2012 IEEE 26th International Parallel and Distributed Processing Symposium

The Parallel Computation of Morse-Smale Complexes

Attila Gyulassy, Valerio Pascucci
Scientific Computing and Imaging Institute
Dept. of Computer Science, University of Utah
Salt Lake City, United States of America
Jjediati@sci.utah.edu, pascucci@sci.utah.edu

Abstract—Topology-based techniques are useful for multi-
scale exploration of the feature space of scalar-valued func-
tions, such as those derived from the output of large-scale
simulations. The Morse-Smale (MS) complex, in particular,
allows robust identification of gradient-based features, and
therefore is suitable for analysis tasks in a wide range of
application domains. In this paper, we develop a two-stage
algorithm to construct the Morse-Smale complex in parallel,
the first stage independently computing local features per block
and the second stage merging to resolve global features. Our
implementation is based on MPI and a distributed-memory
architecture. Through a set of scalability studies on the IBM
Blue Gene/P supercomputer, we characterize the performance
of the algorithm as block sizes, process counts, merging
strategy, and levels of topological simplification are varied, for
datasets that vary in feature composition and size. We conclude
with a strong scaling study using scientific datasets computed
by combustion and hydrodynamics simulations.

Keywords-Morse-Smale complex; Parallel topological analy-
sis

[. INTRODUCTION

The expanding computational power of modern super-
computers enables simulations to generate data with greater
resolution and complexity than ever before. Furthermore, as
sensors gain resolution and the size of commodity storage
increases, the same trend is observed for captured data,
for example, for CT scans and confocal microscopy mo-
saics. Sophisticated analysis techniques that scale with the
explosion in data size and complexity are necessary for
the effective analysis of such data. Topology-based graph
structures are a promising approach because they enable
a multi-resolution representation that summarizes important
features and can be explored interactively.

The Morse-Smale (MS) complex, a segmentation of a
scalar field into regions of uniform gradient flow behavior,
is one such topological structure. It is an unstructured
graph with edges representing the topological connectivity
of features and nodes storing their attributes and geometric
embedding. As a cellular decomposition of the domain, it
can provide a map to the feature space defined by gradient
flow properties that can be orders of magnitude smaller
than the input data, depending on the original complexity.
Furthermore, the process of defining features is reduced to

1530-2075/12 $26.00 © 2012 IEEE
DOI 10.1109/IPDPS.2012.52

484

Tom Peterka, Robert Ross
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, United States of America
tpeterka@mecs.anl.gov, rross@mecs.anl.gov

simulation

topology extraction

2.Sadde Funcion Valve

—— Generate MS Compléx Interactive Exploration

Figure 1. The analysis pipeline using MS complexes starts with acquisition
of simulation data and computation of a fine-scale complex (left). All
subsequent analysis queries this structure. A scientist may interactively
visualize statistics about the topological structure of the data or select
different threshold values to define features. Such exploration provides
immediate feedback to the scientist with visualization of the extracted
features as well as statistics generated on-the-fly (right).

designing interactive queries on the graph structure. This
allows scientists to conduct parameter studies without the
need to rerun analyses on the original data.

To motivate our work, Figure 1 contains a small example
of how the MS complex can answer underlying science
questions. The remainder of this paper then demonstrates
how to generate similar complexes as in the left side of this
figure, in parallel and at very large scale. In Figure 1 the MS
complex is used to find the filament structure of a simulated
porous material [12], represented as a signed volumetric
distance field from an uncertain interface demarcating the
interior and exterior of the material. The MS complex traces
the potential locations of the filament structures, or three-
dimensional ridge-lines.

After the MS complex is computed from the data in the
left side of Figure 1, it is explored interactively on the right.
This interactive exploration enables viewing the filament
structures for multiple threshold values and at multiple
topological scales, making possible a parameter study of
the impact and stability of the choice of threshold values.
As an embedded graph, the filaments can be analyzed using
graph algorithms, extracting statistics such as length, cycle
count, and the minimum cut. This kind of approach has
similar applications in a wide variety of disciplines including
physics, computational chemistry, combustion, biomedical
imaging, astronomy, and oil exploration.

The bottleneck until now in the analysis pipeline just
described has been initial computation of the complex,

IEEE
computer
pSOCIe

ty

requiring both significant memory resources and processing
time. Given the size and complexity of many datasets,
computing the MS complex requires HPC resources, often
the same supercomputers used to compute the original data.
Two main challenges must be addressed to compute the MS
complex in parallel.

First, features often have global scope, and the spatial
decomposition imposed by a parallel approach must be
overcome to resolve them. When a data set is divided into
spatial blocks to be processed in parallel, gradient flow
features identified locally may in fact be part of much
larger ones spanning several blocks. A globally consistent
resolution of these features is necessary for robust analysis,
and the process of resolving the features inevitably requires
potentially expensive interprocess communication.

Second, the MS complex encoding the segmentation at
the finest topological resolution may have a prohibitively
large memory footprint due to an abundance of insignificant
features or noise. A multi-resolution representation is needed
to simplify the fine-scale complex, where typically only the
coarsest levels of the hierarchy may represent features of
interest. However, a complete simplification requires knowl-
edge about the global connectivity of the complex, limiting
the simplification that can be performed independently.

In this paper, we designed, implemented, and tested
a novel parallel algorithm to construct the 1-skeleton of
the MS complex. Our solution features tunable parameters
that allow trade offs in use of resources, output size, and
accuracy. These parameters include blocking strategy, merg-
ing strategy, and simplification level of the topology. The
key to the scalability of our approach is to balance the
degree of simplification with communication load, based on
understanding how the parallel performance of topology-
based techniques is impacted by the distribution and size
of features in the original data.

To characterize our algorithm’s performance, we con-
ducted extensive parameter studies using artificial data as
well as actual scientific data. The synthetic datasets are de-
signed to test best-case and worst-case performance, where
feature size and count are varied in a range of data sizes and
processor counts. The scientific datasets demonstrate strong
scaling on results of large-scale simulations of combustion
and hydrodynamic simulations. These results indicate guid-
ing principles that can further help design the next generation
of scalable topology-based analysis algorithms with the goal
of deploying them in situ with simulations.

