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Abstract

A standard way to segment medical imaging datasets is by tracing
contours around regions of interest in parallel planar slices. Unfor-
tunately, the standard methods for reconstructing three dimensional
surfaces from those planar contours tend to be either complicated
or not very robust. Furthermore, they fail to consistently mesh abut-
ting structures which share portions of contours. In this paper we
present a novel, straight-forward algorithm for accurately and au-
tomatically reconstructing surfaces from planar contours. Our al-
gorithm is based on scanline rendering and separating surface ex-
traction. By rendering the contours as distinctly colored polygons
and reading back each rendered slice into a segmented volume, we
reduce the complex problem of building a surface from planar con-
tours to the much simpler problem of extracting separating sur-
faces from a classified volume. Our scanline surfacing algorithm
robustly handles complex surface topologies such as bifurcations,
embedded features, and abutting surfaces.

CR Categories: I.3.5 [Computer Graphics] Computational Geom-
etry and Object Modeling—Curve, surface, solid and object repre-
sentations
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1 Introduction

Computational models of biological structures are generally built
from CT or MRI scans. The scan measurements are acquired on
a regularly gridded volume of hexahedral voxels, and the data are
stored as discrete values. From this discretized volume, a surface-
based model can be constructed by identifying collections of voxels
corresponding to features of interest. Such features can be as small
as blood vessels in an angiogram, or as large as a kidney in an
MRI scan. This process of labeling features of interest is termed
segmentation or classification.

Volumetric datasets are typically segmented one slice at a time
via manual algorithms, rather than as an entire volume all at once.
That said, there have been some note-worthy semi-automatic volu-
metric segmentation algorithms. These algorithms have worked by
growing segmented regions from seeds via level set methods [14],
by evolving snakes through planar slices to bound segmented re-
gions [8], and by various statistical methods [12, 24]. While these
methods are of substantial utility on well-behaved datasets, they
tend to be of limited use on noisy or artifact-laden datasets, or on
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Figure 1: Stages of our scanline surfacing algorithm. From slices of
raw data (a), an expert draws contours around features (b), which
are scan converted into images (c). After stacking these images
into a classified volume (d), separating surfaces are extracted and
smoothed (e). (See also colorplate.)

datasets through which the feature sizes can shrink to sub-voxel
sizes. As automatic segmentation is a fundamentally difficult re-
search problem, there will always be a place for processing the out-
put of manual segmentation tools.

The most common manual segmentation tools are contour draw-
ing programs. An expert views planar slices of the volume (such as
the angiography slices shown in Figure 1(a)) and draws polylines
(contours) to outline regions of interest (such as the vessel contours
shown in Figure 1(b)). The unique power of manual segmentation is
that the expert can draw these curves despite noise, low-resolution
data, signal fallout, and other pathologies which would confound
automatic techniques.

As the expert outlines slice features, multiple features may ap-
pear in each slice, and individual features may appear more than
once. To identify attached features between as well as within slices,
the user typically selects a particular color or classification tag for
each feature of interest. Figure 2 shows a single planar slice of a
pelvic dataset. Note that the dark blue contours (also shown in col-
orplate Figure 10), which correspond to a single structure, the right
pelvis, appear three times in this single slice. The user proceeds
through all of the slices, consistently labeling regions of interest in
each. At the end of this process, the user has created a set of planar
contours uniquely identifying every feature of interest in the vol-
ume. The slice contours can then be aligned in 3D, as shown in



Figure 2: Hand drawn planar contours of pelvic structures. Skin
(red), left pelvis (green), right pelvis (dark blue), rectum (yellow),
prostrate (cyan), and sacrum (magenta) have been segmented.

Figure 3: Planar contours outlining structures of interest are aligned
in 3D. (See also colorplate.)

Figure 3.
While manual segmentation can take hours of user time for a

dataset like that shown in Figure 3, constructing surfaces from those
contours (such as those in Figure 4) rarely requires more than a
minute of CPU time on modern architectures. As such, it is of lim-
ited benefit to produce faster algorithms for constructing surfaces
from contours. Rather, what matters more is that the surfacing al-
gorithm produces a correct result.

