
Shape Modeling and Analysis with Entropy-Based Particle

Systems

Joshua Cates1, P. Thomas Fletcher1, Martin Styner2, Martha Shenton3, Ross
Whitaker1

1School of Computing, University of Utah, Salt Lake City UT, USA
2Departments of Computer Science and Psychiatry, University of North Carolina at

Chapel Hill, Chapel Hill NC, USA
3Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard
Medical School; and Laboratory of Neuroscience, VA Boston Healthcare System,

Brockton MA, USA

Abstract. This paper presents a new method for constructing compact
statistical point-based models of ensembles of similar shapes that does
not rely on any specific surface parameterization. The method requires
very little preprocessing or parameter tuning, and is applicable to a wider
range of problems than existing methods, including nonmanifold surfaces
and objects of arbitrary topology. The proposed method is to construct
a point-based sampling of the shape ensemble that simultaneously max-
imizes both the geometric accuracy and the statistical simplicity of the
model. Surface point samples, which also define the shape-to-shape corre-
spondences, are modeled as sets of dynamic particles that are constrained
to lie on a set of implicit surfaces. Sample positions are optimized by gra-
dient descent on an energy function that balances the negative entropy
of the distribution on each shape with the positive entropy of the en-
semble of shapes. We also extend the method with a curvature-adaptive
sampling strategy in order to better approximate the geometry of the
objects. This paper presents the formulation; several synthetic exam-
ples in two and three dimensions; and an application to the statistical
shape analysis of the caudate and hippocampus brain structures from
two clinical studies.

1 Introduction

Statistical analysis of sets of similar shapes requires quantification of shape dif-
ferences, which is a fundamentally difficult problem. One widely used strategy for
computing shape differences is to compare the positions of corresponding points
among sets of shapes, often with the goal of producing a statistical model of the
set that describes a mean and modes of variation. Medical or biological shapes,
however, are typically derived from the interfaces between organs or tissue types,
and usually defined implicitly in the form of segmented volumes, rather than ex-
plicit parameterizations or surface point samples. Thus, no a priori relationship
is defined between points across surfaces, and correspondences must be inferred
from the shapes themselves, which is a difficult and ill-posed problem.



2

Until recently, correspondences for shape statistics were established manually
by choosing small sets of anatomically significant landmarks on organs or regions
of interest, which would then serve as the basis for shape analysis. The demand
for more detailed analyses on ever larger populations of subjects has rendered
this approach unsatisfactory. Brechbühler, et al. pioneered the use of spherical
parameterizations for shape analysis that can be used to implicitly establish rela-
tively dense sets of correspondences over an ensemble of shape surfaces [1]. Their
methods, however, are purely geometric and seek only consistently regular pa-
rameterizations, not optimal correspondences. Davies et al. [2] present methods
for optimizing correspondences among point sets that are based on the informa-
tion content of the set, but these methods still rely on mappings between fixed
spherical surface parameterizations. Most shapes in medicine or biology are not
derived parametrically, so the reliance on a parameterization presents some sig-
nificant drawbacks. Automatic selection of correspondences for nonparametric,
point-based shape models has been explored in the context of surface registration
[3], but because such methods are typically limited to pairwise correspondences
and assume a fixed set of surface point samples, they are not sufficient for the
analysis of sets of segmented volumes.

This paper presents a new method for extracting dense sets of correspon-
dences that also optimally describes ensembles of similar shapes. The proposed
method is nonparametric, and borrows technology from the computer graphics
literature by representing surfaces as discrete point sets. The method iteratively
distributes sets of dynamic particles across an ensemble of surfaces so that their
positions optimize the information content of the system. This strategy is mo-
tivated by a recognition of the inherent tradeoff between geometric accuracy (a
good sampling) and statistical simplicity (a compact model). Our assertion is
that units of information associated with the model implied by the correspon-
dence positions should be balanced against units of information associated with
the individual surface samplings. This approach provides a natural equivalence
of information content and reduces the dependency on ad-hoc regularization
strategies and free parameters. Since the points are not tied to a specific param-
eterization, the method operates directly on volumetric data, extends easily to
higher dimensions or arbitrary shapes, and provides a more homogeneous geo-
metric sampling as well as more compact statistical representations. The method
draws a clear distinction between the objective function and the minimization
process, and thus can more readily incorporate additional information such as
high-order geometric information for adaptive sampling.

