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Predictability and uncertainty in CFD
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SUMMARY

CFD has reached some degree of maturity today, but the new question is how to construct simulation
error bars that re�ect uncertainties of the physical problem, in addition to the usual numerical inaccura-
cies. We present a fast Polynomial Chaos algorithm to model the input uncertainty and its propagation
in incompressible �ow simulations. The stochastic input is represented spectrally by Wiener–Hermite
functionals, and the governing equations are formulated by employing Galerkin projections. The resulted
system is deterministic, and therefore existing solvers can be used in this new context of stochastic
simulations. The algorithm is applied to a second-order oscillator and to a �ow-structure interaction
problems. Open issues and extensions to general random distributions are presented. Copyright ? 2003
John Wiley & Sons, Ltd.

KEY WORDS: computational �uid dynamics; polynomial chaos; Wiener–Hermite functionals;
incompressible �ows

1. INTRODUCTION

Computational �uid dynamics (CFD) is a mature discipline today. After more than 40 years
of intense research e�orts, starting with the seminal work of Harlow and Fromm in simulating
unsteady �ow past a cylinder (1965) [1], �nite di�erences and �nite element/volume methods
are employed routinely in three-dimensional unsteady �ow simulations. High-order methods
and methods for complex-geometry domains have been advanced considerably, and numerical
accuracy is adequately quanti�ed in many simulations. While fully adaptive simulations are
limited to some demonstration examples at the moment, at least the algorithmic framework
and mesh generation technology exist for routine adaptive CFD in the near future.
In turbulence simulations, in particular, there has been some dramatic progress, and direct

numerical simulation (DNS) has been the prevailing tool for analysing accurately the physics
of turbulence at all scales albeit at modest Reynolds numbers. This development, which
coincides with the birth of supercomputing in the mid-1970s and has greatly bene�ted from
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Figure 1. Cross-�ow velocity spectrum at a centreline point seven diameters behind a cylinder. DNS
(thin line) versus experiment of Ong and Wallace (thick line); Re=3900, taken from [5].

it, has proved erroneous the pessimistic forecast that simulations of turbulence based on �rst
principles could never be achieved [2, 3]. Fast solvers and tera�op speeds of today have
allowed accurate DNS not only in canonical domains, such as turbulent channel �ows [4],
but also in spatially developing �ows involving more complex-geometry domains.
An example of such DNS is shown in Figure 1, where we plot the results of the energy

spectrum predicted by a spectral discretization involving about 100 million degrees of free-
dom [5]. In particular, the �ow past a circular cylinder is simulated at Re=3900 corresponding
to a turbulent wake. In the �gure we plot the one-dimensional wave number spectrum of the
cross-�ow velocity at a centreline location seven diameters behind the cylinder. Both axes are
normalized with Kolmogorov scaling at Re=3900, and a comparison of the DNS predictions
with the experimental results of Ong and Wallace is included [6]. Very good agreement is
obtained in the inertial range and in capturing the vortex shedding and shear layer frequen-
cies, i.e. the two pronounced peaks in the plot of Figure 1. Surprisingly, the agreement is less
satisfactory in the large scales (i.e. low wave numbers) which are clearly fully resolved.
The large scales are in�uenced by the domain size and by the speci�c form of the boundary

conditions imposed on the truncated domain. More tests with larger domains are required, but
at such high resolutions systematic tests cannot be easily performed. Moreover, even with the
larger domain it is not clear that matching the outer �ow with the experimental conditions can
be achieved. There are many uncertainties associated with the experiment itself that have not
been quanti�ed; in fact, some uncertainties are irreducible and cannot be precisely quanti�ed.
This example raises the issue of uncertainty in the boundary conditions and the experimental

input but there are many more sources of uncertainty that can be present in simulating �uid
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�ows, laminar or turbulent, in a simple setting or in multi-disciplinary problems. In addition
to boundary and initial conditions, there is still an uncertainty component associated with the
physical problem, and speci�cally with such diverse factors as constitutive laws, transport
coe�cients, source and interaction terms, geometric irregularities (e.g. roughness), etc. With
the CFD �eld reaching now some degree of maturity and with peta�op resources within the
horizon, it is timely to pose the more general question of how to model uncertainty and
stochastic input, and how to formulate algorithms in order for the simulation output to re�ect
accurately the propagation of uncertainty. Assuming we can quantify numerical accuracy, the
new objective is to model uncertainty from the beginning of the simulation and not simply
as an afterthought!
To this end, the Monte-Carlo approach can be employed but it is computationally expensive

and it is only used as the last resort. The sensitivity method is an alternative more economical
approach, based on moments of samples, but it is less robust and it depends strongly on the
modelling assumptions [7]. There are other more suitable methods for physical applications,
and there has already been good progress in other �elds, most notably in seismology and
structural mechanics. A number of papers and books have been devoted to this subject, e.g.
References [8–15].
The most popular technique for modelling stochastic engineering systems is the perturbation