This is the first parallel algorithm for computing the
MS complex that scales efficiently to tens of thousands
of nodes of distributed-memory HPC supercomputers such
as the IBM Blue Gene/P. Enabling the large-scale parallel
computation of the MS complex opens up new possibilities
for scientists who can use the MS complex for further
simplification, filtering, feature extraction, and quantitative
analysis of their data.

485

II. RELATED WORK

The MS complex is a topological data structure that
provides an abstract representation of the gradient flow
behavior of a scalar field [29], [28] that is beginning to
make an impact in analysis of large-scale scientific data. For
example, Laney et al. [20] used the descending 2-manifolds
of a two-dimensional MS complex to segment an interface
surface and count bubbles in a simulated Rayleigh-Taylor
instability. Bremer et al. [2] used a similar technique to count
the number of burning regions in a lean premixed hydrogen
flame simulation. Gyulassy et al. [12] used carefully selected
arcs from the 1-skeleton of the three-dimensional MS com-
plex to analyze the core structure of a porous solid.

Efficient computation of the MS complex for large volu-
metric data is still an open challenge. The first algorithm for
two-dimensional piecewise-linear (PL) data was presented
by Edelsbrunner et al. [6]. Bremer et al. [1] improved
this by following gradients more faithfully and described
a multi-resolution representation of the scalar field. Several
algorithms have been proposed to compute the complex
for volumetric data [5], [13], [14], [15], however, these
techniques are limited by computational overhead to small,
simple data sets.

A discrete interpretation of Morse theory, as presented
by Forman [8], simplifies the construction of the complex
by discretizing gradient flow. In this approach, a discrete
gradient vector field is computed that uniquely determines
the combinatorial structure of the MS complex. The main
computational aspect in using a discrete approach is gen-
erating a discrete gradient vector field. Lewiner et al. [21]
showed how a discrete gradient field can be constructed and
used to identify the MS complex, however, this construction
required an explicit graph-based representation of gradient
paths, prohibitively expensive for large volumetric data.
King et al. [19] presented a method for constructing a
discrete gradient field that agrees with the large-scale flow
behavior of the data defined at vertices of the input mesh.
In our approach, we use the parallel algorithm presented by
Gyulassy et at. [10] for its simplicity of implementation and
its dynamic simulation of simplicity, that greatly reduces the
number of zero-persistence critical points found. Although
this algorithm was presented as parallelizable, no implemen-
tation had been achieved.

One challenge to realizing a parallel implementation
is managing communication in a data-intensive algorithm.
Parallel analysis algorithms containing global features in
a distributed architecture need to communicate this in-
formation between processes. The computational time of
these algorithms often scales well, making parallel analysis
bound by data movement, as [25] demonstrated for volume
rendering. The dominant communication patterns seen in
analysis algorithms are local neighborhood communication,
as in particle tracing [24], [26] and global reduction, as

in image compositing [30]. Elements of our configurable
merge algorithm are motivated by a configurable image
compositing algorithm called Radix-k, shown to have good
scalability at the full scale of HPC machines [22].

The second stage of our algorithm, merging, is an example
of graph simplification. Graph simplification approaches
are used by the information visualization community in
order to view and interact with complex graph structures,
such as the sequential simplification algorithm presented
by Hennessey et al. [17]. Parallel graph simplification is a
component of multilevel graph partitioning algorithms. This
stage is usually called coarsening and can be found in the
ParMeTiS [27] and PT-Scotch libraries [3]. These libraries,
however, do not provide the exact graph simplification that
we need, and they have been shown to scale to only 128
processes. The same is true of the Parallel BGL [9].

III. BACKGROUND

Discretization is the fundamental tool used in the topo-
logical analysis of scalar functions available as samples on
a grid. In the following, we review concepts from Morse
theory, and present their discrete analogue that is the basis
for practical algorithms. Finally, we review topology-based
simplification.

A. Morse Functions and the MS Complex

Let f be real-valued smooth map f : M — R defined
over a compact d-manifold M. A point p € M is critical
when Vf(p) = 0, that is, the gradient is zero, and is
non-degenerate when its Hessian (matrix of second partial
derivatives) is non-singular. The function f is a Morse
function if all its critical points are non-degenerate and no
two critical points have the same function value. Morse
functions are dense in the space of functions, that is, any
function can be closely approximated by a Morse function,
a fact that makes them useful in the analysis of real-
world data. The Morse Lemma states that there exist local
coordinates in a neighborhood around p such that f has the
following standard form: f, = ¢+ 23 £ 2%--- £ 22. The
number of minus signs in this equation gives the index of
critical point p. In three-dimensional functions, minima are
index-0, 1-saddles are index-1, 2-saddles are index-2, and
maxima are index-3.

An integral line in f is a path in M whose tangent
vectors agree with the gradient of f at every point along
the path. The upper and lower limits of an integral line
are its destination and origin, respectively. Ascending and
descending manifolds are obtained as clusters of integral
lines having common origin and destination, respectively. A
Morse function f is a Morse-Smale function if its ascending
manifolds intersect descending manifolds only transversally.
The intersection of the ascending and descending manifolds
of a Morse-Smale function forms the Morse-Smale (MS)

486

complex. Of key importance in the analysis of scalar func-
tions is the 1-skeleton of the MS complex, formed by the
0- and 1-dimensional elements. The O-dimensional elements
are critical points, and are called nodes in the complex,
and the 1-dimensional elements are integral lines connecting
critical points differing in dimension by 1, and are called
arcs of the complex. Figure 2(b) illustrates the 1-skeleton
of the complex on a simple height field.

B. Discrete Morse Theory

Simulation data is most often available as samples at the
vertices of an underlying mesh. The data samples assign
values to vertices, and a continuous function is recovered on
the interior of cells through interpolation. Recently, however,
new approaches embrace the mesh structure, and apply
topological results directly to a purely discrete, combina-
torial representation of the function. Discrete Morse theory,
introduced by Forman [8], reproduces results from smooth
Morse theory in this discrete domain.

The following definitions are used to formalize notions
about the implicit underlying mesh used in gridded data. A
d-cell is a topological space that is homeomorphic to a d-
ball B = {z € R? : |z| < 1}. For example, a vertex is
a 0-cell, an edge is a 1-cell, and a quad is 2-cell. For cells
a and (B, o < (means that « is a face of § and [is a
co-face of «, i.e., the vertices of o are a proper subset of
the vertices of 3. If dim(«) = dim(B) — 1, we say « is a

facet of 3, and 3 is a co-facet of a.. A cell o has dimension

d, and we denote this as (9. We denote by K the regular
cell complex that is a mesh representation of the underlying
space M.