The traditional method for building triangulated surfaces from
planar contours consists of solving three subproblems for each
structure in the volume: correspondence, tiling, and branching
[4, 6, 15, 21]. However, because these methods process the struc-
tures serially, rather than processing them simultaneously, they do
not necessarily produce correct results for volumes in which sur-
faces abut.

Full volumetric models, such as torso models, cranial models, or
pelvic models are often comprised largely of such abutting surfaces.
The human body is not comprised of well-separated, free-floating
surfaces, but rather of tightly packed organs which often conform
to one another’s shapes. The surfaces are merely the boundaries be-
tween structures within the volume. When these surfaces are con-
structed from a segmented volumetric dataset (such as a tetrahedral
mesh or a voxelized volume), they are termed separating surfaces
[18]. Separating surfaces can be smoothed and simplified without
producing spurious gaps or surface interpenetrations [23].

2 Background

Constructing surfaces from planar contours has traditionally been
decomposed into three subproblems: correspondence, tiling, and
branching. Excellent reviews of these problems were presented by
Sloan and Painter [21], as well as by Meyers [15]. We describe each
subproblem briefly below.

The correspondence problem aims to determine which contours
belong to the same structure. Simply stated: Which contours in
one slice are to be connected to which contours in neighboring
slices? The question of correspondence applies within a slice, as
well as between slices. From the magnetic resonance angiography
dataset shown with a maximum intensity projection in Figure 5, we
extracted the indicated subvolume which intersects a pair of blood
vessels. For each slice of the subvolume, we hand drew correspond-
ing contours around the vasculature, as shown in Figure 6. All of
the red contours correspond to one vessel, while all of the blue con-
tours correspond to a different vessel. While the correspondence for
this simple example is trivial, in general, algorithms for determin-
ing correspondence can be under-constrained. For example, imag-
ine trying to determine correspondences for tomographic slices of a
bowl of spaghetti. Algorithms for resolving correspondence when
there is ambiguity resort to heuristics based on shape fitting [2] or
graph analysis [20]. In contrast, if an unambiguous correspondence
does exist, it can often be found by simply evaluating overlaps of
contours in consecutive slices [22, 25].

The second subproblem in constructing surfaces from contours
is the tiling problem. What is the optimal triangle strip for joining
corresponding contours from consecutive slices? There has been
much research targeted at solving this problem efficiently. The
problem was reformulated by Keppel [11] as finding a path through
a toroidal graph. Formalization of this method and efficiency im-
provements were subsequently introduced [3, 6, 21]. These meth-
ods vary in the heuristics used for optimizing the tiling, as well as
in the complexity of their search. The simplest method is a greedy
algorithm that marches through pairs of contours. For each step,
it chooses whether to advance along the top contour or the bottom
contour by picking the one which will contribute the shortest edge,
and then building the resulting triangle. More complex global algo-
rithms seek to minimize the surface area of the triangle strip, or to
maximize the volume it encloses.

The simplest greedy methods are not robust against certain com-
plexities (such as pathological concavities) and even the complex
methods fail to handle abutting contours. Figures 7(a) and (b) de-
pict a simple case for which the greedy heuristic has produced an

Figure 4: Reconstructed surfaces generated with our scanline sur-
facing algorithm. (See also colorplate.)



Figure 5: Maximum intensity projection of a masked, contrast en-
hanced magnetic resonance angiography dataset. The dark square
indicates the subvolume which will be processed below.

Figure 6: Planar contours of blood vessels from the angiography
dataset shown above.

unacceptable tiling: a self-intersecting surface composed largely of
triangle fans, as seen in Figures 7(c) and (d).

A specific case of tiling that is typically handled separately from
the methods described above is branching. How should m con-
tours in one slice be attached to the n corresponding contours in
a consecutive slice? Branching is typically handled through either
a contour compositing scheme, or through Delaunay triangulation.
In contour compositing, multiple contours are merged into a sin-
gle contour [19]. This method requires user intervention to resolve
complex cases. The Delaunay method uses Delaunay tetrahderal-
ization to mesh the volume between the contours, after which only
those triangles which span the two contours are preserved [1].

