SIAM J. Sc1. COMPUT. (© 2011 Society for Industrial and Applied Mathematics
Vol. 33, No. 5, pp. 2468-2488

A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL
EQUATION ON TRIANGULATED SURFACES*

ZHISONG FU', WON-KI JEONG!, YONGSHENG PANt ROBERT M. KIRBY', AND
ROSS T. WHITAKER'

Abstract. This paper presents an efficient, fine-grained parallel algorithm for solving the Eikonal
equation on triangular meshes. The Eikonal equation, and the broader class of Hamilton—Jacobi
equations to which it belongs, have a wide range of applications from geometric optics and seismology
to biological modeling and analysis of geometry and images. The ability to solve such equations
accurately and efficiently provides new capabilities for exploring and visualizing parameter spaces
and for solving inverse problems that rely on such equations in the forward model. Efficient solvers
on state-of-the-art, parallel architectures require new algorithms that are not, in many cases, optimal,
but are better suited to synchronous updates of the solution. In previous work [W. K. Jeong and
R. T. Whitaker, SIAM J. Sci. Comput., 30 (2008), pp. 2512-2534], the authors proposed the fast
iterative method (FIM) to efficiently solve the Eikonal equation on regular grids. In this paper we
extend the fast iterative method to solve Eikonal equations efficiently on triangulated domains on
the CPU and on parallel architectures, including graphics processors. We propose a new local update
scheme that provides solutions of first-order accuracy for both architectures. We also propose a novel
triangle-based update scheme and its corresponding data structure for efficient irregular data mapping
to parallel single-instruction multiple-data (SIMD) processors. We provide detailed descriptions of
the implementations on a single CPU, a multicore CPU with shared memory, and SIMD architectures
with comparative results against state-of-the-art Eikonal solvers.

Key words. Hamilton-Jacobi equation, Eikonal equation, triangular mesh, parallel algorithm,
shared memory multiple-processor computer system, graphics processing unit

AMS subject classifications. 15A15, 15A09, 15A23

DOI. 10.1137/100788951

1. Introduction. The Eikonal equation has a wide range of applications. In
image analysis, for example, shortest paths defined by image-driven metrics have
been proposed for segmentation [16] and the tracking of white-matter pathways in
the diffusion weighted images of the brain [10]. In seismology the Eikonal equation is
used to calculate the travel time of the optimal trajectories of seismic waves [23]. The
Eikonal equation models the limiting behavior of Maxwell’s equations [8] and is there-
fore useful in geometric optics. In computer graphics, geodesic distance on surfaces
has been proposed for surface remeshing and mesh segmentation [24, 26]. The Eikonal
equation also has applications in medicine and biology. For instance, cardiac action
potentials can be represented as moving interfaces and Eikonal-curvature descriptions
of wavefront propagation [13, 5]. For many of these applications described above,
unstructured simplicial meshes, such as tetrahedra and triangles, are important for
accurately modeling material interfaces and curved domains. This paper addresses
the problem of solving the Eikonal equation on triangulated domains, which are ap-

*Submitted to the journal’s Methods and Algorithms for Scientific Computing section March 16,
2010; accepted for publication (in revised form) July 6, 2011; published electronically October 6,
2011. This work was funded by NIH/NCRR Center for Integrative Biomedical Computing (P41-
RR12553-10) and Department of Energy (DOE NET DE-EE0004449).

http://www.siam.org/journals/sisc/33-5/78895.html

fThe Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112
(zhisong@sci.utah.edu, ypan@sci.utah.edu, kirby@sci.utah.edu, whitaker@sci.utah.edu).

TElectrical and Computer Engineering, UNIST (Ulsan National Institute of Science and Technol-
ogy), 100 Banyeon-ri Eonyang-eup, Ulju-gun Ulsan, Korea 689-798 (wkjeong@unist.ac.kr).

2468

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

FIM ON TRIANGULATED SURFACES 2469

proximations to either flat regions (subsets of %2) or curved surfaces in 3.

For many of these applications, there is a need for fast solutions to the Eikonal
equation—e.g., run times of fractions of a second on large domains. For instance,
solvers that can run interactively will allow scientists and mathematicians to explore
parameter spaces of complex models and to reconfigure geometries and visualize their
relationships to the solutions. In other cases, such as inverse problems and remeshing,
the algorithms require multiple solutions of the Eikonal equation as part of the inner
loop of an iterative process. Thus, there is a need for fast, efficient Eikonal solvers.

Efficient solutions on state-of-the-art computer architectures place particular con-
straints on the data dependencies, memory access, and scale of logical operations for
such algorithms. The trend in computer architecture is toward multicore CPUs (con-
ventional processors) and massively parallel streaming architectures, such as graphics
processing units (GPUs). Thus, parallel algorithms that run efficiently on such archi-
tectures will become progressively more important for many of these applications. Of
particular interest are the massively parallel streaming architectures that are available
as commodities on consumer-level desktop computers. With appropriate numerical
algorithms, these machines provide computational performance that is comparable to
the supercomputers of just a few years ago. For example, the most recent GPUs,
which cost only several hundred US dollars, can reach a peak performance of nearly
10*2 floating point operations per second (TeraFLOPS); a performance equivalent to
a top supercomputer a decade ago [29]. This computing power, however, is for a
single-instruction multiple-data (SIMD) computational model, and most of the re-
cent massively parallel architectures, such as GPUs [4], rely heavily on this paradigm.
These modern SIMD architectures provide a large number of parallel computing units
(up to several hundred cores) in a hierarchical data-sharing structure, rather simple
branching circuits, and large memory bandwidth. As such, they place important re-
strictions on the algorithms that they can run efficiently. Addressing these constraints
is an important aspect of this paper.

In the past several decades, many methods have been proposed to solve the
Eikonal equation on unstructured grids for both two-dimensional (2D) and three-
dimensional (3D) domains. Iterative schemes, for example [21], rely on a fixed-point
method that solves a quadratic equation at each grid point in a predefined update
order and repeats this process until the solution on the entire grid converges. Some
adaptive, iterative methods based on a label-correcting algorithm (from a similar
shortest-path problem on graphs [2]) have been proposed [17, 3, 6, 7].

The fast marching method (FMM) by Sethian [22], a form of the algorithm first
proposed in [19], is used widely and is the de facto state-of-the-art for solving the
Eikonal equation. FMM has an asymptotic worst case complexity of O(N log N),
which is optimal. However, it uses a strict updating order and the min-heap data
structure to manage the narrow band which represents a bottleneck that thwarts par-
allelization. Although the FMM has some parallel variants [9, 28] that use domain
decompositions, they rely on a serial FMM within each subdomain, which is not effi-
cient for massively parallel SIMD architectures. Furthermore, these parallel variants
are for regular grids only, and the extension to unstructured, triangular meshes, the
topic of this paper, is not straightforward.

For homogeneous speed functions on flat domains, the characteristics of the
Eikonal equation are straight lines. In such cases, one can solve the Eikonal equation
by updating solutions along specific directions without explicit checks for causality.
Based on this observation, Zhao [31] and Tsai et al. [27] proposed the fast sweep
method (FSM) which uses a Gauss—Seidel update scheme for the straight (grid-

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

2470 FU, JEONG, PAN, KIRBY, AND WHITAKER

aligned) wavefront and proceeds across the domain in an incremental sweep. This
method may converge faster than the Jacobi update methods, which update all grid
points at once. However, the update scheme, which proceeds simultaneously for all
nodes on the wavefront, still presents a bottleneck because it limits updates to a
specific set of points in a predefined order. More importantly, previous work [11]
has shown that the number of iterations or sweeps grows with the complexity of the
speed function, and thus the method is efficient only for relatively simple (nearly ho-
mogeneous) inputs, where the characteristics are approximately straight. FSM has
extensions to 2D and 3D unstructured meshes [18] whose update ordering is based
on distances of grid nodes to some selective reference points. However, this extension
cannot be easily used for surface meshes (e.g., in R3) because Euclidean distances
between nodes are not consistent with geodesic distances on the mesh.