The underlying principle of discrete Morse theory is a
combinatorial representation of gradient flow. In a discrete
vector field, flow is described by a pairing of cells: a d + 1
cell, 34+ is paired uniquely with one of its faces, a d-cell,
o, and we say that (@1 is the head and a(? the tail
of a discrete vector. Intuitively, this pairing indicates that
flow passes through o(® and into S4*Y. V is a discrete
vector field when each cell in K is paired in at most one
discrete vector. The discrete equivalent of an integral line is
a V-path:

o

(d+1)

(@D (@)

1

(d+1)

(@+1) @)

2 s

(d)

r+

. ﬁ£d+1)’ oy,
such that for each ¢ = 0,..., r, the pair {al(-d) < ﬂgdﬂ)} eV,
and {ﬁi(dH) > agi)l # al(-d) }. When all V-paths are acyclic,
the discrete vector field is a discrete gradient vector field.
Note that unlike their smooth counterparts, discrete gradient
arrows point in the direction of steepest descent.

Just as points with zero gradient in smooth Morse theory
are critical, unpaired cells in a discrete gradient vector field
are critical, with index of criticality equal to the dimension
of the cell. Therefore in three dimensional regular grids,
unpaired vertices are minima, unpaired edges are 1-saddles,

O5 07 04 O3 O‘1 00
07 09 06 05 02 01
04 05 05 ()6 O7 O5
O1 02 03 04 05 04
(©)
Figure 2.

A smooth scalar function is visualized in (a) using a grayscale ramp. The 1-skeleton of the two-dimensional MS complex is overlaid in (b).

Minima are rendered as blue spheres, 1-saddles as green spheres, and maxima as red spheres. The minimum-1-saddle arcs of the complex are cyan tubes,
and the 1-saddle-maximum arcs are gold tubes. The same function is coarsely samples at the vertices of a grid (c). A discrete gradient vector field (d)
describes the flow behavior with gradient arrows. Unpaired cells are critical, and are rendered with blue. The 1-skeleton of the discrete complex (e) has
nodes at the barycenters of critical cells, and arcs where V'-paths connect them. While the locations of nodes can shift by 1/2 the width of a cell in either
direction from the location of the “smooth” critical point, the connectivity of the complex remains unchanged.

unpaired quads are 2-saddles, and unpaired voxels are max-
ima. The nodes of the discrete MS complex are the critical
cells of V, and the arcs are the V-paths connecting them.
Figure 2(c-e) shows how this discrete interpretation can be
used to recover topological information of an underlying
function.

C. Persistence-based Simplification

A function f is simplified by repeated cancellation of pairs
of critical points that differ in index by one. Forman [7]
showed how a cancellation could be achieved in a discrete
gradient field by reversing the gradient path between two
critical cells. Gyulassy et al. [10] characterized the cancel-
lation in terms of the 1-skeleton of the MS complex. The
local change in the MS complex indicates a smoothing of
the gradient vector field and hence of the function f. A can-
cellation removes two nodes and the arcs connecting them
from the MS complex, and creates new arcs reconnecting
nodes in their neighborhood. Persistence is a measure of the
weight of a cancellation, and is computed as the absolute
difference in function value of the canceled pair of nodes.
Repeated application of the cancellation operation in order
of persistence results in a hierarchy of MS complexes and
a multi-resolution representation of the scalar function.

IV. APPROACH

Although our algorithm can be considered a two stage
approach, first computing a local MS complex, and then
merging the complexes together, it is implemented data-
parallel; in other words, each of the steps listed is performed

487

by every processing element in a distributed-memory super-
computer or cluster. Algorithm 1 lists and Figure 3 depicts
these steps, which are described below in greater detail.

Algorithm 1 Overall algorithm

Decompose domain (section IV-A)

Read data blocks (section IV-B)

for all local blocks do
Compute discrete gradient (section IV-C)
Compute MS complex (section IV-D)
Simplify MS complex (section IV-E)

end for

for number of rounds do
Merge MS complex blocks (section IV-F)

end for

Write MS complex blocks (section IV-G)

A. Domain Decomposition

The data domain is a structured grid of regularly spaced
hexahedral cells, with scalar values at the vertices. It is
decomposed into a number of hexahedral blocks with a
bisection algorithm that iteratively divides the longest re-
maining data dimension in half until the desired total number
of blocks is attained. One layer of values is shared by two
neighboring blocks. For example, if a block B; ;. has size
X xY x Z, then B, ; 1[X — 1][y][z] = Bit1,51[0][y][2].

The total number of blocks may be greater than the
number of processes, in which case blocks are assigned to
processes in round-robin (block-cyclic) order. We designed

— =0 T

=Y il2 RS

@@I: |l i

(a) (b) (c)
Figure 3.

oo e

eoeo

In this overview of our algorithm, the arrows and circled component indicate the sequence of operations performed by a single process:(a)

parallel read, (b) local gradient computation, (¢) local MS complex computation, (d) simplification, (e) preparing data structures for communication, (f)
merging complexes, (g) parallel write. Each merge round repeats (d)-(f). We refer to steps (b) and (c¢) as the “compute” stage of the algorithm, and (d)-(f)

as the “merge” stage.

the domain decomposition with flexibility in mind; depend-
ing on the distribution of nodes and arcs in the entire domain,
multiple blocks per process may increase the chances that
the computational load is better balanced across processes.
In our tests, however, we found that computation scaled well
using just one block per process and we did not further
evaluate load balance.

B. Reading Data Blocks

Once a block decomposition and processor assignment of
blocks has been determined, each process reads its blocks in
parallel from storage. Currently, we support unsigned byte,
single-precision floating point, and double-precision floating
point data sets. We use an MPI-IO parallel read strategy
whereby each process loops over its blocks, creates an MPI
subarray data type for that block, sets an MPI file view using
that datatype, and reads the block collectively with all other
processes.

We considered more sophisticated approaches where
blocks are first sorted and read in larger, contiguous chunks,
before distributing to their final destinations. This is the
method used by Kendall et al. [18], but in the data sizes
that we have tested so far, the time to read the dataset was
not a bottleneck.