3 Methods

The traditional methods described above are useful for reconstruct-
ing unconstrained triangulated surfaces, with an independent sur-
face for each structure. However, none of the above algorithms cor-
rectly handle contour sets with abutting structures. Since the tradi-
tional methods reconstruct each surface independently, the prostate
(cyan) and sacrum (magenta) contours in Figure 2 will likely result
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Figure 7: For the two simple contours shown in (a) and (b), a greedy
tiling algorithm gets stuck in local concavities, producing the unac-
ceptable tiling shown in (c) and (d). In contrast, our new scanline
surfacing algorithm produces the reasonable tiling shown in (e) and
(f).

in different tilings at their interface. Such discrepancies are prob-
lematic, as they can result in interpenetrations or gaps between the
surfaces. An example interpenetration is shown for two abutting
synthetic structures in Figure 8. Furthermore, if the contour points
for the two abutting surfaces are not precisely coincident (e.g.,if
contours were generated by uniformly resampling polylines with
cubic b-splines), there would be no hope of producing consistent
triangulations across boundaries. Ultimately, what we need is an
algorithm that will recognize and correctly maintain abutting sur-
faces, and that will be capable of producing shared surface patches
between them. Separating surface algorithms [17, 18, 23] offer just
such a solution.

3.1 Algorithm Overview

In order to produce separating surfaces, we must first build a clas-
sified volume. That is, instead of building surfaces directly from
contours, we take the novel approach of first voxelizing the con-



Figure 8: Interpenetration at an abutting interface. If adjacent struc-
tures do not have the exact same contour points or tilings along
abutting regions, interpenetrations (as seen here) or gaps between
the structures can result.

tours and then extracting separating surfaces from that voxelization.
Our approach is illustrated with the angiography subvolume in Fig-
ure 1. For each slice of the volume (a), contours are hand-drawn
around blood vessels of interest (b). These contours are then scan
converted into low-resolution images (c), which are stacked into a
classified volume (d). At this point, the original contours are said
to be voxelized. Extracting separating surfaces from the classified
volume, we recover approximations to the true surfaces, which are
then smoothed, resulting in the final surfaces shown in (e).

In contrast to the unacceptable tiling produced by the traditional
algorithm in Figures 7(c) and (d), our new scanline surfacing algo-
rithm produces the reasonable output surface seen in Figures 7(e)
and (f).

There has been much previous research done on designing
fast and accurate voxelization algorithms for converting polygonal
models into volumes [5, 7, 9, 10]. Those reports have focused on
scan converting polyhedral or parametric models, and on develop-
ing methods with proofs of accuracy for those voxelizations. The
work presented here is somewhat tangential. Rather than voxelizing
polyhedral models to produce volumes, we are interested in vox-
elizing planar contours, and then from the voxelization extracting
polyhedral models. Fortunately, voxelizing planar contours is very
straight-forward and can be implemented using a standard graphics
scan conversion algorithm. Because of this simplicity, the above
voxelization research results are not required for our approach.

The premise for our scanline surfacing algorithm is that when
building complex surfaces, it is much easier to scan convert the set
of contours (as polygons) than it is to determine correspondences,
tilings, and branchings.

3.2 Input

Instead of constructing the surface two slices at a time for each
structure independently, as is done with tiling, our algorithm pro-
cesses all of the contours on one slice at a time. For each slice, all
of the contours on that slice are rendered into the frame buffer.

Our scanline surfacing algorithm takes as input a list of features
that have been manually contoured. For each feature, there is a list
of slices that that feature appears in, and for each of its slices, there
is a list of all of the contours for that feature in that slice. Each
contour is composed of a list of (x; y) coordinates in a consistent
polyline ordering (e.g.,clockwise). The only user-chosen parame-
ters for the algorithm are the number of pixels per scanline, nx,
and the number of scanlines, ny. To store the classified volume,
our algorithm allocates an (nx� ny � nz) array of voxels, where
nz is two greater than the number of input slices. (The outermost
voxels of the volume function as the layer of padding needed for
producing capped surface models.)