Jeong and Whitaker propose the fast iterative method [11, 10] (FIM) to solve the
heterogeneous Eikonal equation and anisotropic Hamilton—Jacobi equations efficiently
on parallel architectures. The FIM manages the list of active nodes and iteratively
updates the solutions on those vertices until they are consistent with their neighboring
vertices. Vertices are added to or removed from the list based on a convergence
criterion, but the management of this list does not entail an extra burden of expensive
ordered data structures or special updating sequences. Proper management of the list
ensures consistency of the entire solution. This paper builds on the FIM algorithm,
and describes the application to unstructured meshes and an implementation on a
streaming SIMD parallel architecture.

In this paper we propose a new computational technique to solve the Eikonal equa-
tion on triangulated surface meshes efficiently on parallel architectures; we call it the
mesh fast iterative method (meshFIM), because it is an extension of the FIM method
proposed in [11]. We describe a parallel implementation of meshFIM on shared mem-
ory parallel systems and propose a new data structure for the efficient mapping of
unstructured meshes for parallel SIMD processors with limited high-bandwidth mem-
ory. The contributions of this paper are twofold. First, we introduce the meshFIM
algorithms for both single processor and shared memory parallel processors and per-
form a careful empirical analysis by comparing them to the state-of-the-art CPU-
based method, the fast marching method (FMM), in order to understand the benefits
and limitations of each method. Second, we propose a patch-based meshFIM solver,
specifically for more efficient implementation of the proposed method on massively
parallel SIMD architectures. We describe the detailed data structure and algorithm,
present the experimental results of the patch-based meshFIM, and compare them to
the results of the CPU-based methods to illustrate how the proposed method scales
well on state-of-the-art SIMD architectures.

The paper proceeds as follows. In the next section we describe relevant work
from the literature. In section 2 we introduce the proposed method and its hierarchi-
cal implementation for SIMD parallel architectures. In section 3 we show numerical
results, including consistency and convergence, on several different examples with dif-
ferent domains and speed functions, and we compare the performance against the fast
marching method. In section 4 we summarize the paper and discuss future research
directions related to this work.

2. Fast iterative method (FIM) on unstructured meshes.

2.1. Notation and definitions. In this paper, we consider the numerical solu-
tion of the Eikonal equation (2.1), a special case of nonlinear Hamilton—Jacobi partial

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

FIM ON TRIANGULATED SURFACES 2471

differential equations (PDEs), defined on a 2D manifold with a scalar speed function

H(x,V¢) = |Vso(x)|* — =0 VxeSc®,

1
(2.1) f2(x)
¢(x)=B(x) VxeBcCS,

where S is a smooth 2D manifold in R3, Vs is the gradient operator in the tangent
plane to the manifold, ¢(x) is the travel time or distance from the source, f(x) is a
positive speed function defined on &, and B is a set of smooth boundary conditions,
which adhere to the consistency requirements of the original equation. Of course, a
2D, flat domain is a special case of this specification, and the proposed methods are
appropriate for that scenario as well. The solution of the Eikonal equation with an
arbitrary speed function is sometimes referred to as a weighted distance [25] as opposed
to a Euclidean distance for a constant speed function on flat domains. We approximate
the solution on a triangulation of S, denoted Sy. The solution is represented pointwise
on the set of vertices V' in Sp, and interpolated across the triangles with linear basis
elements. The ¢th vertex in V is denoted v; and its position is a 3-tuple and denoted
x; = (x,y, z), where z,y, 2 € R. An edge is a line segment connecting two vertices (v;,
vj) in R* and is denoted e; ; while the vector from vertex v; to vertex v; is denoted
e;,; which equals to x; — x;. The angle between e; ; and e; . is denoted Z; or Z;; 1.

The neighbors of a vertex are the set of vertices connected to it by edges. A
triangle, denoted 7; ;x, is a set of three vertices v;, v;, vk that are each connected
to the others by an edge. We assume the triangulation adheres to a typical criterion
for comsistency for 2D manifolds, e.g., edges not on the boundary of the domain
belong to two triangles, etc. We call the vertices connected to v; by an edge the
one-ring neighbors of v; and the triangles sharing vertex v; are the one-ring triangles
of v;. For example, in Figure 2.1 left, the vertex v; is the neighbor of vertex vy and
vice-versa. Vertices va, v3, v4, Vs, Vg, U7 constitute the one-ring of v1, and triangles
T123,T1,34,...,T1 27 (which we will denote with capital letters for multi-indices T,
..., Tp as in the figure) form the one-ring triangles of v;. We define the discrete
approximation to ¢ at vertex v; to be ®;.

Fic. 2.1. A triangulation St of surface S (left) and the local solver: update the value at vertex
vz in a triangle (right).

2.2. Local solver. In (2.1), domain S is a manifold for which we have a tessel-
lation Sz and the numerical solution of the equation ®(x) is defined on the vertices

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

2472 FU, JEONG, PAN, KIRBY, AND WHITAKER

of the triangles of the tessellation. The solution at each vertex, sometimes referred to
as the travel time, is computed from its current value and its one-ring neighbors (see
Figure 2.1 left), using a linear approximation of the solution on each triangular facet.
The formulation presented here is a constructive form of derivation in [18], which
describes a Godunov approximation that picks an upwind direction of travel for the
characteristics based on consistency of the resulting solution. For a single update of
a single vertex v;, a set of n potential solutions (n = 6 for v; in Figure 2.1 left) are
calculated for the n one-ring triangles. Each of these triangle solutions represents the
shortest path across that triangle from the boundary conditions, as described in the
following paragraphs. The approximated solution at vertex v;, ®; ~ ¢(x;), is set to
be the minimum among the n values associated with each triangle in the one-ring.
From a computational point of view, the bulk of the work is in the calculation of the
n temporary or potential solutions from the adjacent triangles of each vertex.

The specific calculation on each triangle is as follows. Consider the triangle 77 5 3
in Figure 2.1 right. We use an upwind scheme to compute the solution ®3 from
values @1 and @5 to comply to the causality property of the Eikonal solution [18]. We
consider a local scheme based on piecewise linear reconstructions within the triangle.
The characteristics are perpendicular to the gradient of ®, which is linear, and thus
the travel time to v1 must be determined by time associated with a line segment lying
in the triangle 71 2 3.

Because acute triangles are essential for proper numerical consistency [14], we
consider only the case of acute triangles here and discuss obtuse triangles subsequently.
For a triangle 77 2 3 in Figure 2.1 right, we denote the angles formed by the triangular
edges as Z1 = «, Zo = 3, and Z3 = v, and denote the edge lengths as |[e1 2| = ¢,
lle1,s]l = b, and |leas]] = a. We assign a constant speed f to each triangle, 77 2 3,
which is consistent with a symmetric (isotropic) speed and a linear solution on each
element. We denote the difference in travel time between v; to vy as @19 = 1 — @s.