C. Discrete Gradient Computation

We compute the discrete gradient vector field using the
approach presented in [10], adapted to our parallel envi-
ronment. In this algorithm, cells are sorted by increasing
dimension, and then by increasing function value. Values
are assigned to higher dimensional cells as the maximum
of the values at the vertices. In this order, cells are paired
in gradient arrows in the direction of steepest descent, if
possible, otherwise are marked critical, and in either case
are marked as assigned. A d-cell can be paired when it is
the only unassigned facet of one of its unassigned co-facets.
We use improved simulation of simplicity [11] to reduce
the number of zero-persistence critical points found in flat
regions.

488

The ability to glue MS complexes together in the merging
stage of the algorithm (section IV-F) is predicated on the
discrete gradients being identical on the shared boundary
between them. To maintain consistency across neighboring
blocks, we ensure that the discrete gradients computed on
the shared block faces are identical by restricting the discrete
gradient pairing. For a cell on the boundary of two or more
blocks, we only consider for pairing other cells also on
the boundary of those same blocks. In this manner, the
shared boundary between two blocks will be assigned the
same gradient arrows, independently from the interior of the
blocks.

We use a refined grid to store the result of the gra-
dient computation, where vertex ¢, j, k of the refined
grid represents a d-cell of the implicit original grid, where
d = 1%2 + 7%2 + k%2. This refined grid is two times the
length of the original structured grid in each dimension, and
stores the discrete gradient pairing, criticality, and additional
temporary values complactly in one byte per element.

D. MS Complex Computation

The finest-scale MS complex is computed by tracing V-
paths in the discrete gradient field from critical cells. In a
first pass through the gradient, all critical cells are added to
the MS complex as nodes. V-paths are traced downwards
from each node, and an arc is added to the MS complex
for every path terminating at a critical cell. The list of cells
in the V-path forms the geometric embedding of the arc,
and is stored as a dynamically allocated array attached to a
geometry object. The paths are guaranteed to terminate in
the interior or boundary of a block, due to the restriction
of the boundary gradient arrows. We use the data structure
presented in [11] to store the 1-skeleton of the complex.
In this data structure, nodes, arcs, and geometry objects are
constant-sized elements stored in arrays. This structure is
optimized for efficient simplification.

E. MS Complex Simplification

Persistence-based simplification is performed on the local
complex to reduce the number of critical points and arcs. An

input threshold value determines how far the simplification
will proceed. In each cancellation, two critical points are
destroyed, along with all the arcs connected to them, and
several new arcs are created to reconnect the complex. The
geometry of the new arcs is inherited from the deleted arcs,
and a new geometry object is created that references the
geometry objects that were merged in the cancellation. A
thorough description of the data structure updates can be
found in [14]. To ensure consistency across block bound-
aries, we do not consider for cancellation any arc having
boundary nodes.

F. Merging MS Complex Blocks

So far, we described computing a strictly local MS
complex for each block in the dataset. At this point, we
could simply write each of these MS complexes in parallel
to storage and terminate. While the resulting 1-skeleton is
a valid MS complex and thus a solution to the problem,
it may not be the best solution for later analysis, because
global features spanning multiple blocks remain unresolved.

Without this step, depending on the dataset, the MS
complex can be several times larger than necessary. Such
bloating masks the original critical points and leads to
large output file sizes, both of which can be alleviated by
merging MS complex blocks prior to storing. In some cases,
a complete merge down to a single output block is desired,
while in others a partial merge down to a reduced number
of output blocks, compared to the number of input blocks,
is sufficient. Preparing for communication, performing the
communication, and computing the merged complex are the
main steps to consider.

1) Preparing for Communication: Preparing the local
complexes for communication involves three steps: identi-
fying the portions of the hierarchy that correspond to living
elements at the desired simplification threshold; cleaning up
the memory after computing the simplified MS complex;
and translation of local indices to global ones.

The approach we use to simplify the MS complex com-
putes a feature hierarchy. To reduce the memory footprint
after simplification, we remove from memory all but the
coarsest levels of the MS complex hierarchy.

We refer to the address of a cell as the location in the
discrete gradient array at which it is stored. This address
encodes the geometric location of the cell in the volume.
When two complexes are merged (section IV-F3), the com-
plexes are glued at nodes on their shared boundary. To
detect that two nodes are co-located, we compare their
address. However, when computed at a single block, the
nodes and geometric locations of arcs of the MS complex
are represented in local addresses. Let X¥, Y&, ZF be
the length of the x, y, and z sides of the three-dimensional
grid storing discrete gradients for the entire dataset, and
XL, YE ZY be the lengths of the sides of the block.
Furthermore let S*, SY, S* be the x, y, z offsets in the

489

global gradient array of the first element of a block. Then
the (i, j, k)th element of the block is at global address
a=(i+S*)+(j+9Y)x XG4+ (k+5%)x X xYC, The
local addresses are translated to global ones prior to the first
round of communication.

2) Communication: Previous research demonstrated that
HPC architectures such as Cray XT and IBM Blue Gene
have ample bisection bandwidth to support multiple chan-
nels of concurrent communication. For example, Peterka et
al. [22] designed a flexible image compositing algorithm
with configurable radix values at each round. Our merge
algorithm is inspired by this idea of specifying the number of
rounds and radix of each round and is described in detail in
[23]. It allows us to merge completely or partially, depending
on the number of rounds and radix (communicating group
size) per round.

We restrict merge groups to contain two, four, or eight
members (radix-2, radix-4, or radix-8). However, instead of
swapping subsets of information among all group members,
as in image composition, we designate one member of the
group as the “root,” and the remaining group members send
all of their information to the root of the group. The root
performs the merge and retains the result for later steps,
which can consist of more merge rounds or writing to
storage. The other, non-root members of a group do not
participate in these later steps. The number of resulting MS
complex blocks after merging is the number of input blocks
divided by the product of radices in each merge round.

3) Merge Computation: MS complexes are merged at a
root of a group. After the data structures are communicated,
the root has a list of independent complexes. The merge
is performed by enlarging the root’s MS complex, M S;.,ot,
by gluing each non-root complex, M.S; to the root. Our
technique for computing the discrete gradient ensures that
it is identical on the shared boundary between blocks B;.,o:
and B;. Therefore, any critical cell in this shared boundary
is a node in both M S, ..+ and M.S;. These shared nodes
anchor the gluing process.

