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ABSTRACT
In the last decade, diffusion MRI (dMRI) studies of the human and animal brain have been

used to investigate a multitude of pathologies and drug-related effects in neuroscience research.
Study after study identifies white matter (WM) degeneration as a crucial biomarker for all these
diseases. The tool of choice for studying WM is dMRI. However, dMRI has inherently low signal-
to-noise ratio and its acquisition requires a relatively long scan time; in fact, the high loads
required occasionally stress scanner hardware past the point of physical failure. As a result,
many types of artifacts implicate the quality of diffusion imagery. Using these complex scans
containing artifacts without quality control (QC) can result in considerable error and bias in the
subsequent analysis, negatively affecting the results of research studies using them. However,
dMRI QC remains an under-recognized issue in the dMRI community as there are no user-
friendly tools commonly available to comprehensively address the issue of dMRI QC. As a result,
current dMRI studies often perform a poor job at dMRI QC.

Thorough QC of diffusion MRI will reduce measurement noise and improve reproducibility, and
sensitivity in neuroimaging studies; this will allow researchers to more fully exploit the power
of the dMRI technique and will ultimately advance neuroscience. Therefore, in this manuscript,
we present our open-source software, DTIPrep, as a unified, user friendly platform for thorough
quality control of dMRI data. These include artifacts caused by eddy-currents, head motion, bed
vibration and pulsation, venetian blind artifacts, as well as slice-wise and gradient-wise intensity
inconsistencies. This paper summarizes a basic set of features of DTIPrep described earlier and
focuses on newly added capabilities related to directional artifacts and bias analysis.
Keywords: Diffusion MRI, Diffusion Tensor Imaging, Quality Control, Software, Open-source, preprocessing

1 INTRODUCTION
Thousands of diffusion MRI (dMRI) datasets are collected every day across the world in studies of autism
(Wolff et al. [2012]), schizophrenia (Gilmore et al. [2010]), Huntington’s disease (Dumas et al. [2012]),
Alzheimer’s disease (Rose et al. [2000]), Parkinson’s disease, substance abuse (Coleman et al. [2012],
Parnell et al. [2009]) and many other conditions. White matter (WM) degeneration is often identified as
a crucial biomarker for all these diseases. The tool of choice for studying WM is diffusion MR imagery.
Diffusion MRI imaging extends the capabilities of conventional MRI methods by measuring the diffusion
properties of the tissue. Several investigators have proposed dMRI approaches to depict WM maturation
(Barkovich [2000], Basser and Pierpaoli [1998], Geng et al. [2012], Shrager and Basser [1998]), and
researchers (Zhang et al. [2005, 2002]) have shown that measurements extracted from dMRI, such as
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Fractional Anisotropy (FA) and Mean Diffusivity (MD), are more stable than absolute MRI intensity
measures. As a result, extensive research efforts have utilized dMRI in both normal subjects and patients
in an attempt to yield new insights into the microstructural organization of WM that are not available with
conventional MRI (Ciccarelli et al. [2001], McKinstry et al. [2002], Rose et al. [2000]). Additionally,
dMRI provides a wealth of information for assessing not only the volume and morphology of specific
brain regions, but also the organization of these regions, and allows the description of fiber tracts within the
brain. Tractography techniques (Mori and Zijl [2002]), which estimate paths of brain WM fiber bundles
based on dMRI data, can identify abnormalities in fiber shape or microstructure along the fiber bundles
(Escolar et al. [2009]). Connectivity studies (Boucharin et al. [2011], Oguz et al. [2012a], Hagmann et al.
[2008]) can further elucidate pathologies by analyzing the strength of connections between distant regions
of the brain. Diffusion MRI can be applied both in the clinical setting and in pre-clinical animal research,
as the dMRI data can be acquired and processed using similar methodology in humans and animals (Gerig
et al. [2011], Oguz et al. [2012b]). Thus, findings have the potential to directly translate from basic to
clinical science.

