Our method runs at approximately 70 frames per second
on a 2.00 GHz Pentium 4 processor, without file I/O. Our
adaptive method uses a varying number of frames to com-
pute the low-pass filter based on key values and log aver-
age luminances. This is shown in Figure 2. The key value
changes according to Algorithm 3.2. The frame-specific
and actual key values used in our bright living room scene
are shown in Figure 3.

In a scene with discontinuous luminance changes our
method is superior to the method of Kang et al., since their
method does not allow the key value to adapt. A fixed
key value for an image sequence may cause undesirable
results. A scene in which a light is turned on demonstrates
this. With a high key value, a dark room appears in high
contrast before the light is turned on. This same room ap-
pears burned out after the light is turned on. With a low key
value, the dark room will appear completely black, whereas
the lit room will appear in desirable contrast. Also, when
the luminance in a scene changes, our method adapts to the
luminance with the greater perceptual clarity more quickly
while maintaining temporal coherence. This is true because
our adaptive averaging requires a minimum of 5 frames in-
stead of the constant 30 frames of Kang et al.

In Figures 4 and 5, we show the difference between
an HDR image which is clamped, scaled, and tone mapped
with our method. In Figure 6, we show various techniques
applied to a living room scene. In the first row, the temporal
sequence is shown clamped and much of the visible area is
burned out. The second row shows the sequence when us-
ing a constant key value of 0.05. The third row shows one
possible result while using α = 1000,β = 550,γ = 4 for the
values in Equation 6. The fourth row is another rendering
using α = 999.95,β = 400,γ = 3 for the constants in Equa-
tion 6. The preferred quality in the last two rows vary by
artist, but both show an improvement.

5 Conclusion

In summary we have developed a temporal tone mapping
method (without artifacts) which allows for discontinuous
luminance changes while enabling the user to visualize the
most interesting portions of a scene. Our method is quick
and efficient, allowing for interactive tone mapping rates
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Figure 2. The number of frames used to average key values
and log average luminances for the living room scene.
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Figure 3. Key values for the living room scene.



of video that are in main memory (70 frames per second)
and near interactive tone mapping rates of video streaming
from disk (3.5 frames per second).

Our method is faster, more flexible and more robust
than previous temporal tone mapping methods. Kang et al.
[12] reported two seconds per frame for their method on a
2.00 GHz Pentium 4. Their method is also unable to deal
with luminance discontinuities.

As future work, we plan to develop a more sophisti-
cated low-pass filter to obtain better control over the chang-
ing parameters in the scene. The key values and artis-
tic parameters of tone mapping should also be automated
as much as possible for novice users. Better visualization
tools for detected problem areas could allow users to tailor
the desired results more efficiently.
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Figure 4. The sponza scene clamped, scaled and tone mapped (a = 0.7) from left to right.

Figure 5. The teapot scene clamped, scaled and tone mapped (a = 0.5) from left to right.

Figure 6. The living room scene clamped and tone mapped with various strategies. Discoloration along the ceiling and walls of
this scene are part of the scene itself and not an artifact of our algorithm.