If the vertices v; and vy are upwind of vs, then there is a characteristic passing
through vs that intersects edge e; 2 at position x\ = x; + Ae; 2, where A is unknown
and A € [0,1] in order for the characteristic to intersect the edge. The line segment
that describes the characteristic across Th 2,3 is ey 3 = e 3 —eq) = e1,3—eq 2. Thus
the travel time from x to x3 is @53 = fllexs| = flle1,3 — Ae1 2]

Because the approximation of the solution on the triangle 77 » 3 is linear, we have
Dy = P(x)) = @1 + APy 2. The solution at vs is the solution at xy plus the travel
time from x to the vertex vz, and therefore

(2.2) D3 =Py +Prg=AP1 2+ D1 + fllers — dep o]

All that remains is to find A, and for this we observe that A should minimize
®3 because the characteristic direction is the same as the gradient of the solution.
Assigning zero to the derivative (with respect to \) of (2.2) gives a quadratic equation
from which we solve for A\. To satisfy the causality condition, A must be in the range
of [0,1]. If the solved A is in [0, 1], we compute ®3 from (2.2), else we compute two
®3’s from (2.2) assuming A as 0 and 1, and take the smaller one.

Because the computation of the solution for linear, triangular elements have poor
approximation properties when applied to obtuse triangles [20], we have to treat
obtuse triangles as a special case. For this, we adopt the method used in [14]. As
illustrated in Figure 2.2, if /3 is obtuse, we connect v3 to the vertex vy of a neighboring
triangle and thereby cut the obtuse angle into two smaller angles. If these two angles
are both acute, then we are done as shown in the left picture of Figure 2.2; otherwise if

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

FIM ON TRIANGULATED SURFACES 2473

Fic. 2.2. Strategy to deal with obtuse triangles.

one of the smaller angles is still obtuse, then we connect v to the vertex vs of another
neighboring triangle. This process is performed recursively, until all new angles at vs
are acute as shown in the right image of Figure 2.2. Note that, algorithmically, these
added edges and triangles are not considered part of the mesh; they are used only in
the solver for updating the solution at vs.

2.3. meshFIM updating scheme. The original fast iterative method [11] for
solving the Eikonal equation was proposed for rectilinear grids. In this section, we
extend the method to unstructured triangular meshes, called meshFIM, in a way that
is appropriate for more general simplicial meshes. We begin with a serial (single-
threaded) version of the algorithm, and then describe a parallel (multithreaded) ver-
sion of meshFIM for shared memory system. Finally, we describe the algorithm for
SIMD, streaming architectures with limited (hierarchical) shared memory capabili-
ties in detail. Here we mention the properties that make FIM suitable for parallel
solutions of the Eikonal equation, because they govern some of the subsequent design
choices:

1. The algorithm does not impose a particular update sequence.

2. The algorithm does not use a separate, heterogeneous data structure for sort-
ing.

3. The algorithm is able to simultaneously update multiple points.

The strategy of meshFIM is to solve the Eikonal equation on triangular mesh
vertices with lightweight data structures for easy mapping to SIMD architectures
with fast access to limited amounts of high-speed memory. This is the basic model
of state-of-the-art streaming architectures [4]. As in FIM [11], meshFIM maintains a
data structure that represents a narrow computational band, a subset of the mesh,
called the active list, for storing the vertices that are being updated. During each
iteration, the list of active vertices/triangles is modified to remove vertices whose
solutions are consistent with their neighbors and to include vertices that could be
affected by the last set of updates. Thus, a vertex is removed from the active list
when its solution is up to date with respect to its neighbors, and a vertex is appended
to the list when the value of any potentially upwind neighbor has changed.

Convergence of the algorithm to a valid approximation of the Eikonal equation is
provable [11] if three conditions are met:

1. Any vertex whose value may be inconsistent with its neighbors (according to

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

2474 FU, JEONG, PAN, KIRBY, AND WHITAKER

the local solver) must be appended to the active list.
2. A vertex is removed from the active list only when its value is consistent with
its neighbors.
3. The algorithm terminates only when the active list is empty.
There are a variety of algorithms that meet these criteria. Indeed, FMM is a special
case of this philosophy, which adopts a particular update order that guarantees that
once a point is removed from the active list it will never again need to be added (it
is upwind of every subsequent update of vertex/grid values). In the remainder of
this section we will discuss rules for updating vertex values and managing the active
list that are efficient for arbitrary ordering of vertex-value updates, including update
schemes that include both synchronous and asynchronous update of the active list.

Before the computation of the solution, any algorithm must compute certain
static information about the mesh, including the speed for each triangle and values
of the boundary conditions, and initialize the appropriate data structures, in this
case the active list L, which is set to be all of the vertices adjacent to the boundary
conditions. The computation of the speed function depends on the application, and
the initialization of the active list is not a computationally important step; thus we do
not treat the initialization as an important aspect of the parallel algorithms presented
in this paper.

We begin with the basic algorithm, which assumes synchronous updates of the
entire active list, and then introduce alternatives that take better advantage of asyn-
chronous updates. In this context an iteration is one loop through the entire active
list. In the basic algorithm, for every vertex v; € L we compute the new ®; from
solutions on the one-ring. This solution puts each vertex into a consistent solution
with the values of its neighbors from the previous iteration, and thus all vertices,
nominally are removed from the active list. Each updated vertex, however, triggers
the activation of neighbors of greater value, which are potentially downwind. The
algorithm would continue to update each subsequent active list until the active list is
empty.

If we consider asynchronous updates, values that are potentially downwind of
others in the active list may take advantage of updated values from the current iter-
ation. Indeed, taken to the limit, the updates are done on individual nodes, one at
a time, proceeding from the node of lowest value—which is the FMM algorithm. For
parallel algorithms, the approach will be a mixture of synchronous updates among
processors and asynchronous updates as each processor proceeds with a particular
subset of the active list. The situation becomes more complicated when we consider
the limited amount of communication that is available between processors or blocks
of processors, which motivates processing multiple iterations on subsets of the domain
without exchanging data or updating boundary conditions. In such cases, it is some-
times a more effective use of computational resources to run multiple iterations on the
same set of active nodes, not removing each one from the list after updating, so that
they can take advantage of updates of neighbors. The particular choice of updating
strategy depends on the architecture, and in the sections that follow these choices are
described for three different computational scenarios.

2.4. Algorithms for CPU. The criteria for a correct algorithm would suggest
that a vertex could be removed from the list and its neighbors activated after a single
update—knowing that it will be reactivated as needed. However, in the absence of
a strict or approximate sorting of values in the active list, it is efficient to reconcile
the values of vertices on the current wavefront (active list), before retiring updated

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

FIM ON TRIANGULATED SURFACES 2475

vertices and including new ones. From this insight, we derive the proposed algorithm,
which is as follows. Nodes on the active list are updated one at a time. After each
node is updated, its value is consistent of its upwind neighbors, and each update
is immediately transferred to the solution to be used by subsequent updates. The
algorithm loops through the active list, continuously updating values, and when it
reaches the last element of the list simply starts again at the beginning—thus, there
is effectively no beginning or end to the list. A vertex remains on the active list until
the difference between its old value and new value is below some error tolerance—
effectively, it does not change from the last update. We refer to a vertex that does
not change value (to within tolerance €) as e-converged. Each e-converged vertex is
removed from the active list. As the converged vertex is removed from the active list,
all of its potentially downwind neighbors (neighbors of greater value) undergo one
update step. If their values are not e-converged (i.e., they change significantly), they
are appended to the active list. The algorithm continues looping through the active
list until the list is empty.