Diffusion MRI technology has enormous potential, but it suffers from a unique and complex set of image
quality problems, limiting the sensitivity of dMRI studies and reducing the accuracy of findings. Diffusion
MRI data is obtained by acquiring a series of images using non-collinear diffusion-sensitizing gradients
(called DWI, Diffusion Weighted Images) and fitting a mathematical model at each image location to
this data, e.g., a tensor in the case of Diffusion Tensor Imaging (DTI). The acquisition time for dMRI is
longer than conventional MRI due to the need for multiple DWI acquisitions. An increased acquisition
time allows for more motion artifacts, reduced signal-to-noise ratio (SNR), and increased proneness to a
wide variety of artifacts, including eddy-current and motion artifacts, venetian blind artifacts, as well as
slice-wise and gradient-wise inconsistencies (Fig. 1, 2). In addition, dMRI is a mechanically demanding
scan: the acquisition protocols are inherently complex, often pushing the mechanical limits of scanners
due to fast gradient switching in echo-planar imaging. Many artifact types plague diffusion imagery,
and many of these are unavoidable even with the most conservative acquisition protocols. Therefore,
unlike conventional MRI data, dMRI data needs to be carefully checked and corrected to remove these
artifacts, making a quality control (QC) procedure absolutely necessary for dMRI studies. Blindly using
these complex scans may bias data collection and thus affect the results of research studies (Lauzon et al.
[2012], Liu et al. [2010]).

Quality control of diffusion MRI data is a critical issue for the successful use of this technique in
studies, and tools for adequately addressing this matter are crucially needed by the medical imaging
community. Thorough quality control of diffusion MRI will lead to increased sensitivity in neuroimaging
studies, which will help advance neuroscience and improve our understanding of many disease processes
as well as of the healthy maturation process of the brain. Undetected, dMRI artifacts result in severely
increased measurement noise in the data and even may result in confounding factors leading to wrong
conclusions. This is well illustrated by a quantitative study of data from the PredictHD project (focused
on Huntington’s disease) using DTIPrep to QC images from 5 normal controls at 8 different scanning sites
(30 gradient directions for each scan). The standard deviation of Fractional Anisotropy (FA) before and
after QC for 6 different regions of interest is shown in Fig. 3. The standard deviation of FA is decreased
even in a single scan and the improvement becomes dramatic when multiple scans are included. The
increased measurement noise leads to loss of sensitivity in studies. Furthermore, affected tensors (or
equivalent diffusion models) can also disrupt tractography methods and result in errors in fiber orientation
or premature fiber termination (Fig. 6-b, c).

1.1 ILLUSTRATIVE CASE STUDY
QC statistics from an ongoing multi-site DTI study in autism best illustrate the necessity of DTI QC: of
over 400 datasets, 14% of the datasets were fully rejected by the QC (due to scanning issues, motion
and high noise level); all other datasets were corrected such that about 20% of these would have been
considered unusable without correction and about 50% showed considerable gain in signal. This example
well illustrates that application of DTI QC and data correction also brings a significant economical benefit
by saving scans which otherwise would need to be eliminated from the study. This is even more important
in longitudinal studies where missing data prevents calculation of individual temporal trajectories.
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Unfortunately, the need for rigorous Quality Control is a severely under-recognized issue in the dMRI
community. Most current studies are extremely limited in terms of QC and they commonly only perform
correction for motion artifacts and eddy-currents (typical examples: Li et al. [2010], Pannek et al. [2011],
Yan et al. [2011], Zhang et al. [2012]). Such studies may therefore be prone to decreased sensitivity
and accuracy. In a quantitative study, DTIPrep was used to QC data from 5 normal controls at different
scanning sites (30 gradient directions for each scan). The standard deviation of FA before and after QC for
6 different regions of interest is shown in Fig. 3. The standard deviation of FA is decreased even in a single
scan, as represented by the first data point in each graph; this is indicative of decreased measurement noise,
which leads to increased sensitivity in studies. The improvement becomes dramatic when multiple scans
are included; the flat curves in the after-QC graph indicate highly reproducible measurements become
possible across sites when DTIPrep is used for quality control, in contrast to the highly variable data
points in the before-QC graph.

(a) (b) (c) (d) (e) 

Figure 1. Examples of intensity artifacts detected with DTIPrep. (a) an electromagnetic interference-like artifact (b) severe signal loss in the anterior and
middle regions (c) Venetian blind artifact (d) inter-slice and intra-slice intensity artifact and (e) checkerboard artifact.
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Figure 2. Head-motion artifacts. Rigid registration parameters between each gradient and baseline image of the original DWIs (a) and corrected DWIs (b).
(c) Overlay comparison between original DWI #2 before (red) and after (green) correction.
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Figure 3. QC reduces measurement noise in DTI. Standard deviation of FA in 5 healthy subjects in 6 regions are shown. QC reduces FA standard deviation
considerably even for a single scan; the improvement is dramatic when the number of included repeat scans (horizontal axis) is increased. Percentage figures
indicate number of gradient directions excluded by DTIPrep. Courtesy of V. Magnotta (Univ. of Iowa).