(a) (b) (c)

Figure 9: Sacrum (blue), prostrate (gray), and rectum (magenta).
The contours of each feature are scan converted into image slices
(a). These slices are then stacked into a volume (b), and the features
are extracted and smoothed as separating surfaces (c).

3.3 Initialization

In order to retain classification information in the volume, the algo-
rithm assigns classification numbers to each of the features before
rendering them. The features are numbered from 1 to n, where fea-
tures with higher indices correspond to features which are outside.
One contour is considered outside of another if all of the inner con-
tour’s points are to the right as one traverses the outer contour in
clockwise order. The sorting order of the features can either be
provided by the user, or can be determined using quicksort with
the inner/outer comparison operator described above. This sorting
produces a “nesting” that is guaranteed to be acyclic. Features con-
tained entirely inside of other features (such as ribs inside of the
skin, or blood inside of the veins) have lower indices. We note
that sibling relationships (features which share external boundaries,
such as the prostate and sacrum) require no particular ordering.

The final steps of our setup stage are to allocate an image buffer
with (nx � ny) pixels, and to define an orthographic projection
oriented with the image plane parallel to the slice and such that the
minimum and maximum corners of the contour set’s bounding box
will project to the centers of pixels (1; 1) and (nx � 1; ny � 1),
respectively.

3.4 Slice Scan Conversion

Our scanline surfacing algorithm was implemented using the
OpenGL graphics pipeline for scan conversion. Each slice of con-
tours is transformed into a slice of our classified volume by ren-
dering the contours as closed polygons and then reading the image
buffer into a volume slice. Contours and their respective scan con-
versions are shown for a subset of the pelvic volume in Figure 9(a),
and for the angiography subvolume in Figure 1(c).

To render each slice, our algorithm clears the image buffer and
then scan converts the contours of that slice. Rather than rendering
the contours in out-to-in order, our method renders each contour
with its sorted index as its “color” value as well as its z-value, and
relies on the z-buffer for sorting. After all of the contours for a slice
have been rendered, the image buffer is copied into the classified
volume.

The contours from the slice shown in Figure 2 have been scan
converted, resulting in the fully segmented slice shown in Figure 10.
(The contours have been super-imposed in distinct colors for refer-
ence.)



Figure 10: Scanline fill of all of the contours for a slice of the full
pelvic models. Contours and filled regions are shown in different
colors for visual contrast. (See also colorplate.)

Figure 11: The scan converted images are stacked together, produc-
ing a classified volume of the pelvic dataset. (See also colorplate.)

This process is repeated for all of the slices, resulting in the seg-
mented volume shown in Figure 11. The 21 slice pelvic volume
was reconstructed at 64 � 128 resolution in 1.78 seconds using an
SGI O2 with a 300 MHz R5000 processor and CRM graphics. This
timing included contour sorting, scan conversion, and reading back
the frame buffer. As mentioned above, the surface generation time
is essentially negligible when compared to the user-intensive time
required to generate the initial planar contours.

3.5 Separating Surface Extraction and Smoothing

Having voxelized the planar contours, our algorithm must now ex-
tract the separating surfaces from the segmented volume. For vol-
umes consisting of only two levels of classification (background
material and non-abutting foreground features), an isosurface ex-
traction algorithm such as Marching Cubes [13] can be used. How-
ever, for more complex volumes in which features can be nested
or can abut, a surfacing algorithm designed for classified volumes
is required. An algorithm specifically designed for separating sur-
face extraction was developed by Müller [17] and independently
by Nielson and Franke [18]. This algorithm builds triangulated
faces between homogeneous regions. As a preprocess, their algo-
rithm transforms hexahedral voxels into tetrahedra. It then marches

Figure 12: Close-up wireframe view of the smoothed pelvic sur-
face. (See also colorplate.)