To glue MS,oo; and M S;, first, each node n; in MS;
that is not on the shared boundary is added to M S;,ot.
Next, each arc from MS; is added to M S,,0¢ along with
its corresponding geometry objects only if both its endpoints
are not on the shared boundary. When both endpoints of an
arc are on the shared boundary, the arc is guaranteed to exist
in MS,,, already. Once all other MS complexes are glued
to M Syo0t, the boundary status of each node is updated
according to the bounds of the merged blocks. The newly
interior nodes become candidates for cancellation, and we
use the procedure in section IV-E to create a new hierarchy.

G. Writing MS Complex Blocks

MS complex blocks are written to the output file collec-
tively. The number and radices of merge rounds determine
how many output blocks, if any, each process contributes to

(1 block)

(8 blocks) (64 blocks)

Figure 4. The full MS complex (top row) computed with various
number of blocks. For all three experiments, we use the exact same
simplification threshold and the same filters to extract relevant filters. After
1% persistence simplification, block boundary artifacts are removed (middle
row). Important features are selected (bottom row) by choosing 2-saddle-
maximum arcs and nodes with value greater than 14.5. Although the
geometric embedding of features can shift by the width of a cell due to
discretization, we recover large-scale features spanning several blocks.

the collective write. Those processes with no output blocks
participate in the collective operation by issuing a “null”
write consisting of zero bytes. The output file is a binary
collection of all of the output blocks, followed by a footer
that provides an index to the MS complexes contained in
the file. The file format is documented in detail in [23].

V. PROPERTIES OF THE PARALLEL MS COMPLEX

The main challenges in parallelizing the computation of
the MS complex are lack of locality and data-dependency of
the output. The MS complex is, by nature, a global structure,
that encodes both large- and small-scale features of a scalar
function. Furthermore, the size of the complex is primarily
determined by the number of features in the input function.
In the following, we discuss the stability of nodes and arcs of
the MS complex computed in parallel with respect to the MS
complex computed in serial, that is, we answer the question:
which arcs of the complex computed in serial are guaranteed
to be present in the parallel computation? Furthermore, we
discuss the expected size of the MS complex, a result that
motivates per-block MS complex simplification to manage
the size of the output.

A. Stability

When the complex is computed with a varying number
of blocks, we observe that while certain nodes and arcs
of the complex are preserved, others are not. Figure 4

490

illustrates this phenomenon for a byte-valued scalar function
representing the spatial probability density of a hydrogen
atom residing in a strong magnetic field. Our approach
to computing the discrete gradient (section IV-C) restricts
the gradient pairing of cells on the boundary of a block.
This introduces spurious critical cells, corresponding to
critical points of the restriction of the scalar function to the
two-dimensional boundary of a block. These show up as
nodes in the MS complex having zero persistence; they are,
however, necessary “handles” for gluing two neighboring
complexes together (section IV-F). It is the cancellation
of these boundary artifacts that directly connects important
critical points in the interiors of neighboring blocks using
arcs of the MS complex, therefore resolving global features.

Even after simplification, however, the MS complex com-
puted in parallel may differ from the MS complex computed
in serial. Upon closer inspection, differences originate at
locations where the gradients do not have a unique direction
of steepest descent, for example, in flat regions. Note that
this level of variability is present even in different serial
implementations, and any robust analysis only accounts for
stable critical points.

More formally, nodes are stable under blocking strategy
when the Hessian of the underlying scalar function at the
node location is non-singular. In this case, the algorithm that
constructs the discrete gradient guarantees a nearby critical
cell. The existence of a stable critical point is an entirely
local decision, which is the reason that the main features
are preserved in the parallel implementation. Let a be an
arc of the complex connecting a node of index d — 1 to
a node of index d, and P be any plane that transversally
intersects a. The geometric embedding of a is stable when
the point of intersection with P is a critical point of index
d — 1 of the scalar function restricted to P.

The volume “outside” the hydrogen atom in Figure 4
(middle row) has constant value, and hence critical points
and the geometric embedding of arcs connected to them
are unstable and can shift dramatically. However, important
features are preserved where the stability conditions are met.
For instance, in Figure 4 (bottom row), both the parallel and
serial computation of the MS complex reveal three stable
maxima connected by stable arcs in a line, and the loop
representing the toroidal region. Note that, although the arc
representing this loop is stable, the location of the maximum
is not, since the function has a plateau along the arc.

B. MS Complex Size in Practice

The memory resources needed to store the MS complex
depend on the topological complexity of the scalar function,
and the geometric size of the embedded arcs. While there
may be O(n) critical points in a sampled function with n
samples, and O(n?) arcs connecting them, the expected value
is much lower for practical data. The MS complex itself
is a mesh structure embedded in the domain, with nodes

(32 features/side) (8 features/side)
(256 points/side) (256 points/side)

(2 features/side)
(256 points/side)

Figure 5. An artificially generated 256° dataset is volume rendered (top
row), and the corresponding complex is illustrated (bottom row) for varying
feature counts.

at critical points and arcs connecting them. The expected
number of arcs for a mesh is linear in the number of nodes.
While severely noisy data may in fact have O(n) critical
points, we argue that features from simulation data are much
more widely spaced, else the simulation itself would lack
numerical stability. In practice, we see that the number of
important features, k, of a dataset will be several orders
of magnitude less than the number of sample points n. In
our examples in section VI-D, the number of significant
features was six orders of magnitude fewer than the number
of sample locations for the combustion example, and three
for the mixing fluids.

In our results, we found that the cost of storing the
geometric embedding of the arcs was directly proportional to
the length of one side of the dataset. The arc geometries are
one-dimensional objects embedded in a three dimensions,
therefore, for n samples, the cost of storing the geometry of
one arc was O(n'/3). Finally, we can estimate the storage
requirements of the MS complex with kx c+kxn'/3, where
k is the expected number of features, and c is a constant that
represents the cost of storing one node or one arc. Figure 6
illustrates this behavior for an artificially generated dataset.

VI. PERFORMANCE RESULTS

A. Test Environment

The IBM Blue Gene/P Intrepid is a 557-teraflop super-
computer operated by the Argonne Leadership Computing
Facility (ALCF) at Argonne National Laboratory. It consists
of 40 racks, each rack containing 1,024 nodes, for a total of
40,960 nodes. Each node has four cores, for a grand total
of 163,840 cores. The nodes are connected in a 3D torus
topology. Our tests are conducted in smp mode, that is, one
process per node. This allows each process 2GB of memory,
which we found is necessary for some of our larger datasets.