We recognize that some of the functionality in DTIPrep has already been published and is available to the
community. These include Tortoise1 [Pierpaoli et al., 2010], which is a software package for processing
dMRI data and consists of two main modules, one for preprocessing and one for analysis, including
tensor fitting and ROI analysis. The preprocessing stage for Tortoise currently includes utilities for motion
correction and eddy-current correction. Similarly, the FSL platform offers a diffusion toolbox, FDT, which
includes both command line tools and a user interface for common DTI analysis tasks such as tensor
estimation, registration, tractography and computation of probabilistic connectivity maps [Behrens et al.,
2007, Woolrich et al., 2009]. Current versions of FDT provide quality control support mostly limited to
eddy current correction and motion correction. Additionally, JIST [Lucas et al., 2010] is another popular
image processing environment, including utilities for analysis of DWI such as model fitting, visualization
and tractography. JIST and the related MIPAV platform are designed to allow a wide variety of plugins
to be developed by external users which include general-purpose (not dMRI-specific) quality control
methods. Similarly, AFNI [Cox and Hyde, 1997] and SPM [Friston et al., 2007] are commonly used
software packages that include general-purpose pre-processing functionality. DTIPrep has functionality
that significantly expands upon these preprocessing steps, as discussed in Section 2.

Additionally, most of these are research-oriented pieces of software that are often not generally
applicable to data from multi-site, multi-scanner studies with non-uniform data formats, acquisition
protocols and more. The target audience for DTIPrep is physicians and neuroscientists. Through extended
documentation and a streamlined user-friendly interface, DTIPrep aims to fill a very important gap in the
toolkits of the users in the dMRI community. One simple example of this level of abstraction provided to
the users is the data input mechanism to DTIPrep, which was recently revamped to support 42 different
variants of the DICOM format, which required a massive software development effort. In practice, this
means the physician can now load their data into DTIPrep without having to worry about the particular
brand, model or software version of their scanner, and through the automated pipeline in DTIPrep,
quickly create a clean version of their data that is readily exportable in many industry-standard formats.
Additionally, DTIPrep can also enforce protocol compliance, which is nontrivial in the large multi-site,
multi-scanner studies, and it can catalogue identified artifacts such that meta-analysis becomes possible
over the scope of the entire study.

In this paper, we present DTIPrep, a unified, easy-to-deploy platform that addresses data quality
problems that affect dMRI, and demonstrate its effectiveness on real data. An overview of the software
and algorithms are provided, with a focus on the two most recently added features, targeting directional
artifacts and bias analysis.

1 http://www.nitrc.org/projects/tortoise/
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2 MATERIAL & METHODS
DTIPrep is a dedicated dMRI quality control software platform developed to identify and correct all
common, known dMRI artifacts, with a special focus on handling data from multi-site studies. DTIPrep
is fully open-source (BSD License) and publicly available on the NITRC website2. The implementation
uses the open-source ITK and VTK toolkits and the graphical user interface is built with Qt4. Fig. 4
illustrates the GUI and highlights the high-level workflow in DTIPrep. The QC process is separated into 2
phases: 1) a fully automatic phase for quality assessment and artifact correction/removal, and 2) a visual
assessment phase for both the DWI volumes and the reconstructed DTI data. In the automatic phase, all
datasets are changed (minimally via the eddy-current and motion correction step, if enabled); in contrast,
only a minority of cases need correction in the visual assessment stage (in the autism dataset described
above as case study, only 5% of the data required manual intervention).

4 

1 

2 

3 

Figure 4. DWI-based QC results using DTIPrep through three steps: 1) converting the DWI image from DICOM to NRRD format, 2) loading the protocol
and running the software and 3) if necessary, visual checking and saving the final DWI dataset. In this example, gradient #11 suffers from intensity artifact
and is excluded. The sphere shows a 3D view of the gradient distribution before (blue dots) and after running DTIPrep (green dots, visualized on top of the
blue dots) respectively. In this particular example, a large number of DWI’s were excluded (missing green dots on the 3D sphere). The 3D sphere also reveals
a highly non-uniform distribution of the input diffusion gradient, indicating a non-optimal acquisition protocol.