method where all stochastic quantities are expanded around their mean via a Taylor series. This
approach, however, is limited to small perturbations and does not readily provide information
on high-order statistics of the response. A more e�ective approach pioneered by Ghanem
and Spanos in the context of �nite elements for solid mechanics is based on a spectral
representation of the uncertainty [11]. This allows high-order representation, not just �rst-
order as in most perturbation-based methods, at high computational e�ciency. It is based on
the original ideas of Wiener (1938) on Homogeneous or Polynomial Chaos (PC) and employs
Hermite polynomials [16].
We will adopt this approach in the current work for representing the uncertainty spectrally,

and we will perform Galerkin projections to formulate the governing equations. The resulted
system of equations is a deterministic coupled set of partial di�erential equations, which can
be solved using standard algorithms for temporal and spatial discretization. This is one of the
most attractive features of this method, namely that the deterministic solvers that have already
been developed can be used directly in the new context. The coupling terms include inner
products involving the Hermite polynomial functionals and can be pre-computed. The Wiener–
Hermite expansion is hierarchical, a sort of generalized Fourier series in the random space, and
every new mode after the second-order term denotes deviation from the Gaussian distribution.
In the next section, we will review the main ideas of PC and apply it to a second-order linear

oscillator in Section 3. In Section 4 we formulate new PC equations for the incompressible
Navier–Stokes equations and present an application to �ow-structure interactions. We conclude
with a discussion of open issues in PC applied to non-linear problems and large domains and
present possible extensions to a broader set of random distributions.

2. REPRESENTATION OF RANDOM PROCESSES

In this section, we brie�y review the PC expansion, along with another important technique
for representating a random process, namely the Karhunen–Loeve (KL) expansion. The KL
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expansion is useful especially for decomposing the input random processes. Throughout this
paper, we will use the symbol ^ to denote the standard Gaussian random variable, i.e. Gaussian
random variable with zero mean and unit variance.

2.1. Polynomial Chaos expansion

The PC expansion was �rst proposed by Wiener [16]. According to the theorem by Cameron
and Martin [17], it converges to any functional of L2 in the L2 sense. Thus, PC provides
a means for expanding second-order random processes in terms of orthogonal polynomials.
Second-order random processes refer to the processes with �nite variance, or from a physical
point of view, processes with �nite ‘energy’. Thus, a second-order random variable X (�),
viewed as a function of � (the independent random parameter), can be represented in the
form

X (�) = a0H0 +
∞∑
i1=1
ai1H1(�i1 (�))

+
∞∑
i1=1

i1∑
i2=1
ai1i2H2(�i1 (�); �i2 (�))

+
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1
ai1i2i3H3(�i1 (�); �i2 (�); �i3 (�))

+ · · · (1)

where Hn(�i1 ; : : : ; �in) denotes the PC of order n in the Gaussian random variables (�i1 ; : : : ; �in).
The above equation is the discrete version of the original Wiener–Hermite expansion, where
the continuous integrals are replaced by summations. The expression of the Hermite polyno-
mials Hn is given by

Hn(�i1 ; : : : ; �in)= e
(1=2)^T^(−1)n @n

@�i1 · · · @�in
e−(1=2)^

T^ (2)

where ^ denotes the vector consisting of n Gaussian random variables (�i1 ; : : : ; �in). For nota-
tional convenience, Equation (1) can be rewritten as

X (�)=
∞∑
j=0
âj�j(^) (3)

where the functionals �j(^) are simply a re-ordering of Hn(�i1 ; : : : ; �in) PC forms a complete
orthonormal basis in the L2 space of random variables ^, i.e.

〈�i�j〉= 〈�2i 〉�ij (4)

where �ij is the Kronecker delta and 〈·; ·〉 denotes the ensemble average, i.e. the inner product
in the Hilbert space of random variables:

〈f(^)g(^)〉=
∫
f(^)g(^)W (^) d^ (5)
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where the weighting function is

W (^)= 1√
(2�)n

e−(1=2)^
T^ (6)

What distinguishes the PC expansion from other possible complete sets of expansions is that
the Hermite polynomials here are orthonormal with respect to the weighting function W (^)
that has the form of a n-dimensional independent Gaussian probability distribution with unit
variance. We list the one-dimensional polynomials for demonstration purpose. When n=1,
the polynomials are as follows:

�0 =1; �1 = �; �2 = �2 − 1; �3 = �3 − 3�; : : : (7)

The orthogonality condition takes the form

〈�i�j〉= 〈�2i 〉�ij =(i!)�ij (8)