2 Related Work

The strategy of finding of parameterizations that minimize information content
across an ensemble was first proposed by Kotcheff and Taylor [4], who represent
each two-dimensional contour as a set of N samples taken at equal intervals from
a parameterization. Each shape is treated as a point in a 2N -dimensional space,
with associated covariance Σ and cost function,

∑
k log(λk + α), where λk are

the eigenvalues of Σ, and α is a regularization parameter that prevents the very
thinnest modes (smallest eigenvalues) from dominating the process. This is the
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same as minimizing log |Σ +αI|, where I is the identity matrix, and | · | denotes
the matrix determinant.

Davies et al. [2] propose a cost function for 2D shapes based on minimum
description length (MDL). They use quantization arguments to limit the ef-
fects of thin modes and to determine the optimal number of components that
should influence the process. They propose a piecewise linear reparameterization
and a hierarchical minimization scheme. In [5] they describe a 3D extension to
the MDL method, which relies on spherical parameterizations and subdivisions
of an octahedral base shape, with smoothed updates that are represented as
Cauchy kernels. The parameterization must be obtained through another pro-
cess such as [1], which relaxes a spherical parameterization onto an input mesh.
The overall procedure requires significant data preprocessing, including a se-
quence of optimizations—first to establish the parameterization and then on
the correspondences—each of which entails a set of free parameters or inputs in
addition to the segmented volumes. A significant concern with the basic MDL
formulation is that the optimal solution is often one in which the correspon-
dences all collapse to points where all the shapes in the ensemble happen to be
near (e.g., crossings of many shapes). Several solutions have been proposed [5,
6], but they entail additional free parameters and assumptions about the quality
of the initial parameterizations.

The MDL formulation is mathematically related to the min-log |Σ + αI| ap-
proach, as noted by Thodberg[6]. Styner et al. [7] describe an empirical study
that shows ensemble-based statistics improve correspondences relative to pure
geometric regularization, and that MDL performance is virtually the same as
that of min-log |Σ +αI|. This last observation is consistent with the well-known
result from information theory: MDL is, in general, equivalent to minimum en-
tropy [8].

Another body of relevant work is the recent trend in computer graphics
towards representing surfaces as scattered collections of points. The advantage of
so-called point-set surfaces is that they do not require a specific parameterization
and do not impose topological limations; surfaces can be locally reconstructed or
subdivided as needed [9]. A related technology in the graphics literature is the
work on particle systems, which can be used to manipulate or sample [10] implicit
surfaces. A particle system manipulates large sets of particles constrained to a
surface using a gradient descent on radial energies that typically fall off with
distance. The proposed method uses a set of interacting particle systems, one for
each shape in the ensemble, to produce optimal sets of surface correspondences.

3 Methods

3.1 Entropy-Based Surface Sampling

We treat a surface as a subset of <d, where d = 2 or d = 3 depending whether
we are processing curves in the plane or surfaces in a volume, respectively. The
method we describe here deals with smooth, closed manifolds of codimension
one, and we will refer to such manifolds as surfaces. We will discuss the ex-
tension to nonmanifold curves and surfaces in Section 5. We sample a surface
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S ⊂ <d using a discrete set of N points that are considered random vari-
ables Z = (X1, X2, . . . , XN ) drawn from a probability density function (PDF),
p(X). We denote a realization of this PDF with lower case, and thus we have
z = (x1, x2, . . . , xN ), where z ∈ SN . The probability of a realization x is
p(X = x), which we denote simply as p(x).

The amount of information contained in such a random sampling is, in the
limit, the differential entropy of the PDF, which is H[X] = −

∫
S

p(x) log p(x)dx =
−E{log p(X)}, where E{·} is the expectation. When we have a sufficient number
of points sampled from p, we can approximate the expectation by the sample
mean [8], which gives H[X] ≈ −(1/N)

∑
i log p(xi). We must also estimate p(xi).