The automatic QC phase is controlled by a study-specific protocol file that stores all QC parameters.
Each individual step (described below) can be enabled/disabled and adapted via parameter settings using
this protocol file. A detailed XML-based report of each QC metric is written for post-hoc meta-analysis.
The meta-analysis of the QC reports has proven to be a valuable tool in identifying subtle site- or scanner-

2 http://www.nitrc.org/projects/dtiprep
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specific MR hardware anomalies that can be dynamically addressed to ensure the highest quality data
collection.

More specifically, the automatic QC phase performs the following steps (Liu et al. [2010]) (Fig. 5):

1. DICOM to NRRD conversion (NRRD is a popular file format for dMRI data, capable of storing all
diffusion information within an ASCII readable file header),

2. Image information checks (ensuring correct image dimensions, spacing, and orientation),
3. Diffusion information checks (ensuring correct diffusion gradient orientations, gradient b-values),
4. Rician noise removal on raw DWI volumes (Tristán-Vega and Aja-Fernández [2010]),
5. Inter-slice brightness artifact detection via normalized correlation analysis between successive slices

within a single DWI volume,
6. Interlaced correlation analysis for detection and removal of Venetian blind artifacts and motion within

a single DWI volume,
7. Co-registration to an iterative average over all the baseline images,
8. Eddy-current and motion artifact correction, including appropriate gradient direction adjustments,
9. Residual motion detection to ensure all DWI volumes are well registered,

10. Reconstruction of the DTI data and computation of DTI property maps. Currently, DTIPrep
implements a single tensor model via weighted least-squares fit (Goodlett et al. [2007]) followed
by computing the standard tensor property maps, which include fractional anisotropy (FA) (Basser
and Pierpaoli [1995]), mean diffusivity (MD) (Zhai et al. [2003]), axial diffusivity (AD) and radial
diffusivity (RD) (Pierpaoli and Basser [1996]).

11. Directional artifact detection/correction. This step is a recent algorithmic development and will be
discussed in more detail below in Sec. 2.1.

Dicom to NRRD 
Conversion  

Image 
Informa4on 
Checking 

Diffusion 
Informa4on 
Checking 

Denoising DWI 
Image  (LMMSE 

Filter) 
START 

Dominant 
Direc4on/ 
Vibra4on 
Checking 

Simula4on‐
based Bias 
Analysis 

DTI Es4ma4on  Visual Checking  END 

Slice‐wise 
Intensity 
Checking 

Interlace‐wise 
Vene4an Blind 

Checking  

Baseline 
Averaging 

Eddy‐current, 
Head Mo4on 
Correc4on  

Gradients‐wise 
Checking  

Figure 5. DTIPrep workflow.

Note that all the algorithms currently in DTIPrep apply equally to single-tensor analysis (DTI) and to
higher-order models, with the exception of the final steps of model estimation and directional artifact
detection. Further, these techniques can accommodate single or multiple b-value acquisitions.

DWI volumes found to be affected by corrupting artifacts (steps 5, 6, 9) are removed from the DWI scan.
While some of these artifacts may be local and not affect the entire volume, local removal would lead to
different regions of the brain having quite different signal to noise (SNR) values due to the varying number
of DWI’s locally available. Data with such a varying SNR would complicate subsequent analysis to avoid
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bias. The gain achieved from local rather than global rejection of affected DWI’s is not significant enough
to justify the added level of complexity. Thus, we have made a design decision to fully reject the DWI’s
along affected gradient directions. Local approaches also exist, such as the RESTORE method [Chang
et al., 2005] which locally identifies potential outliers and rejects them. It should also be noted that even
with the rejection of entire DWI volumes, the different noise patterns in the scans may cause inter-subject
SNR and bias differences. DTIPrep outputs the included/excluded DWI directions in its automatically
generated QC report for subsequent statistical analysis.

After steps 5, 6 and 9, DTIPrep further checks whether enough DWI’s have been retained. The threshold
ratio below which the whole dataset is rejected is a parameter adjustable in the protocol, commonly set
between 30 to 40% of the full set of DWI’s.

After the automatic QC phase, a visual assessment step is recommended. In this visual assessment phase,
first, all DWI volumes are efficiently checked within DTIPrep to detect and remove remaining DWI data
with artifacts. Additional remaining artifacts happen rarely in our experience (e.g. in the autism dataset
described above as our case study, only 5% of the data required manual intervention); but it is still a
necessary step to ensure proper QC. Finally, the reconstructed DTI image is assessed within 3D Slicer3,
via a visualization of the local tensor orientations as well as investigative, interactive fiber tractography to
assess anatomical fiber correctness. Errors in local orientations are corrected by editing the DWI gradient
measurement frame. Abnormal fiber tractography indicates either severe white matter pathology or a
scanning issue necessitating the rejection of this dataset. A detailed user manual for this step is publicly
available on DTIPrep’s NITRC page.