2.2. Karhunen–Loeve expansion

The Karhunen–Loeve expansion [18] is another way of representing a random process [18].
It is based on the spectral expansion of the covariance function of the process. Let us denote
the process as h(t; �) and its covariance function as Rhh(t1; t2), where t1 and t2 are the two
temporal co-ordinates. By de�nition, the covariance function is real, symmetric and positive
de�nite. It has an orthogonal set of eigenfunctions which forms a complete basis. The KL
expansion then takes the following form:

h(t; �)= �h(t) +
∞∑
i=1

√
�i�i(t)�i(�) (9)

where �h(t) denotes the mean of the random process and �i(�) is a set of independent random
variables. Also, �i(t) and �i are the set of eigenfunctions and eigenvalues of the covariance
function, respectively, i.e. ∫

Rhh(t1; t2)�i(t2) dt2 = �i�i(t1) (10)

If the random process itself h(t; �) is a Gaussian process, then the random variables �i form an
orthonormal Gaussian vector. Among many possible decompositions of a random process, the
KL expansion is optimal in the sense that the mean-square error resulting from a �nite-term
representation of the process is minimized [11]. Its use is limited as the covariance function of
the solution process is often not known a priori. Nevertheless, the KL expansion still provides
a powerful means for representating the input random processes when the covariance structure
is known.

3. STOCHASTIC SECOND-ORDER OSCILLATOR

For demonstration purposes, we will �rst apply the PC method to a damped linear oscillator
subject to a random external forcing f(t) of the form

�x(t) + cẋ(t) + kx(t)=f(t); x(0)= x0 and ẋ(0)= ẋ0; t ∈ [0; T ] (11)
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Equation (11) has been normalized with respect to the mass, and thus the forcing f(t) has
units of acceleration. Also, the damping factor c and spring factor k are de�ned as follows:

c=2�!0 and k=!20 (12)

where � and !0 are the damping ratio and the natural frequency of the system, respectively.
This system becomes stochastic if the external forcing or the input parameters or both are
random quantities. Those random quantities can evolve in time (random process) or not
(random variable). In the present work, we consider the case of the response of the system
subject to a Gaussian random external excitation with correlated disturbances in time (random
process case). The input process is assumed to be a weakly stationary random process, with
zero mean and correlation function Rff(�), applied over a time interval [0; T ]. We can rewrite
Equation (11) as

�x(t) + 2�!0ẋ(t) +!20x(t)=f(t; �); x(0)= x0 and ẋ(0)= ẋ0; t ∈ [0; T ] (13)

Speci�cally, we choose the random input to be a �rst-order Markov process and it is deter-
mined by its correlation function:

Rff(�)=	2fe
−|�|=A; A¿0 (14)

where A is the correlation length, and 	f denotes the standard deviation of the process. It can
be veri�ed that f(t; �) is the stationary solution of the di�erential equation:

ḟ(t)=− 1
A
f(t) + 	f

√
2
A
W (t) (15)

in which W (t) is the zero-mean stationary white noise with covariance function �(t).
Knowing the initial state of the system, there exists a theoretical solution for the steady-state

covariance matrix

�= lim
t→∞ �(t)

of the solution of the system see Reference [19]. This solution is obtained assuming that
�(0)=�0 =0. In particular, we have

�xx=
(
2�!0 + 1=A
2�!30

)( 	2f
!20 + (1=A)2 + 2�!0=A

)
(16)

Given the correlation function of the input in the time domain, we employ the Karhunen–Loeve
expansion to decompose the random input process. The corresponding eigenvalue problem is
solved analytically. The eigenvalues and eigenfunctions are as follows:

�i=
2=A

(1=A)2 +!2i
and fi(t)= 


(
cos(!it) +

1
A!i

sin(!it)
)
; i=1; 2; : : : ; n (17)

where


=

{
1
2

(
T

(
1 +

(
1
A!i

)2)
+
sin(2!iT )
2!i

(
1−

(
1
A!i

)2)
− 1
A!2i

(cos(2!iT )− 1)
)}−1=2

(18)
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Figure 2. Eigenvalues �i for various values of the correlation length A. T =20 (left). Eigenfunctions
�i(t), t ∈ [0; T ], n=1; 2; 3; 4; 5 and correlation length A=1. T =20 (right).

The normalization coe�cient 
 ensures that
∫ T
0 f

2
i (t) dt=1. Here, A is the correlation length,

[0; T ] is the size of the time domain, and !i are determined numerically by solving:(
!2i −

(
1
A

)2)
tan(!iT )− 2!iA =0; i=1; 2; : : : ; n (19)

For a given correlation length A and a standard deviation 	f of the random process f(t; �),
we decompose the input in its truncated Karhunen–Loeve expansion up to the random dimen-
sion n, i.e.

f(t; �)= �f(t) + 	f
n∑
i=1

√
�i�i(t)�i(�) (20)

The number of terms, i.e. random dimension n, needs to be large enough in order to resolve
the scales associated with the correlation length A. Plots of eigenvalues and eigenfunctions
are shown in Figure 2. In this case, the damping and spring factors are taken equal to 1, the
mean �f of the external forcing f is equal to 0 and its standard deviation is 	f=

√
3. We

note that the smaller the value of the correlation length A the higher is the contribution from
terms with small eigenvalues.
The solution of the problem is sought in the form given by its truncated PC expansion:

x(t; �)=
P∑
j=0
xj(t)	j(^(�)) (21)

with

P=
(n+ p)!
n!p!