Table 2.1 compares the number of solution updates between FMM, strict syn-
chronous and asynchronous relabeling schemes, and the proposed mesh fast iterative
method (meshFIM). The FMM is optimal (although run times will be slightly offset
by the time involved in managing the heap), and the synchronous and asynchronous
schemes perform very poorly. The asynchronous scheme depends, in principle, on up-
date order, but these results are consistent across a set of experiments with random
permutations of the active list. This table also shows that the update strategy of the
FIM, while not optimal provides numbers of updates that are much closer to FMM,
and showed a robustness to the ordering of the active list.

TABLE 2.1
Average number of local solver calls per vertex with the FMM, synchronous relabeling scheme,
asynchronous relabeling scheme, and meshFIM for two different meshes—one simple and one com-
plex (sphere and dragon described below).

FMM | Synchronous | Asynchronous | meshFIM
Simple mesh 18.1 737.8 177.0 19.6
Complex mesh 18.3 671.7 175.2 59.2

Because the serial algorithm does not depend significantly on the ordering of
updates, the extension to multiple processors is immediate. We simply divide the
active list arbitrarily into N sublists, assign the sublists to the N threads, and let
each thread use an asynchronous update for the vertices within the sublist. These
updates are done by applying the updating step in Algorithm 2.1 to each subactive
list.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

2476 FU, JEONG, PAN, KIRBY, AND WHITAKER

Algorithm 2.1. MESHFIM(V, B, L)

comment: 1. Initialization (V : all vertices, L : active list, B: seed vertices)

for each v € V
ifveB
do then &, « 0
else &, <
for each v € V
do {if any l-ring vertex of v € B
then add v to L

comment: 2. Update vertices in L

while L is not empty

for each v € V

p <+ P,

q < Update(v)

if [p—ql <e

for each adjacent neighbor vy, of v
if v, i8S not in L

do p+— Py,
q < Update(vyp)

then < if p > ¢

(bvnb — q
then {add Vpp to L

do

then do

remove v from L

2.5. Algorithm for GPU with SIMD parallel architecture. In this section,
we describe the implementation of meshFIM for SIMD parallel architecture. First,
we will briefly describe the SIMD parallel architecture, which motivates the proposed
algorithm. Then we describe a GPU version of meshFIM, we call it patchFIM, to
solve the Eikonal equation on the GPU with a SIMD parallel architecture.

2.5.1. SIMD architecture. Single-instruction multiple-datastream (SIMD) is
a computational paradigm that decides the data level parallelism that is widely used
in today’s media processors and graphics processing units (GPUs). The SIMD model
relies on a single instruction that is issued repeatedly on data structures that differ
only in their memory location. A set of instructions and an associated data-stream
(set of memory locations) is called a thread.

This SIMD computing strategy has some important implications for modern
streaming architectures. First, architectures based on the SIMD model benefit from
the efficiency that many arithmetic units share the same control structure, allowing
for a dense packing of units on a processor. Second, the architecture provides a set of
threads with extremely wide memory bandwidth to a relatively small pool of memory.
This bandwidth, however, often relies on coherent memory access, so efficiencies are
greatest when threads maintain local memory access patterns. Thus, effective use of
this on-chip memory, called shared memory or local storage and usually with limited
amount, requires careful modification to the traditional programming model. Third,
to the extent that instructions in threads can be unrolled, the execution can be orga-

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

FIM ON TRIANGULATED SURFACES 2477

nized into a large number of parallel pipelines that are simultaneously fetching data
and producing and consuming intermediate results. In this way, this fast memory
access is even more highly leveraged, typically to several hundred processors. Finally,
SIMD architectures often rely on a hierarchy of computing modules that share a com-
mon, significantly slower, set of memory, often called global memory. The second tier
computing modules (sometimes called blocks) consist of a set of individual threads
(operating in a SIMD mode), but they can operate independently, and thus they can
be considered as a set of parallel, shared memory units. The relatively slow access to
the global memory that is shared among blocks means that interblock communication
is slow relative to the rate at which threads consume data. For efficiency, algorithms
must not rely on excessive communication between blocks.

2.5.2. patchFIM description and algorithm. To make good use of the GPU
performance advantage, we propose a variant of meshFIM, called patchFIM, that
scales well on SIMD architectures, using a patch-based update scheme. The main idea
is splitting the computational domain (mesh) into multiple nonoverlapping patches
(sharing only boundary vertices), and treating each patch, which will be processed in
a SIMD fashion in a single block, as a computing primitive, corresponding logically
to a vertex in the original meshFIM algorithm.

The active list maintains a set of active patches instead of active vertices, and a
whole active patch is moved from global memory to a block and updated for several
SIMD iterations, which we call internal iterations. A set of internal iterations com-
prises a single iteration for that patch. Thus for each patch iteration, the data for
that patch is copied to the shared memory space, and internal iterations are executed
to update the solution on that patch. Of course, multiple computing blocks can pro-
cess multiple patches simultaneously, while other patches wait in global memory to
be swapped out to blocks.

This patch strategy is meant to take advantage of the SIMD parallelism, but it
introduces some inefficiencies. For instance, an entire patch must be activated any
time a vertex in an adjacent patch gets updated. A patch must remain active as long
as any of the vertices are still active. The number of internal iterations is required
to offset of the cost of transferring data between memory caches; however, vertices
within a patch are updated without communication with adjacent patches, and thus
boundary conditions lag and may be out of date as the internal iterations proceed.

These inefficiencies must be justified by an effective SIMD algorithm for the
patches. There are two challenges. First is providing SIMD processing on the un-
structured mesh, and second is keeping the computational density sufficiently high.
The parallelism is obtained by introducing a data structure for SIMD computing
on unstructured meshes, which we call the cell-assembly data structure (terminology
adapted from the finite element method (FEM) literature). Specifically, the cell-
assembly data structure includes three arrays, labeled mnemonically GEO, VAL,
and NBH. GEO is the array storing per-triangle geometry and speed information
required to solve the Eikonal equation. It is divided into subsegments with a prede-
fined size that is determined by the largest patch among all. Each subsegment stores
a set of four floats for each triangle, i.e., three floats for triangle edge lengths and one
float for the speed value. VAL is the array storing per-triangle values of solution of
the Eikonal equation. It is divided into subsegments, similar to GEO, but instead
of geometric information, solutions on three vertices are stored. We use two VAL
arrays, one is for input and the other is for output, to avoid memory conflicts. To deal
with boundaries across patches, we simply duplicate and store the exterior bound-

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

2478 FU, JEONG, PAN, KIRBY, AND WHITAKER

ary vertices for each patch and treat the data on those vertices as fixed boundary
conditions for each patch iteration. The NBH array stores indices to VAL for the
per-vertex solution. Figure 2.3 depicts the data structure introduced above.

Ta Ts Te To Te

A A A A A

‘ \ o \ \ \
GEO | e1,z| E2,s| e3,1| fi I | e4,1| e1,3| 53,A| fa I | e1,4»| eA,sI e5,1| f3 I | es,z| ez,ll e1,5| fa I | l I I l

Ta Ts Te To Te

A A A A A

VAL [0 [, [oo | [0 [[os | (o [0 Jo, J[o [0 [o J[_ | [|

NBH [liofislte | | [slieliz] [1 [is [1s 1]t |

¥ Y Y

Vi Va V3

FiG. 2.3. Data structure: in this figure, T; is a triangle, e; ; represents the edge length, and f;
is the inverse of speed in a triangle. ®; means the value of the iy, vertex. I; in NBH represents
the data structure for the iy, vertex, each of which has q indices pointing (shown as arrows) to the
value array.