2.1 AUTOMATIC DETECTION AND CORRECTION OF DIRECTIONAL ARTIFACTS
Recent studies (Hiltunen et al. [2006], Gallichan et al. [2010], Farzinfar et al. [2013b, 2012]) have
demonstrated a new kind of artifact that was not previously detected by DTIPrep. These artifacts manifest
themselves as a strong bias in the measured principal direction of diffusion (PD). They are sometimes
accompanied by pronounced local signal loss in the diffusion-weighted images. It is believed that these
artifacts are caused by the vibrations of the scanner table during the scan, which can have a non-negligible
effect especially in subjects under 30kg (Liu et al. [2011]). The detection and correction/removal of these
artifacts is therefore especially crucial for pediatric studies as well as primate and rodent studies. In our
experience, this type of artifact can occur in up to 50% of scans in pediatric studies in an affected scanner.
It is noteworthy that newer scanner models (installed after 2011) show a significantly reduced occurrence
rate of such artifacts (less than 5% scans).

Fig. 6 demonstrates such artifacts, both with (Fig. 6-b) and without (Fig. 6-c) localized signal loss. Fig.
6-a shows an artifact-free scan for comparison. These artifacts can be detected visually by identifying
either a local dominant “color” or a widespread dominant “color” in the color-coded FA image, where the
color denotes the PD (red: left-right, green: posterior-anterior, blue: superior-inferior). This is illustrated
as the red (left-right) artifact observed locally in the frontal and posterior lobes in Fig. 6-b and more
diffusely globally in Fig. 6-c. The spherical distribution of the PD displays no clustering for the artifact-
free scan, whereas the dominating direction artifact generally prompts a higher degree of clustering in the
spherical PD distribution, as shown with a mid-level clustering in Fig. 6-b and high-level in Fig. 6-c. The
figure also illustrates the tractography of the anterior (genu) and posterior (splenium) fibers of the corpus
callosum in each scan; clearly, the tractography is considerably affected in cases with artifacts.

Traditional artifact detection algorithms are designed to detect abrupt intensity changes in one slice or
along one gradient direction. However, the vibration artifact presents itself either as a global disruption
in the intensities or as local, gradual intensity change in neighboring slices over a subset of DWI’s. To
detect these artifacts, we have recently proposed a novel approach using an entropy-based measurement
of the PD distribution (Farzinfar et al. [2013b, 2012]). The orientation distribution is computed via a
spherical histogram, using an icosahedron subdivision scheme to create the histogram bins. The entropy
of this distribution quantifies the scattering and spread of the PD and is invariant to the patient’s position
in the scanner. High entropy indicates that the PD are distributed relatively uniformly. Low entropy
demonstrates clustering of the PD distribution. Significant global clustering, as in Fig. 6-b,c (upper right,

3 3D Slicer (www.slicer.org) is a multi-platform, free and open source software package for visualization and medical image computing.
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(c) (a) (b) 

Figure 6. Vibration artifacts. a) Artifact free scan. Top-left, a representative axial slice of the color-FA map. Top-right, spherical histogram of the PD
distribution within the entire brain. Bottom-right, tractography of genu and splenium of the corpus callosum. Bottom-left, genu tract in more detail. (b)
Vibration artifacts may manifest as localized (prefrontal region for this example) signal-loss in the DWI image or as dominant L-R (red) direction. (c)
Vibration artifact in the absence of localize DWI signal loss. Spherical viewpoints chosen to show locations of highest histogram frequency.