Density functions on surfaces can be quite complex, and so we use a nonparamet-
ric, Parzen windowing estimation of this density using the particles themselves.
Thus we have

p(xi) ≈
1

N(N − 1)

N∑
j=1,j 6=i

G(xi − xj , σi) (1)

where G(xi−xj , σi) is a d-dimensional, isotropic Gaussian with standard devia-
tion σi. The cost function C, is therefore an approximation of (negative) entropy:
−H[X] ≈ C(x1, . . . , xN ) =

∑
i log 1

N(N−1)

∑
j 6=i G(xi − xj , σi),

In this paper, we use a gradient-descent optimization strategy to manipulate
particle positions. The optimization problem is given by:

ẑ = arg min
z

E(z) s.t. x1, . . . , xN ∈ S. (2)

The negated gradient of C is

− ∂C

∂xi
=

1
σ2

i

∑N
j 6=i(xi − xj)G(xi − xj , σi)∑N

j 6=i G(xi − xj , σi)
= σ−2

i

N∑
j 6=i

(xi − xj)wij , (3)

where
∑

j wij = 1. Thus to minimize C, the surface points (which we will call
particles) must move away from each other, and we have a set of particles moving
under a repulsive force and constrained to lie on the surface. The motion of each
particle is away from all of the other particles, but the forces are weighted by a
Gaussian function of inter-particle distance. Interactions are therefore local for
sufficiently small σ. We use a Jacobi update with forward differences, and thus
each particle moves with a time parameter and positional update xi ← xi−γ ∂C

∂xi
,

where γ is a time step and γ < σ2 for stability.
The preceding minimization produces a uniform sampling of a surface. For

some applications, a strategy that samples adaptively in response to higher order
shape information is more effective. From a numerical point of view, the mini-
mization strategy relies on a degree of regularity in the tangent planes between
adjacent particles, which argues for sampling more densely in high curvature
regions. High-curvature features are also considered more interesting than flat
regions as important landmarks for biological shapes. To this end, we extend
the above uniform sampling method to adaptively oversample high-curvature
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regions by modifying the Parzen windowing in Eqn. 1 as follows

p̃(xi) ≈
1

N(N − 1)

N∑
j=1,j 6=i

G

(
1
kj

(xi − xj), σi

)
(4)

where kj is a scaling term proportional to the curvature magnitude computed at
each neighbor particle j. The effect of this scaling is to warp space in response to
local curvature. A uniform sampling based on maximum entropy in the warped
space translates into an adaptive sampling in unwarped space, where points pack
more densely in higher curvature regions. The extension of Eqn 3 to incorporate
the curvature-adaptive Parzen windowing is straightforward to compute since
kj is not a function of xi, and is omitted here for brevity.

There are many possible choices for the scaling term k. Meyer, et al. [11]
describe an adaptive surface sampling that uses the scaling ki = 1+ρκi(

s
2π )

1
2 s cos(π/6)

,

where κi is the root sum-of-squares of the principal curvatures at surface location
xi. The user-defined variables s and ρ specify the ideal distance between particles
on a planar surface, and the ideal density of particles per unit angle on a curved
surface, respectively. Note that the scaling term in this formulation could easily
be modified to include surface properties other than curvature.

The surface constraint in both the uniform and adaptive optimizations is
specified by the zero set of a scalar function F (x). This constraint is maintained,
as described in several papers [10], by projecting the gradient of the cost function
onto the tangent plane of the surface (as prescribed by the method of Lagrange
multipliers), followed by iterative reprojection of the particle onto the nearest
root of F by the method of Newton-Raphson. Principal curvatures are computed
analytically from the implicit function as described in [12]. Another aspect of this
particle formulation is that it computes Euclidean distance between particles,
rather than the geodesic distance on the surface. Thus, we assume sufficiently
dense samples so that nearby particles lie in the tangent planes of the zero sets of
F . This is an important consideration; in cases where this assumption is not valid,
such as highly convoluted surfaces, the distribution of particles may be affected
by neighbors that are outside of the true manifold neighborhood. Limiting the
influence of neighbors whose normals differ by some threshold value (e.g. 90
degrees) does limit these effects. The question of particle interactions with more
general distance measures remains for future work.