− 1 (22)
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Figure 3. Time evolution of second-order moment �xx for di�erent number of random dimensions n
(left). Convergence rate of second-order moment �xx versus the number of random dimensions n (right).

where n is the number of random dimensions and p is the highest polynomial order of the
PC expansion.
To formulate the algebraic equations, we �rst expand the right-hand side of Equation (13)

in its Karhunen–Loeve series and we also expand the response process x(t) in its PC se-
ries (see Equation (21)). The system does not exhibit any non-linearity in random space
because only the right-hand side of Equation (13) is random. This implies that quadratic
or higher-order terms in the PC expansion will not improve the accuracy of the solution.
Therefore, we use only linear terms in the expansion which means that we take a constant
value of p=1 in Equation (22). We then study the e�ect of the number of dimensions n in
the expansion. The algebraic system is obtained by a Galerkin projection of the discretized
Equation (13), and standard deterministic solvers are employed for the solution [20]. This
is so because the Galerkin projection takes advantage of the orthogonality of the basis so
all randomness, which is represented in the basis, is eliminated giving rise to a deterministic
system. This, in fact, is a key to the e�ciency and accuracy of the method. Most numerical
methods for stochastic di�erential equations are �rst-order due to lack of regularity in the
solution. In contrast, the PC method can be of arbitrarily high-order depending on the solver
involved.
We compute the second-order moment of the solution for di�erent values of the random

dimensions n and for a correlation length A=1:0. We examine its evolution versus non-
dimensional time �=!0t as shown in Figure 3 (left). For the chosen set of parameters, the
theoretical value of the variance of the solution as t→∞ is 2, shown on the �gure by the
solid black line. We see that as the number n increases the numerical solution converges
asymptotically to the theoretical solution. We then compare the L∞ error at time t=10 of
the numerical solution versus the exact solution, as shown Figure 3 (right). We examine the
decaying of this error versus the number of terms n in the Karhunen–Loeve expansion. Similar
to the decay rate of the eigenvalues in Figure 2 (left), here we see that the error initially
decays exponentially (for n¡15) but eventually saturates (for 15¡n¡50) as we reach a large
number of random dimensions.
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The linear problem we have considered here driven by nearly white noise is in some sense a
very di�cult problem for PC and represents an extreme case. The solution accuracy is totally
determined by the input dimensionality barring any numerical integration errors. However, in
many CFD problems the stochastic input is su�ciently represented by a much smaller num-
ber of dimensions, e.g. n=2–4 but non-linearities require that a high-order Wiener–Hermite
polynomial be employed, i.e. p¿1 to capture non-Gaussian e�ects. We will demonstrate this
in the next section where we deal with the full Navier–Stokes equations.

4. INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

We consider the incompressible Navier–Stokes equations

∇ · u=0 (23)

@u
@t
+ u · ∇u=−∇
+ Re−1∇2u (24)

where 
 is the pressure and Re is the Reynolds number of the �ow. The �ow can behave
randomly subject to the randomness imposed from either initial conditions or boundary condi-
tions (or both). Even in the case where both initial and boundary conditions are deterministic,
stochastic solution can still be obtained due to the intrinsic non-linearity of the Navier–Stokes
equations (e.g. turbulence �ow) but here we will consider laminar �ow at relatively low
Reynolds number.
We expand the velocity and pressure in terms of PC, i.e.

u(x; t; �) =
P∑
i=0
ui(x; t)�i(�(�)) (25)


(x; t; �) =
P∑
i=0

i(x; t)�i(�(�)) (26)

We then substitute the PC expansions into Navier–Stokes Equations (23) and (24) and we
project the obtained equations onto the random space spanned by the basis polynomials {�i}
by taking the inner product with each basis and using the orthogonality condition (8). We
obtain the following discrete set of deterministic equations:
For k ∈ [0; P]

∇ · uk =0 (27)

@uk
@t
+

1
〈�2k 〉

P∑
i=0

P∑
j=0
eijk(ui · ∇)uj =−∇
k + Re−1∇2uk (28)

where eijk = 〈�i�j�k〉.
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The above set of (P + 1) ‘Navier–Stokes-like’ equations for each random mode is only
coupled through the convective terms, for details see Reference [21].