491

B. Data Size and Complexity Study

To better characterize our algorithm’s dependence on
factors such as process count, data size, and data complexity,
we conducted the following study. We generated synthetic
datasets of various size and complexity by computing a
sinusoidal scalar field. The data are 3D 32-bit floating point
values, on a cubic grid of a given number of points per side
of the cube. In other words, 512 points per side represents
a 512 x 512 x 512 volume. The complexity, or number of
features per side, is how many times the sine function has a
+1 value along the length of one side of the volume. Figure
5 shows examples of three levels of complexity.

Figure 6 shows the effect of process count, data size, and
data complexity on compute time, merge time, and output
MS complex size. All plots are in log-log scale. Several
interesting correlations are evident in the discussion below.

We first examine the compute time in the upper row of
Figure 6. This is the time to generate a discrete gradient
field from the dataset and compute the local MS complex
on it. It scales linearly with process count, and compute
time increases with data size, as the individual lines in each
panel show. In fact, the compute time shows a weak scaling
efficiency of 1; the compute time only depends on the size
of the blocks. As we scan horizontally across the row of
panels, however, we note that compute time is not related
to topological complexity.

Next we consider the merge time in the center row
of Figure 6. This is the time to merge the previously-
computed MS complexes down to a smaller number of
output blocks. We performed two rounds of radix-8 merging
for this test. Similar to compute time, merging scales linearly
with process count. Unlike compute time, however, the lines
within a panel reveal that merge time is unaffected by data
size, because the individual lines within each panel coincide.
Instead, it is a function of complexity, as a horizontal scan
across the row of panels shows.

The output size is shown in the lower row of Figure 6.
Output size increases slowly with process count, because we
performed a constant number of merges. Starting with more
processes, therefore, results in a greater number of output
blocks, and hence unresolved boundary artifacts that add
to the size. This accounts for the slope within each panel.
When the topological complexity is high (right panel), the
output size is dominated by the nodes and arcs of the MS
complex, and the overhead of the boundary artifacts is less
noticeable. When the feature complexity is low (left panel),
the output size is dominated by the geometric embedding of
the arcs, accounting for the roughly factor of two increase
as the number of points per side is doubled.

C. Selecting the Merge Strategy

Scientists will have some leeway in selecting the degree
of merging to execute when using our algorithm, even given
constraints of file size, memory size, and run time. In this

Performance Study

256 512 1024 2048
1

256 512 1024 2048
1

1 1
1 feature/side 4 features/side

16 features/side

1 1
32 features/side 64 features/side

512

128

32 4

77
77

0.5 H

- 512

- 128

- 32

64

16 +

Merge Time (s)

0.25

0.06

- 0.25

- 0.06

1024 —

256 —

64

16

Output Size (MB)

|
b

VY

\\

A

- 1024
- 256
- 64

1024 points / side [~ 16

512 points / side
256 points / side

|t

T T T
256 512 1024 2048 256

T
512

T T T T T
1024 2048 256 512 1024 2048

Number of Processes

Figure 6. Compute time, merge time, and output size as a function of number of processes, data size, and data complexity are plotted in log-log scale.

Table I
COST OF MERGING 2048 BLOCKS

Number Round Total Merge Final Round
of Radices Time (s) Merge Time (s)
Rounds
1 4 0.598 0.598
2 438 1.310 0.712
3 488 2.635 1.325
4 4888 9.843 7.208

Table II

MERGE STRATEGIES FOR FULL MERGE OF 256 BLOCKS

Number Round Radices Compute +
of Merge Time
Rounds (s)

3 488 144.040

3 884 144.528

4 4428 144.955

4 4444 145.012

8 22222222 149.174

section, we lend some guidance in making those decisions
based on two studies of the number of rounds and the radix
in each merge round.

1) Cost of Each Merge Round: The cost of merging is
one factor that influences to what extent input blocks are
merged into a smaller number of output blocks. Table I
contains an example of merging 2048 input blocks across
2048 processes. In this example, a full merge consisted of

492

four rounds of radices [4, 8, 8, 8], appearing in the last
row of the table. The first row of the table assumes that we
perform only one round of radix-4, and the following rows
add one more round each time, so that the second round is
two rounds of radices [4, 8], and so on.

The third column is the total time required to perform
this merge, and the fourth column is the time required
by the last round, so that when read from top to bottom,
the fourth column shows the individual round times of
the first, second, third, and fourth rounds, respectively. As
merging progresses, it becomes more expensive, because MS
complex blocks grow larger, take longer to communicate,
and gravitate toward fewer processes. This is one reason
why the performance and scalability in Figure 9 diminishes
when scaling to high process counts and performing full
merging.

2) Merge Strategy: Once a number of output blocks is
determined, it remains to decide how many rounds to use
and what the radix of each round should be to get there.
We call this the merge strategy, and an example appears in
Table II for performing a full merge from 256 input blocks
to one output block. This result is typical of our results, and
from it we can generalize the following merge strategy.

A smaller number of rounds with higher radices is desired.
We suggest using radix-8 whenever possible. When radix-
8 cannot be used for a round because the ratio of input to

Figure 7. The MS complex that results from a partial merge (left) and a
full merge (right) of the jet mixture fraction data, with a volume rendering
of a slice of the original scalar field.

Figure 8. Volume rendering and MS complex for Rayleigh-Taylor mixing
dataset.

output blocks is not divisible by eight, the remaining smaller
radices are slightly better in early rounds rather than later.
This is evident in comparing the first and second rows of
Table II. As the previous section showed, rounds become
more costly as they progress, so it is better to optimize later
rounds to radix-8 whenever possible.

D. Run Time and Strong Scaling

1) Jet Mixture Fraction Dataset: The JET simulation
is a temporally-evolving turbulent CO/H, jet flame un-
dergoing extinction and re-ignition at different Reynolds
numbers [16]. In this simulation, structures called dissipation
elements are correlated to flame extinction, and are centered
around minima of mixture fraction. We find important min-
ima by computing and simplifying the MS complex. We
tested the performance of our algorithm on a single time-
step. The data size consists of 32-bit floating-point scalars
on a 768 x 896 x 512 regular grid, 1.4 GB in size. Our
domain decomposition consisted of one block per process.