Finally, we must choose a σ for each particle, which we do automatically, be-
fore the positional update, using the same optimality criterion described above.
The contribution to C of the ith particle is simply the probability of that par-
ticle position, and optimizing that quantity with respect to σ gives a maximum
likelihood estimate of σ for the current particle configuration. We use Newton-
Raphson to find σ such that ∂p(xi, σ)/∂σ = 0, which typically converges to
machine precision in several iterations. For the adaptive sampling case, we find
σ such that ∂p̃(xi, σ)/∂σ = 0, so that the optimal σ is scaled locally based on
the curvature.

There are a few important numerical considerations. We must truncate the
Gaussian kernels, and so we use G(x, σ) = 0 for |x| > 3σ. This means that each
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particle has a finite radius of influence, and we can use a spatial binning structure
to reduce the computational burden associated with particle interactions. If σ for
a particle is too small, a particle will not interact with its neighbors at all, and
we cannot compute updates of σ or position. In this case, we update the kernel
size using σ ← 2 × σ, until σ is large enough for the particle to interact with
its neighbors. Another numerical consideration is that the system must include
bounds σmin and σmax to account for anomalies such as bad initial conditions,
too few particles, etc. These are not critical parameters. As long as they are set
to include the minimum and maximum resolutions, the system operates reliably.

The mechanism described in this

Fig. 1: A system of 100 particles on a
sphere, produced by particle splitting.

section is, therefore, a self tuning sys-
tem of particles that distribute them-
selves using repulsive forces to achieve
optimal distributions, and may option-
ally adjust their sampling frequency locally in response to surface curvature. For
this paper we initialize the system with a single particle that finds the nearest
zero of F , then splits (producing a new, nearby particle) at regular intervals until
a specific number of particles are produced and reach a steady state. Figure 1
shows this process on a sphere.

3.2 The Entropy of The Ensemble

An ensemble E is a collection of M surfaces, each with their own set of parti-
cles, i.e. E = z1, . . . , zM . The ordering of the particles on each shape implies a
correspondence among shapes, and thus we have a matrix of particle positions
P = xk

j , with particle positions along the rows and shapes across the columns.
We model zk ∈ <Nd as an instance of a random variable Z, and propose to
minimize the combined ensemble and shape cost function

Q = H(Z)−
∑

k

H(P k), (5)

which favors a compact ensemble representation balanced against a uniform dis-
tribution of particles on each surface. The different entropies are commensurate
so there is no need for ad-hoc weighting of the two function terms.

For this discussion we assume that the complexity of each shape is greater
than the number of examples, and so we would normally choose N > M . Given
the low number of examples relative to the dimensionality of the space, we must
impose some conditions in order to perform the density estimation. For this
work we assume a normal distribution and model p(Z) parametrically using a
Gaussian with covariance Σ. The entropy is then given by

H(Z) ≈ 1
2

log |Σ| = 1
2

Nd∑
j=1

log λj , (6)

where λ1, ..., λNd are the eigenvalues of Σ.
In practice, Σ will not have full rank, in which case the entropy is not finite.

We must therefore regularize the problem with the addition of a diagonal matrix
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αI to introduce a lower bound on the eigenvalues. We estimate the covariance
from the data, letting Y denote the matrix of points minus the sample mean
for the ensemble, which gives Σ = (1/(M − 1))Y Y T . Because N > M , we
perform the computations on the dual space (dimension M), knowing that the
determinant is the same up to a constant factor of α. Thus, we have the cost
function G associated with the ensemble entropy:

log |Σ| ≈ G(P ) = log
∣∣∣∣ 1
M − 1

Y T Y,

∣∣∣∣ and − ∂G

∂P
= Y (Y T Y + αI)−1. (7)

We now see that α is a regularization on the inverse of Y T Y to account for the
possibility of a diminishing determinant. The negative gradient −∂G/∂P gives
a vector of updates for the entire system, which is recomputed once per system
update. This term is added to the shape-based updates described in the previous
section to give the update of each particle:

xk
j ← γ

[
−∂G/∂xk

j + ∂Ek/∂xk
j

]
. (8)

The stability of this update places an additional restriction on the time steps,
requiring γ to be less than the reciprocal of the maximum eigenvalue of (Y T Y +
αI)−1, which is bounded by α. Thus, we have γ < α, and note that α has the
practical effect of preventing the system from slowing too much as it tries to
reduce the thinnest dimensions of the ensemble distribution. This also suggests
an annealing approach for computational efficiency (which we have used in this
paper) in which α starts off somewhat large (e.g., the size of the shapes) and is
incrementally reduced as the system iterates.