4.1. Numerical implementation

Discretization in space and time can be carried out by any conventional method. We use the
spectral=hp element method in space in order to have a better control of the numerical error
coming from the deterministic component [22]. The high-order splitting scheme together with
properly de�ned consistent pressure boundary conditions are imployed in time [23]. In par-
ticular, the spatial discretization is based on Jacobi polynomials on triangles or quadrilaterals
in two-dimensions, and tetrahedra, hexahedra or prisms in three-dimensions.
Once we have obtained the coe�cients in the expansion of the solution (see Equations (25)

and (26)), we have an analytical form of the solution process. The mean of the solution is
contained in the expansion term with index of zero. The second-order moment of the solution
(velocity or pressure �eld), i.e. the covariance function is given by

Ruu(x1; t1;x2; t2) = 〈u(x1; t1)− u(x1; t1); u(x2; t2)− u(x2; t2)〉

=
P∑
i=1
[ui(x1; t1)ui(x2; t2)〈�2i 〉] (29)

The variance of the solution is obtained as

Var(u(x; t)) = 〈(u(x; t)− u(x; t))2〉

=
P∑
i=1
[u2i (x; t)〈�2i 〉] (30)

and the root-mean-square (rms) is the square root of the variance.

4.2. Application to �ow-structure interactions

We consider two-dimensional �ow-structure interactions problems subject to stochastic inputs.
In particular, we are interested in the case of an elastically mounted circular cylinder with
random structural parameters, subject to vortex-induced vibrations. We study the case of an
unsteady �ow in the subcritical regime with Re=Ud=�=100 (U is the free-stream velocity,
d the cylinder diameter and � is the kinematic viscosity). The �ow is computed using the
procedure outlined above while the structural response of the moving cylinder is computed
using the procedure described in Section 3.
In this section, we assume the damping coe�cient and the spring factor of the structure

to be both random variables. The free structure, excited by the vortex shedding of the �ow
which is initially deterministic, produces a random response. Therefore, the position of the
boundary of the cylinder becomes stochastic. This random boundary a�ects the �ow domain,
and consequently the �ow itself becomes a stochastic process. The �uid forces on the cylinder
derived from the random �ow velocity �eld and the random pressure �eld are random pro-
cesses as well. The damped oscillator is then subject to random parametric (random variables)
and external forcing (random process) excitations.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:483–505
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Because the response of the cylinder to the vortex shedding is mainly in the cross-�ow di-
rection and due to the increased complexity introduced by the random character of the system,
we have constrained the cylinder movement in one direction. Therefore, the cylinder is free
to oscillate in the cross-�ow y-direction but it is forced to have no motion in the streamwise
x-direction. If we denote by �=y=d, then the governing equation for the structure is

��(t; �) + c(�)�̇(t; �) + k(�)�(t; �)=F(t; �); �(0)= �0 and �̇(0)= �̇0 (31)

The damping coe�cient c and spring factor k are both random variables with Gaussian
distributions. The forcing excitation term on the right-hand side of Equation (31) is not
known a priori and has to be computed once the �ow distribution has been obtained. This is
done every timestep, with the �uid forces acting on the cylinder surface computed as follows:

F(t; �)=
∮ (

−
(t; �)n+ 1
Re
(∇u(t; �) +∇u(t; �)T) · n

)
ds (32)

where n is the unit normal. For the temporal discretization of Equation (31) we use the
implicit, second-order Newmark scheme [20].
To simplify the solution of the �ow equations, we consider the initial co-ordinate system

(x′; y′; t′) and a co-ordinate system (x; y; t) attached to the moving cylinder. This maps the
time-dependent and moving problem to a stationary and non-deforming one. Speci�cally, we
introduce the following mapping:

x= x′ − �(t′)
y= y′ − �(t′)
t = t′

For a two-dimensional �ow, this transformation amounts to an adjustment of u and v by the
cylinder velocity:

u= u′ − @�
@t′

v= v′ − @�
@t


=
′

The Navier–Stokes and continuity equations are transformed to

@u
@t
+ (u · ∇)u=−∇
+ Re−1∇2u+A(�; �) (33)

∇ · u=0 (34)

where the forcing term A(�; �) is the extra acceleration term introduced by the transformation.
In 2D �ow, with no streamwise motion of the cylinder, A(�; �) has a very simple form:

Ax=0 and Ay=−@
2�
@t2

(35)
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Figure 4. Time evolution of the leading random modes for the cylinder cross-�ow response y=d (top)
and the lift coe�cient CL (bottom).

Since the mapping involves the random cylinder velocity, it is a random process itself and it
needs to be also represented by a chaos expansion.

4.3. Numerical results

The chosen parameters for the �ow suggest that we are in the laminar �ow regime. The
Reynolds number is Re=100, and the random parameters for the structure are set to:

• ( �c; 	c)= (0:1; 0:01), ( �k; 	k)= (1:0; 0:2)

(see Equation (31)), while the initial conditions �0 and �̇0 are set to 0. We note that there is
a non-zero probability that the oscillator has a natural frequency !0 =