Figure 13: A cross-section of the final smoothed separating surface
superimposed on the original planar contours.

through each tetrahedron, building triangles for the separating sur-
faces by evaluating the classifications of the tetrahedron’s nodes
against a mask and a case table. Using this method, our algorithm
extracts separating surfaces from the classified angiography subvol-
ume in Figure 1(a); the sacrum, prostate and rectum in Figure 9(b);
and the full pelvis in Figure 11.

As a final step, our algorithm employs a constrained separating
surface smoothing algorithm [23] that relaxes the vertices with re-
spect to their neighbors. Conceptually, an ellipsoid is centered at
the original position of each vertex, such that the ellipsoids are
packed together but do not overlap. The motion of each vertex as
it is smoothed is constrained to remain within its ellipsoid. This
constraint prevents nodes from crossing and thus prevents surfaces
from interpenetrating. Smoothing the surfaces to best conform to
the original contours remains a topic for future research. The final
smoothed separating surfaces for the pelvis and blood vessels are
shown in Figures 4, 9(c), and 1(e). Figure 12 shows a close-up of
the triangulation of the pelvic bones in order to reveal the smooth,
regular structure of the triangulation. The deviation between the
original contours and cross-sections of the separating surfaces are
due to two factors. First, the new vertices are located at the cen-
ters and edges of the scan converted pixels, and not at the locations
of the original contour vertices. Second, the vertex positions move
in order to produce a smoother surface. Thus, as the scanline res-
olution increases, the disparity between the original contours and



cross-sections of the separating surfaces diminishes. A typical re-
sult is shown in Figure 13.

4 Discussion and Conclusion

By voxelizing the planar contours, we have gained straight-forward
solutions to the traditional surfaces-from-contours subproblems of
correspondence, tiling, and branching that were discussed in Sec-
tion 2. Correspondence and branching are implicit in the connected
components of the voxelization, and the tiling is produced by the
separating surface extraction. We note that while these solutions
are straight-forward, they do not always produce the desired result.
Specifically, if corresponding features do not overlap in their scan
conversions between consecutive slices, they will not be tiled to-
gether, and they may not even be identified as corresponding. In
short, this algorithm is not robust against datasets which are ex-
ceedingly under-sampled between slices. Extensions to this algo-
rithm which will generate interpolated z-slices is a topic for future
research.

We also note that whereas traditional algorithms produce inter-
penetrating surfaces when presented with overlapping contours, our
algorithm does not. This property is a direct result of using sepa-
rating surfaces. While this is certainly a desirable characteristic
for many applications, it is possible that it could be undesirable for
others. In general, we believe that our method has utility beyond
medical imaging, and it is a topic for future work to identify and
evaluate other appropriate applications.

Unlike traditional methods, our algorithm does not preserve the
original contour vertices or edges in the final surface. The origi-
nal vertices are replaced with new approximating vertices located
at the centers and edges of the classified voxels. By choosing a
small enough pixel size (large enough nx and ny parameters), we
can produce vertices that come asymptotically close to the origi-
nal contour vertices. More important than duplicating the original
vertices, though, is the ability to replicate features of the original
contours. This can also be controlled by varying nx and ny, and
in the case of feature reproduction there is a bound on how large
nx and ny must be. Specifically, the upper-bound on a pixel’s di-
mension is the diameter of the largest alpha-shape that can trace the
minimal feature of interest [16]. As we reduce the scan conversion
pixel resolution in order to capture smaller features, our algorithm
produces ever finer triangulations throughout the entire model. We
note that regions which are tessellated too finely can be decimated
with the constrained simplification method described in [23].

In conclusion, we have presented a fresh approach to solving a
classic problem. By combining a standard scanline algorithm from
computer graphics with separating surface methods, we have built
a novel technique for efficiently generating robust surfaces from
arbitrarily complex planar contour sets. Using this method, we have
been able to automatically construct smooth, non-interpenetrating
surfaces from sets of complex planar contours.
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