The choice of a Gaussian model for p(Z = z) is not critical for the proposed
method. The framework easily incorporates either nonparametric, or alternate
parametric models. In this case, the Gaussian model allows us to make direct
comparisons with the MDL method, which contains the same assumptions. Re-
search into alternative models for Z is outside the scope of this paper and remains
of interest for future work.

3.3 A Shape Modeling Pipeline

The particle method outlined in the preceding sections may be applied directly
to binary segmentation volumes, which are often the output of a manual or
automated segmentation process. A binary segmentation contains an implicit
shape surface at the interface of the labeled pixels and the background. Any
suitably accurate distance transform from that interface may be used to form the
implicit surface necessary for the particle optimization. Typically, we use a fast-
marching algorithm [13], followed by a slight Gaussian blurring to remove the
high-frequency artifacts that can occur as a result of numerical approximations.

A collection of shape segmentations must often be aligned in a common co-
ordinate frame for modeling and analysis. We first align the segmentations with
respect to their centers of mass and the orientation of their first principal eigen-
vectors. Then, during the optimization, we further align shapes with respect
to rotation and translation using a Procrustes algorithm [14], applied at regu-
lar intervals after particle updates. Because the proposed method is completely
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generalizable to higher dimensions, we are able to process shapes in 2D and 3D
using the same C++ software implementation, which is templated by dimension.
For all the experiments described in this paper, the numerical parameter σmin is
set to machine precision and σmax is set to the size of the domain. For the an-
nealing parameter α, we use a starting value roughly equal to the diameter of an
average shape and reduce it to machine precision over several hundred iterations.
Particles are initialized on each shape using the splitting procedure described in
Section 3.1, but are distributed under the full correspondence optimization to
keep corresponding points in alignment. We have found these default settings to
produce reliably good results that are very robust to the initialization. Process-
ing time on a 2GHz desktop machine scales linearly with the number of particles
in the system and ranges from 20 minutes for a 2D system of a few thousand
particles to several hours for a 3D system of tens of thousands of particles.

4 Results

This section details several experiments designed to validate the proposed method.
First, we compare models generated using the particle method with models gen-
erated using MDL for two synthetic 2D datasets. Next, a simple experiment
on tori illustrates the applicability of the method to nonspherical topologies.
Finally, we apply the method to a full statistical shape analysis of several 3D
neuroanatomical structures from published clinical datasets.

We begin with two experiments

-3 +3-1.5 +1.5mean

PROP.

MDL

Fig. 2: The box-bump experiment.

on closed curves in a 2D plane and a
comparison with the 2D open-source
Matlab MDL implementation given
by Thodberg [6]. In the first exper-
iment, we used the proposed, particle

method to optimize 100 particles per shape under uniform sampling on 24 box-
bump shapes, similar to those described in [6]. Each shape was constructed as
a fast-marching distance transform from a set of boundary points using cubic
b-splines with the same rectangle of control, but with a bump added at a random
location along the top of its curve. This example is interesting because we would,
in principle, expect a correspondence algorithm that is minimizing information
content to discover this single mode of variability in the ensemble.

MDL correspondences were computed using 128 nodes and mode 2 of the
Matlab software, with all other parameters set to their defaults (see [6] for de-
tails). Principal component analysis identified a single dominant mode of vari-
ation for each method, but with different degrees of leakage into orthogonal
modes. MDL lost 0.34% of the total variation from the single mode, while the
proposed method lost only 0.0015%. Figure 2 illustrates the mean and three
standard deviations of the first mode of the two different models. Shapes from
the particle method remain more faithful to those described by the original train-
ing set, even out to three standard deviations where the MDL description breaks
down. A striking observation from this experiment is how the relatively small
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MANUAL PARTICLE METHOD MDL

Fig. 3: The mean and ±3 std. deviations of the top 3 modes of the hand models.

amount of variation left in the minor modes of the MDL case produce such a
significant effect on the results of shape deformations along the major mode.