√
k matching the vortex

shedding frequency of a �xed cylinder at this Reynolds number. Also, the system has two
random dimensions (n=2), and we use third-order PC expansion (p=3), which corresponds
to a 10-term chaos expansion (i.e. P + 1=10).
In Figure 4, we plot the time evolution of the leading random modes of the cylinder

response. We show the non-dimensional cross-�ow displacement y=d of the cylinder (top)
and the corresponding lift coe�cient CL =Fy=(0:5dU 2) (bottom; with Fy the lift force),
along with the deterministic solution. As expected, the mean response, due to the di�usion
e�ect of the randomness, has a smaller amplitude than the deterministic solution. The �rst
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Figure 5. Time evolution of the variance of the structural solution. Variance of the cylinder cross-�ow
response y=d (top) and variance of the lift coe�cient CL (bottom).

and second modes represent the Gaussian part of the solution. In Figure 5, we show the
time evolution of the variances of the non-dimensional cross-�ow displacement y=d (top)
and the corresponding lift coe�cient CL (bottom). In both cases, after an initial peak in
the response, the signal eventually reaches a stationary periodic state. The initial peak value
can be two times larger than that of the �nal periodic state. This could indicate that as the
randomness propagates from the cylinder body to the �ow domain downstream, some strong
interactions and possibly unstable phenomena take place. It is, therefore, important that the
stochastic simulation be su�ciently robust to be able to capture accurately this initial transient
regime.
Figure 6 shows instantaneous �ood contours (grey scale) and contour lines (white colour) of

rms and mean of cross-�ow velocity, respectively. Figure 7 shows the same kind of plot for the
vorticity �eld. Both snapshots are taken at t=600 (non-dimensional time units) corresponding
to more than 100 shedding cycles from the beginning of the simulation. Regions of the �ow
domain with high uncertainty are the shear layers and the near-wake of the cylinder, which
are of course the regions of utmost physical interest!
Figure 6 suggests that the rms values of cross-�ow velocity are not strongly spatially

correlated to the mean values; for example the contours with the largest values are not aligned.
In the near-wake up to x=d=7:0, large variance is obtained at the boundary between �ow
structures of mean, but further downstream, as the system reaches equilibrium, large variance
realigns with large values of the mean. Figure 7 shows this more consistently along the wake,
where there is a strong correlation between variance and mean values of the vorticity. Large
variance of the vorticity is obtained in the regions of large shear or strong mean vorticity.
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Figure 6. Instantaneous spatial distribution of rms (grey scale) and mean
(white line) of cross-�ow velocity.

Figure 7. Instantaneous spatial distribution of rms (grey scale) and mean (white line) of vorticity.

Figure 8 presents the pressure distribution on the cylinder surface at di�erent instants
within one shedding cycle. The �gure shows four di�erent instants, from non-dimensional
time t0 = 602:4 (top left plot) to t0 + 3T=4 (bottom right plot) within one shedding cycle of
period T . Each plot shows an instantaneous polar view of the pressure distribution on the
cylinder surface as well as the mean cross-�ow position of the cylinder y=d at the corre-
sponding time. The cylinder is represented by a black disk. The �ow orientation is from left
to right in each plot. Therefore, the angle �=180◦ on the polar view corresponds to the
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Figure 8. Polar plots of pressure distribution on the cylinder surface relative to the cylinder mean
cross-�ow position at four di�erent instants within one shedding cycle. Deterministic pressure solution

(dashed line); Stochastic pressure solution (solid line and shaded area).

front stagnation point and �=0◦ corresponds to the rear stagnation point. Successive dashed
circles give pressure value levels (the zero value is a solid circle). The deterministic pressure
solution is represented by a dashed line while the stochastic solution is represented by a solid
line (mean pressure solution) and a shaded area (‘error-bar’ region of the pressure solution).
This region is centred around the mean curve and its span is two standard deviations (i.e.
one std above and one std below the mean value). Pressure values are mainly in the range
from −1:0 to 1:0, and both deterministic and stochastic pressure solutions take positive values
around the front stagnation point. Noticeable di�erences exist between stochastic and deter-
ministic solutions. In particular, temporal as well as spatial changes in the pressure variance
(or ‘error-bar’ region) can be seen. However, the deterministic signal remains, most of the
time, inside the envelope of the stochastic solution. Small uncertainty (in terms of Gaussian
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Figure 9. Probability distribution function for the pressure at the rear stagnation point at di�erent
instants within a shedding cycle.

response) is obtained at the front stagnation point and at two points close to separation on
both sides of the cylinder. Values of the std at those locations are small and mean solu-
tions are equivalent to the deterministic solutions. The polar angular position of these two
nodes is always in the range �∈ [90◦; 120◦] or in the range �∈ [240◦; 270◦]. It would be in-
teresting to investigate the relationship between these nodes and the separation points on the
cylinder.
Having obtained all the random modes, we can now reconstruct the solution and examine its

probability distribution function (PDF) at di�erent times within a shedding cycle. Figures 9
and 10 show the PDFs of the pressure at the rear stagnation point and of the cross�ow
amplitude of oscillation at di�erent time instants. It is clear that the PDF of the amplitude of
the cylinder oscillation is symmetric, as expected, but the PDF of the base pressure shows a
strong bias towards one side.
In Figures 11 and 12 we plot the time evolution of the base pressure and of the cylin-