spherical distribution), indicates the presence of an artifact of dominating diffusion direction. Based on
this orientation-based QC, dominant direction artifacts can be successfully detected and corrected.
Detection stage: The proposed method (Farzinfar et al. [2013b, 2012]) evaluates the entropy of the
orientation distribution within white matter, gray matter and whole brain regions. In order to detect
scans with suspicious values of entropy (lower values of entropy for artifacts of dominating directions),
we compare a given DT scan’s entropy to values learned from a training set of artifact-free samples.
Note that this algorithm takes advantage of the “default” pattern of directional distribution in the brain:
given the anatomy of the white matter, every brain is expected to have certain amounts of locations with
predominantly left-right direction of diffusion (e.g. corpus callosum, anterior commissure), predominantly
anterior-posterior direction of diffusion (e.g. inferior and superior fasciculi), and predominantly inferior-
superior direction of diffusion (e.g. brain stem and internal capsule). The orientation distribution computed
from the DTI is expected to reflect this underlying anatomy rather than being uniformly distributed on the
unit sphere. The training set is used to compute estimates for this expected distribution of orientation
in a given population. These trained entropy values are relatively sensitive to certain study settings; in
particular, the white matter maturation level and the voxel resolution relative to the brain size directly
influences the underlying orientation distribution and therefore the entropy. This means that populations
with considerably different brain sizes and maturation (e.g. neonate vs. 1 year old vs. adult) would
need separately trained entropy settings. Given the expected value of entropy and its distribution for
the population, we use z-scores to categorize the quality of a DT scan into three categories: acceptable
(z < 1.64 90th percentile), suspicious (z ≥ 1.64 90th percentile) and unacceptable (z ≥ 2.58 99th

percentile).
Correction stage: We have proposed (Farzinfar et al. [2013b, 2012]) an iterative leave-one-out-strategy
over all individual DWI images by re-computing the DTI and the corresponding entropies. The DWI
whose omission yields the most improvement in entropy is excluded from the scan. This process is
repeated until the z-score is in acceptable range. However, for scans showing significant dominating
direction artifacts, the whole scan is rejected. Our experiments have shown that if there is a strong
directional bias, the gradient directions chosen for removal are not uniformly distributed on the unit
sphere, but rather, cluster along a single plane. While removing the DWI along these directions may
lead to an acceptable entropy level, the non-uniform distribution of the remaining gradient direction leads
to a strong bias (as discussed below in Sec. 2.2), ultimately rendering the image unsuitable for analysis.
Therefore, we only apply the correction stage to the scans with low to moderate levels of these artifacts.

2.2 SIMULATION-BASED BIAS ANALYSIS
In addition to the artifact detection and correction steps discussed so far, we are currently integrating a bias
analysis module to DTIPrep. A Monte Carlo (MC) simulation technique can be used in order to assess
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the bias and expected error for a given acquisition scheme. These simulations allow the user to predict
the propagation of error in subsequent analysis and to understand bias in the estimated diffusion model.
Clearly, an increase in error creates a need to increase the number of subjects to maintain the same level
of sensitivity to group differences in neuroimaging studies. The bias in the diffusion estimation is caused
by the acquisition noise, which follows a Rician distribution. At the typically low range of SNR of dMRI
scans, this directionally-dependent noise distribution can cause a considerable bias in the diffusion model
estimation if the gradient direction distribution is non-uniform.

Many studies have investigated the optimal number and distribution of gradient sampling schemes for
DWI acquisition protocols, based on Monte Carlo simulations (Jones [2004], Jones et al. [1999]), with
the goal of minimizing measurement bias in estimated diffusion properties including fractional anisotropy
(FA), mean diffusivity (MD) and the principal direction of diffusion (PD). In Farzinfar et al. [2013a], we
proposed a technique similar to the one presented in Jones [2004] for bias estimation. Given a gradient
sampling scheme, the b-value, and the true diffusion tensor, the MC simulation starts by computing the
true signal intensities for the DWI. In each iteration, first, the true diffusion tensor is rotated randomly.
Then, given the SNR level of choice, an appropriate Rician noise is added to the signal intensity along each
gradient direction. These noisy signals are then used to compute the “measured” tensor of diffusion. The
measurement error is computed as the difference between the true tensor and this noisy simulated tensor.
Similarly, diffusion parameters such as FA and PD are computed from the noisy tensor and compared to
their true values. This process is repeated hundreds of thousands of times to obtain a robust estimate of
error. This approach also allows us to evaluate multiple runs and varying b-values. Note that a similar
approach can be used for higher order diffusion representations modeling multiple tracts via standard
tensor or fiber models. Furthermore, it is possible to visualize the estimated distribution of the error using
DTIPrep (Fig. 7).

This advanced functionality provides guidance for acquisition protocol selection. MC simulations allow
the DTI-based analysis studies to select the best gradient sampling scheme for image acquisition for robust
estimation of anisotropy and PD orientation. We are currently integrating this functionality into DTIPrep
to make it readily available to the dMRI community.