A single inner iteration on a patch proceeds in two steps. In the first step all of
the triangles produce the arrival time for the solution for each vertex of the triangle
from the opposite edge, with special values for invalid results, as above. The triangle
solutions all undergo the same computation, with some minor branching in the deter-
mination of valid solutions. In the second step all vertices are updated by referring
back to the appropriate data in triangle solutions and performing a min operation
on the valid solutions (assembly). The vertex computation must loop through all of
the triangles in the one-ring, and thus the run-time of this step is determined by the
vertex with highest valence in the patch. Thus, SIMD efficiency favors meshes with
relatively consistent valences.

Preprocessing. The patchFIM algorithm requires some preprocessing before the
iterations begin. First, we must partition the mesh into patches. We use the multilevel
partitioning scheme described in [12]. Tt partitions the vertices of a mesh into roughly
equal patches, such that the number of edges connecting vertices in different parts
is minimized. The particular algorithm for mesh partitioning is not important to
the proposed algorithm, except that efficiency is obtained for patches with similar
numbers of vertices/triangles and relatively few vertices on the boundaries.

In this step, we also calculate the static mesh information including dealing with
the obtuse triangles. We use the same idea as in meshFIM to treat obtuse triangles.
However, instead of adding wirtual edge, we also add wvirtual triangles generated by
splitting the obtuse triangle to the corresponding cell-assembly data structures. Fig-
ure 2.4 demonstrates this, where Z; 32 is obtuse, and adding a virtual edge ez .4 will
generate two “virtual triangles” 7734 and T534. If one of 2y 34 and £y 34 is still
obtuse, the algorithm would split again. The last thing in this step is to initialize
values of each vertices and the active list. Instead of keeping a narrow band of active
vertices, we maintain a list of active patches. If any of the vertices in a patch is
adjacent to a seed point, this patch is added to the initial active list.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

FIM ON TRIANGULATED SURFACES 2479

Virtual
triangle

Virtual
triangle

F1c. 2.4. Virtual edge and virtual triangles.

Iteration step. In this step, each patch is treated just like a vertex in meshFIM.
The main iteration continues until the active list becomes empty. Each patch in
the active list is assigned to a SIMD computing unit where all vertices value in this
patch are updated several times. After every update, the assembly stage reconciles
the different solutions for a vertex. This is done with a loop over the NBH to find
the minimum value. If a patch is convergent, meaning all vertices in this patch are
convergent, it is removed from the active list and its nonconvergent neighbor patches
are added to the active list.

Checking the patch convergence can be simply updating the entire patch once
and checking if there exists a vertex whose solution has changed by the update.
To do this, we use a reduction operator, which is commonly used in the streaming
programming model to reduce a larger input stream to a smaller output stream.
For SIMD architectures, parallel reduction can be implemented using an iterative
method. In each iteration, we adopt a tree-based method in which every thread reads
two Boolean values from the convergence array of current patch and writes back the
result of the AND operation of two values. The number of the threads to participate
in this reduction is halved in the successive iteration, and this is repeated until only
one thread is left. In this way, for a block of size n, only O(logyn) computations
are required to reduce a block. In the pseudocode to follow, C(p) is a Boolean value
representing the convergence status of a patch p (per-patch convergence), and C,(p)
is a set of Boolean values where each value represents the convergence status of the
vertices in the patch p (per-vertex convergence). The pseudocode for patchFIM is
given in Algorithm 2.2, where the pseudocode for each subroutine in the patchFIM is
given in Algorithm 2.3, 2.4, and 2.5, respectively.

Algorithm 2.2. pATCHFIM(VAL,,,. VAL, L, P)

comment: L: active list of patches, P: set of all patches

while L is not empty
MainUpdate(L, C,, VAL, VALgyt)
do ¢ CheckNeighbor(L,C,,C, VAL;,, VALyut)
UpdateActiveList(L, P, C)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

2480 FU, JEONG, PAN, KIRBY, AND WHITAKER

Algorithm 2.3. MAINUPDATE(L, C,,, VAL;,, VALyt)

comment: 1. Main iteration

for each p € L in parallel

fori=1ton

for each t € p in parallel

o {VALout (t) < LocalSolver(VAL;y (%))

reconcile solutions in ¢

update C,(p)

swap VAL, (t) and VAL, (t)

reconcile solutions in p

do do

Algorithm 2.4. CHECKNEIGHBOR(L, C,,, C, VALj,, VALqyt)

comment: 2. Check neighbors

for each p € L in parallel
do {C(p) « reduction(Cy(p))

for each p € L in parallel
if C(p) = TRUE
do th {for each adjacent neighbor of p,; of p
do {add pn to L

for each p € L in parallel
for each t € p in parallel
VAL, (t) < LocalSolver(VAL;,(t))
{reconcile solutions in ¢
update C,(p)
swap VAL, (t) and VALgy(t)
reconcile solutions in p

do

for each p € L in parallel
do {C(p) « reduction(C,(p))

Algorithm 2.5. UPDATEACTIVELIST(L, P, C)

comment: 3. Update active list

clear(L)
for each pe P
do {if C(p) = FALSE
then insert p to L

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

FIM ON TRIANGULATED SURFACES 2481

3. Results and discussion. In this section we discuss the performance of the
proposed algorithms in realistic settings compared to the most popular FMM-based
algorithm. We have conducted systematic empirical tests with a set of different meshes
with various speed functions. First, we show the result of the single-threaded (serial)
CPU implementation of meshFIM and FMM, and discuss the intrinsic characteristics
relative to existing algorithms. Second, we provide the result of multithreaded CPU
implementation to discuss scalability of the proposed algorithm on shared memory
multiprocessor computer systems. Last, we show the GPU implementation to demon-
strate the performance of the proposed method on SIMD parallel architectures. Single
precision is used in all experiments throughout the entire paper. We have carefully
chosen four triangular meshes with increasing complexity to compare the performance
of each method. In addition, we used two different speed functions, a constant and
correlated random speed, to elaborate how the heterogeneity of the speed function
affects the performance of each method.

The meshes for the experiments in this section are as follows:

Mesh 1: A regularly triangulated flat square mesh with 1,048,576 vertices (1,024 x
1,024 regular grid),
Mesh 2: An irregularly triangulated flat square mesh with 1,181,697 vertices and
2,359,296 triangles,
Mesh 3: A sphere with 1,023,260 vertices and 2,046,488 triangles (Figure 3.1 left),
and
Mesh 4: Stanford dragon with 631,187 vertices and 1,262,374 triangles (Figure 3.1
right).
The speed functions f(z) are: Speed 1—a constant speed of one, and Speed 2—
correlated random noise.

Fia. 3.1. Sphere and Stanford dragon meshes.

3.1. Serial CPU results. We have tested our CPU implementation on a Win-
dows Vista PC equipped with an Intel i7 920 CPU running at 2.66 GHz. First, we
focus only on the performance of FMM and the single-threaded implementation of our
method (meshFIM-ST) on different meshes with a constant speed (Speed 1). Rows 1
and 2 of Table 3.1 show the experimental results for the serial implementations.