der amplitude of cross-�ow oscillation. Also shown are error bars at �ve time instants and
corresponding probability distribution functions. There is a large di�erence of the determin-
istic versus the mean stochastic solution as a function of time. Speci�cally, for the cylinder
oscillation the amplitude PDF approaches a ‘lognormal’ form on the left side, it transitions
through a uniform-like distribution (between time IV and time V), and �nally reverses to
the other side resembling a lognormal distribution again. It is also interesting to observe that
the PDF with the sharp left side (time II) occurs when the cylinder has maximum negative
displacement in this case. Often, smaller variance occurs when the displacement is close to its
maximum value as opposed to when it is closed to some ‘average’ value. Here, the left side
of the PDF of time II is very sharp, which means that the cylinder has almost ‘no chance’
to go any lower down (because it reaches its minimum value) but it will most likely
go back up.
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Figure 10. Probability distribution function for the amplitude of the cross�ow oscillation at di�erent
instants within a shedding cycle.
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Figure 11. Upper: Time variation of the mean base pressure (with error bars) versus
the deterministic solution. Lower: Probability distribution function of base pressure

at �ve time instants marked in the top plot.
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Figure 12. Upper: Time variation of the mean amplitude of cylinder oscillation (with
error bars) versus the deterministic solution. Lower: Probability distribution function

of amplitude at �ve time instants marked in the top plot.

5. OPEN ISSUES IN POLYNOMIAL CHAOS

5.1. Resolution properties of Wiener–Hermite expansions

PC is perhaps the most e�cient approach for simulating uncertainties in �ow problems, with
observed speed-up factors from 1000 to more than 100 000 compared to Monte Carlo sim-
ulation, depending on the problem. For �ows with time-dependent mean it is particularly
e�ective and does not require constructing careful ensemble averages as in other probabilistic
approaches. The above speed-up estimate applies to stochastic input which is at least partially
correlated and its dimensionality is relatively low. However, for a random process describing
an input with a very short correlation length, a high dimensional chaos expansion is required.
As shown in Equation (22), the number of expansion terms (P + 1) increases fast, although
algebraically, both with the dimension n as well as the polynomial order p. Therefore, pro-
cesses involving nearly white noise, like the second-order oscillator example presented in
Section 3, are particularly di�cult to handle with PC.
The e�ectiveness of Hermite expansions has been recognized long ago, and Chorin [24]

employed Wiener–Hermite series to substantially improve both accuracy and computational ef-
�ciency of Monte-Carlo algorithms. However, the limitation of prematurely truncated Wiener–
Hermite expansions in applications of turbulence was also recognized. Speci�cally, in the
pre-DNS era Orszag and Bissonnette [25] among others examined the possibility of using
Wiener–Hermite functional expansions to simulate turbulence [25]. However, they demon-
strated that for a relatively simple system of three interacting modes, PC failed to reproduce
the exact dynamics in equilibrium.
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Although the aforementioned example is a special case of inviscid dynamics, it is repre-
sentative of some of the problems that the Wiener–Hermite expansions have. The root of this
problem can be attributed to the relatively poor resolution properties of Hermite expansions
compared to other spectral polynomials. This has been recognized in deterministic expan-
sions [26, 27] and re-scaling procedures have been introduced, e.g. see Reference [28], to
deal with this. We explain this behaviour for the Hermite and Laguerre polynomials in the
following analysis, and subsequently present a generalized PC approach.
Let us consider the expansion of the exponential function in terms of Hermite polynomi-

als, i.e.

S ≡ e	�t =e(	t)2=2
∞∑
n=0

(	t)n

n!
Hn(�) (36)

To study the rate of convergence of this expansion we consider the norm

‖S‖2 = (
√
2�)−1

∫ ∞

−∞
e−�

2=2S2 d�=e2	
2t2

We also denote by SP the truncation expansion in Equation (36) that involves the �rst (P+1)
Hermite polynomials. We note here that SP is not exactly the PC expansion but we will use
it to obtain an approximate estimate. To this end, we compute

‖S − SP‖2 = e(	t)2
∞∑

n=P+1

(	t)(2n)

n!

and thus we can estimate the relative error from

‖S − SP‖2
‖S‖2 = e−(	t)

2 ∞∑
n=P+1

(	t)(2n)

n!
6e−(	t)

2 (	2t2)P+1

(P + 1)!
1

1− (	t)2=(P + 1)

where we have assumed that (	t)2=(P + 1)¡1. In order to estimate the number of required
Hermite functionals from the above inequality we introduce an error level � so that

‖S − SP‖
‖S‖ 6�

In addition, we can use the PC expansion directly to compute the approximation error or
inversely the number of required modes for given level of error �. In Figure 13 we plot
the two estimates versus the product (	t) for �=10−6. Clearly, for long times a very large
number of modes is required to maintain the error level at the prescribed level. Also, we see
that the theoretical estimate provides a lower bound, i.e. it gives the least number of required
modes to achieve the error level �.