3 RESULTS
3.1 DIRECTIONAL ARTIFACTS
In the illustrative studies mentioned before, pediatric subjects were scanned at 4 different collaborating
sites [Wolff et al., 2012] using Siemens Tim Trio 3T scanners (Hazlett et al. [2012]). In that study, we
have found the vibration artifact to be a serious and widespread problem. After discovery of the artifacts
at all 4 sites, a hardware fix that Siemens has recently devised (Liu et al. [2011]) has been adopted. For
these 4 sites, before the hardware fix, the occurrence rate of the vibration artifacts were 1%, 5%, 54% and
12%, respectively, in 6 months old subjects (n = 182). Following the hardware fix, the occurrence rate
was reduced to less than 5% in the first three sites, but remained at 9% for the last site. This demonstrates
the complexity of the provenance of these directional dominance artifacts. Clearly, not using the hardware
fix is a serious problem that can lead to artifacts in more than half of the scans at some scanning sites.
However, the data also demonstrates that the hardware fix is not a cure-all and there are studies that have
considerably high artifact occurrence rates even with the use of the hardware fix. This demonstrates the
necessity of thorough quality control using post-acquisition software to avoid introducing severe bias in
neuroimaging studies. Note that the hardware fix and the software solutions proposed here are completely
unrelated approaches. We have applied the proposed entropy-based detection scheme to the scans and
compared the findings to the visual assessment by a human expert. We were able to automatically detect
100% of the severe and 67% of the milder vibration artifacts.

3.2 BIAS ANALYSIS
Fig. 7-(a-c) shows three different gradient sampling schemes with different levels of uniformity: a quasi-
uniform distribution with 42 gradients based on electrostatic repulsion (Jones et al. [1999]), a non-uniform
distribution with 32 gradients that is standard on Philips scanners, and a uniform 6 gradient distribution.
The MC simulation method is used to assess the bias in FA and PD estimates from data acquired with each
protocol. The figure illustrates bias given a true tensor with an FA value of 0.4 and SNR = 10. 200,000
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iterations were used in the MC simulation. The estimated error distributions in the PD (Fig. 7-(d-f)) and
FA (Fig. 7-(g-i)) are shown. Note that, although the number of gradients in the non-uniform 32-gradient
scheme is larger than the uniform 6-gradient scheme (at the same overall SNR), the error in the PD and FA
is considerably larger. For both tractography and anisotropy studies, the quasi-uniform 42-scheme would
be the best scheme and the non-uniform 32-scheme would be the worst among the compared schemes.

(a) (b) (c) 

13.75° 

11.46° 

8.02° 

Δ PD 

1.5% 

1% 

0.5% 

Δ FA 

(d) (f) 

(g) (h) (i) 

(e) 

Figure 7. Bias analysis of different DWI schemes via MC simulation. (a-c) Gradient direction distribution for 3 common DWI acquisition schemes: 42-
direction quasi-uniform, Phillips 32-direction non-uniform, and 6-direction uniform. (d-f) Estimated error distribution in PD computation. (g-i) Estimated
error distribution in FA computation as a percentage of true FA. 200,000 MC simulation were performed for this experiment, with a true FA value of 0.4 and
SNR = 10.

These results illustrate an intuitive fact that has been known for over a decade (Jones et al. [1999]):
non-uniform gradient sampling schemes introduce strong biases. However, we still see clinical studies
published in prestigious journals using highly non-uniform and thus suboptimal acquisition protocols,
obviously unaware of eventual limitations in sensitivity and eventual confounding biases related to the
choice of the dMRI sequence. This highlights two important conclusions: 1) Raising awareness of bias
problems in dMRI studies is of crucial importance. 2) Whether studies start out with quasi-uniform or
non-uniform acquisition protocols, it is important to assess the estimated bias for each subject after motion
correction and artifact removal.

4 DISCUSSION
DTIPrep offers a publicly available, unified platform to address many quality issues in dMRI datasets. We
aim to continue to developing DTIPrep to expand its functionality. In particular, the two recent additions
to DTIPrep, the directional artifact detection/correction and the simulation-based bias analysis, are both
under active development as discussed below.
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In addition to the proposed detection-and-removal approach for the directional artifacts discussed in
Sec.2.1, we are also currently experimenting with alternative approaches to deal with directional artifacts.
As previously discussed, the main approach we propose consists of detecting global abnormalities in the
PD distribution, and removing these from the data. As alternative approaches, we are investigating 1)
detecting local abnormalities and removing such artifacts; and 2) instead of removing the biased data,
including it in the model estimation, with an explicit term to account for the bias.