The Eikonal equation with the speed function of constant one (f(x) = 1) is the
simplest test, and the easiest to perform well. However, it is useful in real world
applications because the solution is the geodesic distance on a surface to the initial
source boundary. In this experiment, we use a single point as the source for all

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

2482 FU, JEONG, PAN, KIRBY, AND WHITAKER

TABLE 3.1
Running time (millisecond) of FMM, single-threaded FIM (meshFIM-ST), and multithreaded
FIM (meshFIM-MT) on Meshes 1, 2, 3, and 4 with a constant speed (Speed 1).

Mesh 1 | Mesh 2 | Mesh 3 | Mesh 4
FMM 5092 7063 6362 3612
meshFIM-ST 6562 9354 8591 4331
meshFIM-MT 2198 3151 2846 1487

four meshes so that the r-level set of the solution ® is a curve that is a collection
of all points on the surface whose distance to the source point is r. As shown in
Table 3.1, FMM outperforms the single-threaded meshFIM slightly on all the test
cases. Although FMM has the overhead of managing the heap data structure, the
cost related to computing distance becomes the major bottleneck for the Eikonal
equation on the mesh. Because meshFIM usually requires more iterations per vertex
than FMM (which is optimal in this respect), meshFIM runs slower than FMM for
serial execution.

To further elaborate the difference of two methods, we conducted the experiment
on Mesh 3 using both speed functions. As shown in Table 3.2, the performance of
FMM is not affected by the choice of the speed functions, which clearly demonstrates
the advantage of the worst-case-optimal algorithm. On the other hand, the running
time for meshFIM increased significantly from Speed 1 to Speed 2 because the total
number of iterations (vertex updates) is significantly increased for Speed 2 due to the
huge variance of the speed.

TABLE 3.2
Running time (millisecond) of FMM and meshFIM (single and multithreaded) on Mesh 3 and
both speed functions (Speed 1 and 2).

Speed 1 | Speed 2
FMM 6362 6435
meshFIM-ST 8591 11960
meshFIM-MT 2846 4362

The meshFIM algorithm is designed for parallelism, and the results on the multi-
threaded system bear this out. The third row in Table 3.1 shows the running time of
multithreaded meshFIM using four CPU cores. Because FMM is a serial algorithm
(a strict ordering of the updates on vertices requires this), there is no benefit of us-
ing multiple threads. In contrast, meshFIM scales well on multicore systems. On a
quad-core processor, we observed a nearly three times speedup from meshFIM-ST to
meshFIM-MT on all cases. This result suggests that meshFIM is a preferred choice
for such shared memory systems.

3.2. GPU implementation result. To show the performance of meshFIM
on SIMD parallel architectures, we have implemented and tested patchFIM (Algo-
rithm 2.2) on an NVIDIA GT200 GPU using NVIDIA CUDA API [15]. The NVIDIA
GeForce GTX 275 graphics card is equipped with 896 MBytes of memory and 30 mi-
croprocessors, where each microprocessor consists of eight SIMD computing cores that
run at 1404 MHz. Each computing core has 16 KBytes of on-chip shared memory for
fast access to local data. The 240 cores run in parallel, but the preferred number of
threads running on a GPU is much larger because cores are time-shared by multiple
threads to maximize the throughput and increase computational intensity. Computa-
tion on the GPU entails running a kernel with a batch process of a large group of fixed

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

FIM ON TRIANGULATED SURFACES 2483

size thread blocks, which maps well to the patchFIM algorithm that uses patch-based
update methods. A single patch is assigned to a CUDA thread block, and each tri-
angle in the patch is assigned to a single thread in the block. In order to balance the
GPU resource usage, e.g., registers and shared memory, and the number of threads
running in parallel, we fix the thread block size to result in the maximum occupancy
[1] and adjust the maximum number of triangles among all patches to conform that.

Table 3.3 shows the performance comparison of patchFIM with two single-threaded
CPU implementations (i.e., FMM and meshFIM) on the same meshes and speed func-
tions, and shows the speedup factors of patchFIM over the CPU methods. Communi-
cation times between CPU and GPU, which are only about one tenth of the running
times in our experiments, are not included for patchFIM to give a more accurate
comparison of the methods. As shown in this result, the patchFIM algorithm maps
very well to the GPU and achieves a good performance gain over both the serial and
multithreaded CPU solvers. On a simple case such as Mesh 1 with Speed 1, patch-
FIM runs about 33 times faster than meshFIM-ST and 25 times faster than FMM.
On other more complex cases, patchFIM runs up to 15 times faster than FMM. In
addition, on the heterogeneous media using Mesh 3 with Speed 2, where meshFIM-ST
runs roughly half as fast as FMM on the CPU, patchFIM still runs about 14 times
faster than FMM.

As shown in this result, SIMD efficiency of the meshFIM algorithm depends on
the input mesh configuration, more specifically, the average vertex valence relative
to the highest valence. Thus, Mesh 1 is the most efficient set up because almost
all vertices have valence six. In contrast, Mesh 2 shows the worst performance due
to the highest vertex valence of 11. Meshes 3 and 4 have a maximum valence of
eight. Moreover, Mesh 2 has the largest percentage of high valence (greater than six)
vertices. Meshes 3 and 4 are commonly found set up where valences follow a tight,
symmetric-distribution-centered valence six. In summary, patchFIM implemented on
the GPU runs faster than any existing CPU-based solver on all examples we tested,
with the effectiveness depending on mesh configuration and distribution of valences
of vertices. Many applications based on time-consuming Eikonal equation solvers can
run at real-time or interactive rates using the proposed method.

TABLE 3.3
Running times (milliseconds) and speedups (factor) for different algorithms and architectures.

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 3
with with with with with
Speed 1 | Speed 1 | Speed 1 | Speed 1 | Speed 2
FMM 5092 7063 6362 3612 6435
meshFIM-ST 6562 9354 8591 4331 11960
patchFIM 201 910 415 287 459
Speedup over FMM 25% 8% 15x 13x 14x
Speedup over meshFIM-ST 33x 10x 21x 15x 28%

In patchFIM, there are two user-defined parameters: the size of patch and the
iteration number within an active patch update. In our experiments, the empirically
optimal patch size is 64 vertices, which means the maximum number of vertices among
all patches is 64. There is a trade-off here. On the one hand, the smaller patch sizes
efficiently concentrate vertex updates on the wavefront. This is because we update all
the vertices of a patch each iteration, while only the updates for the vertices on the
wavefront are useful. For smaller patch sizes, the average ratio of number of vertices
inside the wavefront to the total number of vertices in this patch is higher, hence there

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

2484 FU, JEONG, PAN, KIRBY, AND WHITAKER

is less percentage of useless computation. On the other hand, the SIMD architecture
requires the patch size to be large enough to take advantage of the large number of
processors and to hide the hardware latency [15] associated with memory transfers.
A small parameter study of different patch sizes showed 64 vertices to be an effective
compromise and that this parameter is consistent across different meshes.

3.3. Analysis of results. In the previous section, the performance of the Eikonal
solvers are compared based on the running time on different architectures. Because
running time can be affected by many factors, such as implementation schemes and
hardware performance, we measure the number of local solver calls for a more pre-
cise performance analysis in this section. We also briefly discuss the accuracy of the
proposed method, and introduce parameter optimization techniques for GPU imple-
mentation.

TABLE 3.4
Awverage number of local solver calls per vertex for different algorithms.