5.2. Generalized polynomial chaos

In this section, we brie�y describe the extension of PC to representations of an input given by
an arbitrarily random distribution; more details can be found in References [20, 21, 29]. The
main idea is to replace the Hermite functionals with other orthogonal functionals that best
describe the input. To this end, the Askey family o�ers a wide class of suitable continuous and
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Figure 13. Estimate of required number of Hermite functionals versus the product of
standard deviation with time. The circle symbols correspond to the theoretical estimate

and the cross symbols correspond to the PC estimate.

Table I. Correspondence between Askey polynomial functionals and di�erent types of random
input (N¿0 is a �nite integer).

Random inputs Wiener–Askey Chaos Support

Continuous Gaussian Hermite-Chaos (−∞;∞)
Gamma Laguerre-Chaos [0;∞)
Beta Jacobi-Chaos [a; b]

Uniform Legendre-Chaos [a; b]

Discrete Poisson Charlier-Chaos {0; 1; 2; : : :}
Binomial Krawtchouk-Chaos {0; 1; : : : ; N}

Negative Binomial Meixner-Chaos {0; 1; 2; : : :}
Hypergeometric Hahn-Chaos {0; 1; : : : ; N}

discrete polynomials [30]. Speci�cally, these Askey orthogonal polynomials have weighting
functions the same as the probability function of certain types of random distributions. In
practice, we then choose the type of independent variables ^ in the polynomials {�i(^)}
according to the type of random distributions as shown in Table I.
It is clear that the original Wiener polynomial chaos corresponds to the Hermite-Chaos and

is a subset of the Wiener–Askey polynomial chaos. The Hermite-, Laguerre- and Jacobi-Chaos
are continuous chaos, while Charlier-, Meixner-, Krawtchouk- and Hahn-Chaos are discrete
chaos. It is worthy mentioning that the Legendre polynomials, which is a special case of the
Jacobi polynomials, correspond to an important distribution—the uniform distribution. Due
to the importance of the uniform distribution, we list it separately in the table and term the
corresponding chaos expansion as the Legendre-Chaos.
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Figure 14. Approximation to exponential distribution using di�erent orders of Wiener–Hermite Chaos.

In the following, we show what is the gain of using these new polynomials instead of the
Hermite expansions. First, we consider the Gamma distribution for the speci�c case of 
=0
and assume that a variable k is random following an exponential distribution with PDF of
the form:

f(k)= e−k ; k¿0 (37)

In Figure 14 we show the result of the approximation of the exponential distribution by the
Hermite-Chaos. The PDF of di�erent orders of the approximations are shown on the �gure,
together with the exact PDF of the exponential distribution. We notice that the third-order
approximation gives fairly good results and �fth-order Hermite-Chaos is close to the exact
distribution. The Hermite-Chaos does not approximate the PDF well at x ∼ 0 where the PDF
reaches its peak at 1. In order to capture this rather sharp region, more Hermite-Chaos terms
are needed. If the optimal Wiener–Askey chaos is chosen, in this case the Laguerre-Chaos,
only one term is needed to represent k exactly. In solutions of di�erential equations, the
translates into essentially a loss of fast (exponential) convergence of the Hermite-Chaos in
contrast to Laguerre-Chaos [29].
Next, we assume the distribution of k is Beta distribution in the domain [0; 1]. Figure 15

shows the PDF of �rst-, third- and �fth-order Hermite-Chaos approximations to the Beta
random variable; the special case of the important uniform distribution is considered. It can
be seen that the Hermite-Chaos approximation converges to the exact solution as the number
of expansion terms increases. Oscillations are observed near the corners of the square. This
is analogous to the Gibb’s phenomenon, which occurs when Fourier expansions are used to
approximate functions with sharp corners. For a uniform distribution, the Hermite-Chaos does
not work very well due to this stochastic Gibb’s phenomenon even when more higher-order
terms are added. On the other hand, the �rst-order Jacobi-Chaos expansion is already exact.
In addition to the exponential convergence, the proper Wiener–Askey basis leads to dramatic
lowering of dimensionality of the problem.
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Figure 15. Approximation to uniform distribution using di�erent orders of Wiener–Hermite Chaos.

6. SUMMARY

We have discussed in this paper the construction of error bars in CFD that re�ect physi-
cal input uncertainty and its propagation in simulations. To this end, we �rst employed the
Wiener–Hermite polynomial functionals in a second-order oscillator and a �ow-structure inter-
action problems. Representative results obtained show that for �ow simulations it is possible
to quantify uncertainty both in time and in space e�ciently. We have also discussed open
problems associated with the Hermite polynomials and generalized PC to a wide class of
Askey polynomials that best represent di�erent types of stochastic input.
More work is needed on this front, and we believe the current paper is just the beginning of

a more systematic future e�ort by the CFD community to incorporate statistics into simulation
for more reliable answers.
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