1. Local detection/removal of artifacts: The approach currently implemented in DTIPrep assumes that
a directional artifact will either affect the whole image or at least a large portion of the brain, which
is necessary for the global entropy to be affected. However, in our experience, some scans will show
only very localized signal loss which leads to directional artifacts that may go undetected using a
global approach. For this reason, we are investigating a novel algorithm for detection of localized
signal loss, in a similar spirit to the RESTORE approach. Given a whole DWI scan, we will compute
voxel-wise percentile DWI images of the median and selected lower and upper percentiles to get
stable voxel-wise estimations of the means and variability in the whole scan. Using these percentile
images, z-score maps can be estimated and large clusters of high z-scores will be flagged as localized
signal loss artifacts. The removal stage is planned to be the same to the global approach discussed
above.

2. Model estimation using biased data: Recently, a method has been published (Gallichan et al. [2010])
to correct scans affected by vibration artifacts by explicitly adding a co-regressor term to the model
estimation. This method assumes that the vibration artifact is predominantly affecting the left-right
direction based on empirical evidence. Based on this assumption, the method first estimates a
diffusion model without using data from gradient directions with a strong left-right component. This
“temporary” diffusion model is used as a co-regressor to account for the left-right bias when the full
diffusion model is computed. The method described by Gallichan et al. uses a manual segmentation
of the artifact; we expect that we may be able to use the local detection scheme discussed above to
replace this step. Note that this method is aiming at a quick work-around as admitted by the authors,
and therefore its validity in the general case needs to be assessed.

As for the simulation-based bias analysis, we are currently working both to integrate this functionality
into the DTIPrep framework and to expand it to subject-specific bias analysis. This is a crucial and often
overlooked concern: while all scans in a study are usually acquired using the same gradient sampling
scheme indicated by the acquisition protocol, the individual scans end up with a modified configuration
of gradient sampling after QC. For example, motion correction requires the registration of images along
the individual gradient directions to the baseline; the gradient direction in the resulting volume needs to
be rotated according to the same rigid transformation. Similarly, the exclusion of a subset of gradients
due to various artifacts detected by automatic or visual QC also changes the gradient distribution on a
scan-specific basis. A different gradient distribution means a different degree of uniformity and therefore
a different amount of expected bias in the diffusion properties estimated from the scan. For this reason,
we are expanding DTIPrep to allow users to perform scan-specific bias analysis using the Monte Carlo
simulations discussed above.

Finally, it should be noted that dMRI issues are by no means limited to the dominant mode of dMRI
using tensor as a model of diffusion, i.e. diffusion tensor imaging (DTI), but rather, affect all dMRI
analysis modalities. In fact, it can be argued that analysis via higher-order diffusion models such as
Orientation Distribution Functions (ODF’s) are more strongly affected by these artifacts, since they require
more model parameters to be estimated (Hess et al. [2006], Tuch [2004]). This is because the 6-parameter
tensor representation, despite its many shortcomings (e.g. inability to resolve fiber crossings, etc.),
guarantees considerable redundancy due to the acquisition of many more than the necessary 6 gradient-
weighted images in modern acquisition protocols. In comparison, higher-order diffusion models have a
worse ratio of number of parameters to acquired gradient-weighted images. While we focused mainly
on DTI examples in this manuscript, it should be noted that the same principles apply to higher-order
representations.
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4.1 HUMAN RESEARCH AND ANIMAL RESEARCH
The results presented here included data acquired from an Autism Center of Excellence network study
funded by the National Institutes of Health. Informally called the Infant Brain Imaging Study (IBIS), the
network includes four clinical data collection sites, a data coordinating center, and two image processing
sites [Wolff et al., 2012, Hazlett et al., 2012]. Written informed consent was obtained from parents or
legal guardians before enrollment of all subjects, and the study procedures were approved by institutional
review boards at each site.

4.2 DATA SHARING
The DTI quality control tool presented in this manuscript, DTIPrep, can be downloaded as open source
software (Berkeley license) from the DTIPrep project page at the Neuroimaging Informatics Tools and
Resources Clearinghouse (NITRC) website http://www.nitrc.org/projects/dtiprep/.
The NITRC project page includes manuals, publications, example datasets, bug and feature trackers.
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