Mesh 1 with | Mesh 2 with | Mesh 3 with | Mesh 4 with | Mesh 3 with
Speed 1 Speed 1 Speed 1 Speed 1 Speed 2
FMM 17.9 19.5 18.1 18.3 18.1
meshFIM-ST 18.0 23.3 24.4 19.6 59.2
meshFIM-MT 18.0 26.6 46.1 23.1 83.1
patchFIM (GPU) 105.0 595.5 290.9 251.2 334.1

3.3.1. Asymptotic cost analysis. The most time-consuming operation for the
Eikonal equation solver is the update of the solution on a vertex with its one-ring tri-
angles, and each update includes N local solver calls where N is the valence of this
vertex. Table 3.4 compares the average number of local solver calls per vertex on
different meshes with different speed functions. As can be seen from Table 3.4, FMM
requires approximately 18 local solver calls in all cases. This can be explained as
follows. For FMM, the solutions of the vertices on the wavefront may be computed
multiple times. Each vertex has six neighbors on the average, and statistically half
of the neighbors are potentially upwind. Thus, each vertex is updated roughly three
times, and each time requires a solve for the six triangles in the one-ring. This explains
the characteristic 18 solves per vertex, independent of the meshes and speed functions.
In comparison, the average number of local solver calls for meshFIM depends largely
on the speed function, which can be noticed when comparing Speed 2 with Speed 1.
In addition, the average number of local solver calls for meshFIM-ST is more than
that of FMM on all the experiment settings. This difference in the number of calls
is offset, but only slightly, by the extra work of FMM in maintaining the heap. The
multithreaded CPU version (meshFIM-MT) needs more updates because of the extra
computation associated with simultaneous updates in the red-black Gauss—Seidel it-
eration scheme. This explains, to some extent, why we get about three times speedup
on a quad-core CPU. The patchFIM method incurs an extra computation associated
with patch-based updates. This factor of 5-20 is consistent with the run times we see.
Roughly, if we have 200 processors operating at approximately half the clock rate,
we would expect, ideally, a 100x advantage. However, with the efficiencies shown in
Table 3.4, we would expect a 5-20x speed advantage on the GPU (relative to FMM),
which is consistent with data in Table 3.3. These results also provide evidence that
the CUDA implementation achieves a computational density that is high enough to
offset latency and memory management overhead.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

FIM ON TRIANGULATED SURFACES 2485

We can asymptotically compare the computational costs of the FMM and mesh-
FIM algorithms as follows [11]. Let k; and ks be the costs for a local solver and a
heap updating operation, respectively. Suppose Ppprys and Pprys are the average
number of local solver calls per vertex in FMM and meshFIM-ST, respectively (as in
Table 3.4). Let h be the average heap size. The total costs for FMM and meshFIM-ST
on a mesh with N vertices can be defined asymptotically as follows:

k
Crym = N(ki1Ppyar + k2 Prararlogah) = Nk Py (1 + k—?logzh> ;

Criv = NE1Ppry.

The value ﬁ—f is empirically measured to be about 0.02. Hence, the ratio for the costs
. C _ P
of meshFIM and FMM is c;ﬂ’/ﬁ\f/l = PFMM(lilo%Qlogzh)'

For the setting with Mesh 1 and Speed 1, the average heap size h (which is
proportional to the arc length of the expanding wavefront) is 1,302 for FMM and
53{1}‘@ is approximately 1.67, as can be derived from Table 3.4. Therefore, gg Mo~
1.38 in this case, which is consistent with the experimental results in Table 3.3.

As shown in the above analysis, k1 >> ko in C'rpras, so the impact of the update
operations on the performance of FMM is much more significant than that of the
heap operations for moderately sized meshes. This is juxtaposed with the lower cost
of computing node updates on regular grids, which makes FIM more competitive with
FMM in that circumstance, even for serial implementations [11]. It can also be seen
that, with a larger mesh (which means larger h), the performance difference between
single-threaded meshFIM (Crras) and FMM (Crasar) will be less. Of course the
design goal of meshFIM is that it can be mapped well to parallel architectures. Even
with some performance degradation from Gauss—Seidel iteration in meshFIM-ST to
red-black Gauss—Seidel in meshFIM-MT, we can still get large performance gain from
running on multiple core CPUs.

The performance of meshFIM is determined by the number of updates (or the
number of local solver calls), which depends heavily on the heterogeneity of the speed
function. The following experiment systematically characterizes how the speed func-
tion affects the performance of these algorithms. First, we generate white noise for
the initial speed function, and then apply a mesh Laplacian operator [30] N times to
the initial speed function to make the speed function less heterogeneous for increasing
N. Figure 3.2 shows the result of this experiment. The x axis is the number of total
vertices in the mesh and the y axis is the number of local solver calls. As N becomes
bigger, and the speed function more homogeneous or smooth, the plot becomes less
steep, and the results become closer to the meshFIM results with a constant speed
function. We also see that FMM increases linearly with the number of vertices, as
expected.

3.3.2. Error analysis. To show that the proposed algorithm achieves the first-
order accuracy we would expect from the linear elements introduced in the solver,
we performed a convergence analysis. We use seven regularly triangulated square
meshes, representing a 16x16 patch of %2, with the number of vertices ranging from
256 to 1,048,576. We considered two cases of boundary conditions. In the first case
we used a pair of isolated points and in the second case we used a pair of circles of
radius 3, where the domain is 16x16. Boundary conditions were projected onto the
grid using the nearest vertices to the circles or points. We then solve for the distances
to these boundaries for the entire domain using the patchFIM Eikonal solver and

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

2486 FU, JEONG, PAN, KIRBY, AND WHITAKER

251

—#=0 iteration

-5

—+10

=15

—<20

-B-FIM with constant speed
—~<-FMM

number of local solver calls

05

3
number of vertices x10

Fic. 3.2. Laplacian experiment results.

compare against analytical results at the vertices using the average squared error
(Lo)—similar plots result from sup error. Figure 3.3(a) shows the level sets of a
solution to the circular boundary conditions. Finally, we can plot these errors against
the size of triangles as shown in Figure 3.3(b). For the circular boundary conditions,
the slope of this graph is 1.0, which is consistent to our claim that meshFIM is first-
order accurate. For the point boundary conditions, the slope is less—showing the
method is not first-order accurate for nonsmooth boundaries, which are inconsistent
with the governing equations.

— two-circle
x

—single point

log10(error)

\ , . ,
05 0 05 1
log10(triangle size)

(a) (b)

Fi1c. 3.3. (a) The level sets of the solution of the Eikonal equation which represents distance to
two circular boundaries. (b) The error as a function of resolution shows first-order convergence for
smooth boundary conditions.

3.3.3. Parameter optimization. As for the iteration number within an active
patch update, every active patch is updated multiple times before its convergence is
checked. There are two motivations. First, not all the vertices in a patch reach a
consistent configuration with a single update. This is clear if we imagine a wavefront

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

FIM ON TRIANGULATED SURFACES 2487

of active vertices initiated at one side of a patch propagating to the other side. The
check for convergence requires communication with the CPU, and we would like to
make maximum use of the fast on-chip shared memory space without communicating
with the main memory. However, if the number of iterations per patch n is too large,
the algorithm executes useless extra updates after reaching a consistent configuration.
Generally n is proportional to the patch diameter, which is related to the number of
iterations it takes for a wavefront to propagate across a patch. The optimal choice
of n depends not only on the size of the patch but also on the input speed function.
In general, according to our experiments, the best n is around 7 for most cases for
patches of approximately 64 vertices. The running times for n < 7 can be quite
good, but are not stable across different data sets and speed functions. However,
for n > 7 the running time becomes stable and gradually increases as n increases.
This is because patches with 64 vertices usually converge in about seven updates, and
therefore wavefront propagation is almost identical with n > 7 iterations.