Figure 7 shows the result of a partial merge and a full
merge of the jet mixture fraction MS complex. The total run
time, component times, and scalability are shown in Figure
9. The timing results represent a full merge down to one
output block, using radix-8 merging whenever possible, as
indicated by our merging guidelines presented earlier. For
8192 processes, for example, there were 8192 input blocks
that were merged in five rounds with radices of [2, 8, 8§, 8,

493

Total & Component Time For Jet Mixture Fraction

Total time
Compute time
Merge time
Input time
Output time

- Perfect scaling

bt

Time (s)

T T T T T T T T T
256 512 1024 2048 4096 8192

Number of Processes

Figure 9. Overall time and four components: read data, compute, merge,
and write results, plotted in log-log scale. At small numbers of processes,
time is dominated by computing, and at higher numbers of processes by
merging.

8]. The output file size of the fully merged MS complex is
approximately 26 MB.

Figure 9 reveals that most of the time is spent in comput-
ing the discrete gradient field and MS complex, and merging
blocks. The total run time is 970 s. at 32 processes and 29 s.
at 8192 process, for an end-to-end strong scaling efficiency
of 13%. Efficiency is computed as the ratio of the factor
decrease in time divided by the factor increase in number of
processes, using 32 processes as the base efficiency of 1.0
in this case.

The efficiency at 2048 processes is 35%, and there are two
reasons for the relatively flat scaling beyond 2048 processes.
First, the problem size is not large enough to warrant more
processes than that. Second, Figure 9 shows the rapidly
increasing merge time beyond 2048 processes. While we
could have performed less merging and thereby improved
our scalability, the object of this test is to evaluate the worst-
case performance for this dataset. The next benchmark is a
more realistic scenario and shows that our algorithm is more
efficient at higher process counts, with larger data, and a
partial degree of merging.

2) Rayleigh-Taylor Mixing Dataset: Our largest bench-
mark comes from a simulation of mixing fluids in a
Rayleigh-Taylor instability [4]. When a heavy fluid is placed
on top of a lighter one, vertical perturbations in the interface
create a structure of rising bubbles and falling spikes. The
scalar field we study is density, and here the 1-skeleton of
the MS complex can detect when isolated bits of one fluid
penetrate the other. Figure 8 shows a volume rendering of
the data as well as a cut-away view of the topology extracted
at a late time-step.

Figure 10 shows the performance of our algorithm on this
dataset. The data size consists of 32-bit floating-point scalars

Total & Compute+Merge Time For Rayleigh-Taylor Mixing

100

Time (s)
50

—4— Total time
—e— Compute + merge time
- = Perfect scaling

20

T T T = T
2048 8192 16384 32768

Number of Processes

Figure 10. Overall time and compute+merge time, plotted in log-log scale.
The strong scaling efficiency of the compute+merge time is 66%, and it is
35% for the overall end-to-end time.

ona 1152 x1152x 1152 regular grid, 5.7 GB in size. We ran
with one block per process and performed a partial merge
of two rounds of radix-8 merging.

This test demonstrates scalability of our algorithm to
32,768 nodes out of a total machine size of 40,960 nodes.
We did not test on the entire machine because a reservation
was not available at the time. The upper curve in Figure 10
shows 35% efficiency in overall time to 32,768 processes.
The output size is approximately 4 GB. Excluding the I/O
time and measuring only the time to compute and merge the
MS complexes results in strong scaling of 66% to 32,768
processes.

VII. SUMMARY

A. Conclusions

We designed and implemented, for the first time, a scal-
able algorithm to compute the MS complex of a scalar
field in parallel on a distributed-memory architecture. The
algorithm consists of decomposing the domain, reading the
dataset from storage, locally computing the discrete gradient
and MS complex, simplifying the MS complex, merging
to a smaller number of output blocks, and writing the MS
complex blocks to storage.

To better understand the correlation between data size,
data complexity, process count, compute time, merge time,
and output size, we conducted a study using synthetic data
of varying size and complexity. We found that compute time
decreases linearly with process count and that it increases
with data size, independent of complexity. Merge time also
scales linearly at small process counts, but unlike compute
time, it is independent of data size and is linear in the data
complexity. The output size is primarily governed by data
complexity.

494

We also presented heuristics for choosing a merge strat-
egy. The cost of merging increases with each round, so
deciding on the degree of merging ought to take this into
consideration. For a given number of output blocks, radix-
8 or the highest radix possible should be selected in order
to minimize the number of rounds. When the optimal radix
cannot be used, smaller radices should be used in earlier
rounds rather than later rounds.

We benchmarked performance and scalability on two
datasets from combustion and physics science domains
out to 32,768 nodes, or 80% of the Argonne Leadership
Facility’s Blue Gene/P machine. The cost of merging and
of output I/O were the primary limitations to scalability at
high process counts, although we were able to achieve 35%
strong scaling in overall end-to-end performance.

B. Future Work

There are several directions that we plan to explore as we
continue this work. We will continue to improve output I/O
performance. We have also ported our implementation to the
Jaguar XTS5 system at the Oak Ridge Leadership Computing
Facility, and we are testing our benchmarks there as well.
From there, we plan to embed our algorithm into the S3D
combustion code and generate parallel MS complexes in situ
with combustion simulations. In the longer term, we plan to
experiment with global persistence simplification in the con-
text of our parallel structure. We anticipate that this can be
performed using a series of nearest-neighbor communication
operations. This will allow us to further reduce the size of
the output data and to reduce the complexity of the resulting
MS complex.

VIII. ACKNOWLEDGMENT

We gratefully acknowledge the use of the resources of
the Argonne Leadership Computing Facility at Argonne
National Laboratory. This work was supported by the Of-
fice of Advanced Scientific Computing Research, Office of
Science, U.S. Department of Energy, under Contract DE-
AC02-06CH11357. Work is also supported by DOE with
agreement No. DE-FC02-06ER25777. We thank Jacqueline
H. Chen and Ray Grout for the JET data.

REFERENCES

[1] P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci.
A topological hierarchy for functions on triangulated surfaces.
IEEE Transactions on Visualization and Computer Graphics,
10(4):385-396, 2004.

[2] P.-T. Bremer, G. Weber, V. Pascucci, M. Day, and J. Bell.