4. Conclusions. In this paper we propose a fast and easily parallelizable al-
gorithm to solve the Eikonal equation on unstructured triangular meshes on single
core CPU and on parallel, streaming architectures with restrictions on local memory.
The proposed algorithms are based on the fast iterative method with modifications
to accommodate unstructured triangular grids. The method employs a narrow band
method to keep track of the mesh vertices to be updated and iteratively updates ver-
tex values until they converge. Instead of using an expensive sorting data structure
to ensure the causality, the proposed method uses a simple list to store active vertices
and updates them asynchronously, using an ad-hoc ordering, which can be determined
by the hardware. The vertices in the list are removed from or added to the list based
on the convergence, which is a measure of consistency with neighboring vertices. The
method is easily portable to parallel architectures, which is difficult or infeasible with
many existing methods. We compared the performance of the proposed method with
the popular FMM method on a single processor, a shared-memory, multicore CPU,
and a SIMD parallel processor.

Acknowledgment. The dragon model is provided by the Stanford University
Computer Graphics Laboratory.

REFERENCES

[1] CUDA Occupancy Calculator, available online at http://developer.download.nvidia.com/
compute/cuda/CUDA_Occupancy-calculator.xls.

[2] D. BERTSEKAS, Dynamic Programming and Optimal Control, Athena Scientific, Belmont, MA,
1995.

(3] F. BORNEMANN AND C. RASCH, Finite-element discretization of static Hamilton-Jacobi equa-
tions based on a local variational principle, Comput. Vis. Sci., 9 (2006), pp. 57-69.

[4] 1. Buck, T. FOoLEY, D. HORN, J. SUGERMAN, K. FATAHALIAN, M. HOUSTON, AND P. HANRAHAN,
Brook for GPUs: Stream computing on graphics hardware, ACM Trans. Graphics, 23
(2004), pp. 777-786.

[5] P. COLLI-FRANZONE AND L. GUERRI, Spreading of excitation in 3-D models of the anisotropic
cardiac tissue 1. Validation of the eikonal model, Math. Biosci., 113 (1993), pp. 145-2009.

[6] M. FALCONE, A numerical approach to the infinite horizon problem of deterministic control
theory, Appl. Math. Optim., 15 (1987), pp. 1-13.

[7] M. FALCONE, The minimum time problem and its applications to front propagation, in Motion
by Mean Curvature and Related Topics, de Gruyter, Berlin, 1994, pp. 70-88.

[8] J. E. GREIVENKAMP, Field Guide to Geometrical Optics, SPIE Publications, Bellingham, WA,
2003.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

2488 FU, JEONG, PAN, KIRBY, AND WHITAKER

[9] M. HERRMANN, A domain decomposition parallelization of the fast marching method, in Center

[10]

[30]

31]

for Turbulence Research Annual Research Briefs, Stanford University, Stanford, CA, 2003,
pp. 213-225.

W. K. JeoNG, P. T. FLETCHER, R. TAO, AND R. T. WHITAKER, Interactive visualization
of volumetric white matter connectivity in DT-MRI using a parallel-hardware Hamilton—
Jacobi solver, IEEE Trans. Vis. Comput. Graph., 13 (2007), pp. 1480-1487.

W. K. JEONG AND R. T. WHITAKER, A fast iterative method for eikonal equations, SIAM J.
Sci. Comput., 30 (2008), pp. 2512-2534.

G. KARYPIS AND V. KUMAR, A fast and high quality multilevel scheme for partitioning irreqular
graphs, SIAM J. Sci. Comput., 20 (1998), pp. 359-392.

J. P. KEENER, An eikonal-curvature equation for action potential propagation in myocardium,
J. Math. Biol., 29 (1991), pp. 629-651.

R. KiIMMEL AND J. A. SETHIAN, Computing geodesic paths on manifolds, Proc. Natl. Acad. Sci.
USA, 95 (1998), pp. 8431-8435.

NVIDIA, NVIDIA CUDA C Programming Guide, available online at http://developer.nvidia.
com/nvidia-gpu-computing-documentation.html.

E. PIcHON AND A. TANNENBAUM, Curve segmentation using directional information, relation
to pattern detection, in ICIP Volume 2, Genoa, Italy, 2005, pp. 794-797.

L. C. POLYMENAKOS, D. P. BERTSEKAS, AND J. N. TSITSIKLIS, Implementation of efficient
algorithms for globally optimal trajectories, IEEE Trans. Automat. Control, 43 (1998),
pp. 278-283.

J. QIAN, Y. ZHANG, AND H. ZHAO, Fast sweeping methods for eikonal equations on triangulated
meshes, SIAM J. Numer. Anal., 45 (2007), pp. 83-107.

F. QmN, Y. Luo, K. B. OLSEN, W. CA1, AND G. T. SCHUSTER, Finite-difference solution of the

eikonal equation along expanding wavefronts, Geophysics, 57 (2009), p. 478.

. RAWLINSON AND M. SAMBRIDGE, Wave front evolution in strongly heterogeneous layered
media using the fast marching method, Geophys. J. Internat., 156 (2004), pp. 631-647.

. Rouy AND A. TOURIN, A wiscosily solutions approach to shape-from-shading, SIAM J.
Numer. Anal., 29 (1992), pp. 867-884.

J. A. SETHIAN, A fast marching level set method for monotonically advancing fronts, Proc.
Natl. Acad. Sci. USA, 93 (1996), pp. 1591-1595.

. SHERIFF AND L. GELDART, Ezploration Seismology, Cambridge University Press, Cambridge,
UK, 1995.

. SIFRI, A. SHEFFER, AND C. GOTSMAN, Geodesic-based surface remeshing, in Proceedings of
the IMR, Kuala Lumpur, Malaysia, 2003, pp. 189-199.

. SPIRA AND R. KIMMEL, An efficient solution to the eikonal equation on parametric mani-
folds, Interfaces Free Bound., 6 (2004), pp. 315-327.

. SRINARK AND C. KAMBHAMETTU, A novel method for 3D surface mesh segmentation, in
Computer Graphics and Imaging, IASTED/ACTA Press, Calgary, Canada, 2003, pp. 212—
217.

Y. R. Tsal, L. T. CHENG, S. OSHER, AND H. ZHAO, Fast sweeping algorithms for a class of

Hamilton-Jacobi equations, SIAM J. Numer. Anal., 41 (2003), pp. 673-694.

M. C. TUGURLAN, Fast Marching Methods-Parallel Implementation and Analysis, Ph.D. thesis,
Louisiana State University, Baton Rouge, LA, 2008.

WIKIPEDIA, Supercomputer, available online at http://en.wikipedia.org/wiki/Supercomputer.

H. Zuang, O. V. Kaick, AND R. DYER, Spectral methods for mesh processing and analysis,
in STAR Proceedings of Eurographics 2007, D. Schmalstieg and J. Bittner, eds., Prague,
2007, Eurographics Association, Geneva, Switzerland, pp. 1-22.

H. Zuao, A fast sweeping method for eikonal equations, Math. Comp., 74 (2005), pp. 603-627.

[N =v)

S5 » O =

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