Analyzing and tracking burning structures in lean premixed

hydrogen flames. [EEE Transactions on Visualization and

Computer Graphics, 16(2):248-260, 2010.

3

—

C. Chevalier and F. Pellegrini. Pt-scotch: A tool for efficient
parallel graph ordering. Parallel Comput., 34:318-331, July
2008.

(4]

(51

(6]

(7]

(8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

A. W. COOK, W. CABOT, and P. L. MILLER. The mixing
transition in Rayleigh-Taylor instability. Journal of Fluid
Mechanics, 511:333-362, 2004.

H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci.
Morse-Smale complexes for piecewise linear 3-manifolds. In
Proc. 19th Ann. Sympos. Comput. Geom., pages 361-370,
2003.

H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical
Morse-Smale complexes for piecewise linear 2-manifolds.
Discrete and Computational Geometry, 30(1):87-107, 2003.

R. Forman. Morse theory for cell complexes. Advances in
Mathematics, 134(1):90-145, 1998.

R. Forman. A user’s guide to discrete Morse theory. In
Proc. of the 2001 Internat. Conf. on Formal Power Series
and Algebraic Combinatorics, A special volume of Advances
in Applied Mathematics, page 48, 2001.

D. Gregor and A. Lumsdaine. The parallel bgl: A generic
library for distributed graph computations. 2005.

A. Gyulassy, P.-T. Bremer, B. Hamann, and V. Pascucci.
A practical approach to Morse-Smale complex computation:
Scalability and generality. /[EEE Transactions on Visualization
and Computer Graphics, 14(6):1619-1626, 2008.

A. Gyulassy, P.-T. Bremer, B. Hamann, and V. Pascucci. Prac-
tical considerations in Morse-Smale complex computation. In
V. Pascucci, X. Tricoche, H. Hagen, and J. Tierny, editors,
Topological Methods in Data Analysis and Visualization,
pages 535-542. Springer-Verlag, 2010.

A. Gyulassy, M. Duchaineau, V. Natarajan, V. Pascucci,
E. Bringa, A. Higginbotham, and B. Hamann. Topologically
clean distance fields. IEEE Transactions on Visualization and
Computer Graphics, 13(6):1432-1439, 2007.

A. Gyulassy, V. Natarajan, V. Pascucci, P-T. Bremer, and
B. Hamann. Topology-based simplification for feature extrac-
tion from 3d scalar fields. In Proc. IEEE Conf. Visualization,
pages 535-542, 2005.

A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and
B. Hamann. A topological approach to simplification of
three-dimensional scalar functions. [EEE Transactions on
Visualization and Computer Graphics, 12(4):474-484, 2006.

A. Gyulassy, V. Natarajan, V. Pascucci, and B. Hamann.
Efficient computation of Morse-Smale complexes for three-
dimensional scalar functions. IEEE Transactions on Visual-
ization and Computer Graphics, 13(6):1440-1447, 2007.

E. R. Hawkes, R. Sankaran, J. C. Sutherland, and J. H.
Chen. Direct numerical simulation of turbulent combustion:
fundamental insights towards predictive models. Journal of
Physics: Conference Series, 16(1):65, 2005.

D. Hennessey, D. Brooks, A. Fridman, and D. Breen. A sim-
plification algorithm for visualizing the structure of complex
graphs. In Proceedings of the 2008 12th International Confer-
ence Information Visualisation, pages 616-625, Washington,
DC, USA, 2008. IEEE Computer Society.

495

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

W. Kendall, J. Huang, T. Peterka, R. Latham, and R. Ross.
Visualization viewpoint: Towards a general i/o layer for par-
allel visualization applications. To appear in IEEE Computer
Graphics and Applications, 31(6), 2011.

H. King, K. Knudson, and N. Mramor. Generating discrete
Morse functions from point data. Experimental Mathematics,
14(4):435-444, 2005.

D. Laney, P-T. Bremer, A. Mascarenhas, P. Miller, and
V. Pascucci. Understanding the structure of the turbulent
mixing layer in hydrodynamic instabilities. [EEE Trans.
Visualization and Computer Graphics (TVCG) / Proc.of IEEE
Visualization, 12(5):1052-1060, 2006.

T. Lewiner, H. Lopes, and G. Tavares. Applications of
Forman’s discrete Morse theory to topology visualization and
mesh compression. [EEE Transactions on Visualization and
Computer Graphics, 10(5):499-508, 2004.

T. Peterka, D. Goodell, R. Ross, H.-W. Shen, and R. Thakur.
A configurable algorithm for parallel image-compositing ap-
plications. In Proceedings of SC 09, Portland OR, 2009.

T. Peterka, R. Ross, W. Kendall, A. Gyulassy, V. Pascucci,
and H.-W. Shen. Scalable parallel building blocks for custom
data analysis. In Submitted to Proceedings of LDAV’1I,
Providence, RI, 2011.

T. Peterka, R. Ross, B. Nouanesengsey, T.-Y. Lee, H.-W.
Shen, W. Kendall, and J. Huang. A study of parallel particle
tracing for steady-state and time-varying flow fields. In To
appear in Proceedings of IPDPS 11, Anchorage AK, 2011.

T. Peterka, H. Yu, R. Ross, K.-L. Ma, and R. Latham. End-
to-end study of parallel volume rendering on the ibm blue
gene/p. In Proceedings of ICPP 09, Vienna, Austria, 2009.

D. Pugmire, H. Childs, C. Garth, S. Ahern, and G. H. Weber.
Scalable computation of streamlines on very large datasets. In
SC ’09: Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, pages 1-12,
New York, NY, 2009. ACM.

K. Schloegel, G. Karypis, and V. Kumar. Parallel static and
dynamic multi-constraint graph partitioning. Concurrency
and Computation: Practice and Experience, 14(3):219-240,
2002.

S. Smale. Generalized Poincaré’s conjecture in dimensions
greater than four. Ann. of Math., 74:391-406, 1961.

S. Smale. On gradient dynamical systems. Ann. of Math.,
74:199-206, 1961.

H. Yu, C. Wang, and K.-L. Ma. Massively parallel volume
rendering using 2-3 swap image compositing. In SC '08:
Proceedings of the 2008 ACM/IEEE conference on Super-
computing, pages 1-11, Piscataway, NJ, USA, 2008. IEEE
Press.