The second experiment was conducted on the set of 18 hand shape contours
described in [2], again applying both the particle method and MDL using the
same parameters as described above. Distance transforms from from spline-based
contour models again form the inputs. In this case, we also compared results with
a set of ideal, manually selected correspondences, which introduce anatomical
knowledge of the digits. Figure 3 compares the three resulting models in the
top three modes of variation to ±3 standard deviations. A detailed analysis of
the principal components showed that the proposed particle method and the
manually selected points both produce very similar models, while MDL differed
significantly, particularly in first three modes.

Non-spherical Topologies. Existing 3D MDL implementations rely on spher-
ical parameterizations, and are therefore only capable of analyzing shapes topo-
logically equivalent to a sphere. The particle-based method does not have this
limitation. As a demonstration of this, we applied the proposed method to a set
of 25 randomly chosen tori, drawn from a 2D, normal distribution parameterized
by the small radius r and the large radius R. Tori were chosen from a distribu-
tion with mean r = 1, R = 2 and σr = 0.15, σR = 0.30, with a rejection policy
that excluded invalid tori (e.g., r > R). We optimized the correspondences using
a uniform sampling and 250 particles on each shape. An analysis of the resulting
model showed that the particle system method discovered the two pure modes
of variation, with only 0.08% leakage into smaller modes.

Shape Analysis of Neuroanatomical Structures. As a further validation
of the particle method, we performed hypothesis testing of group shape dif-
ferences on data from two published clinical studies. The first study addresses
the shape of the hippocampus in patients with schizophrenia. The data consists
of left and right hippocampus shapes from 56 male adult patients versus 26
healthy adult male controls, segmented from MRI using a template-based semi-
automated method [15]. The second study addresses the shape of the caudate
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Mean Mode 1 (-3) Mode 1 (+3) Mode 2 (-3) Mode 2 (+3)

Fig. 4: Surface meshes of the mean and two modes of variation at ±3 standard devi-
ations of the right hippocampus model.

in males with schizo-typal personality disorder. The data consists of left and
right caudate shapes from 15 patients and 14 matched, healthy controls, and
was manually segmented from MRI brain scans of the study subjects by clinical
experts [16]. All data in these studies is normalized with respect to intercranial
volume.

For each study, we aligned and processed the raw binary segmentations as de-
scribed in Section 3.3, including Procrustes registration. Models were optimized
with 1024 correspondence points per shape and the curvature-adaptive sampling
strategy, which proved more effective than uniform sampling. Separate models
were created for left and right structures using the combined data from patient
and normal populations. Models were generated without knowledge of the shape
classifications so as not to bias the correspondences to one class or the other. On
inspection, all of the resulting models appear to be of good quality; each major
mode of variation describes some plausible pattern of variation observed in the
training data. As an example, Figure 4 shows several surface meshes of shapes
generated from the pointsets of the right hippocampus model.

After computing the models, we applied statistical tests for group differences
at every surface point location. The method used is a nonparametric permutation
test of the Hotelling T 2 metric with false-discovery-rate (FDR) correction, and
is described in [17]. We used the open-source implementation of the algorithm
[17], with 20,000 permutations among groups and an FDR bound set to 5%.
The null hypothesis for these tests is that the distributions of the locations of
corresponding sample points are the same regardless of group.

Figure 5 shows the raw and FDR-corrected p-values for the left and right
hippocampi from the schizophrenia study. Areas of significant group differences
(p <= 0.05) are shown in red. Areas with insignificant group differences (p >
0.05) are shown in blue. The right hippocampus shows significant differences in
the mid-region and the tail, even after FDR-correction. The left hippocampus
appears to exhibit few group differences, with none detected after FDR correc-
tion. Differences in the tail, especially on the right side were also observed by
Styner, et al. in [7]. Our results also correlate with those reported for the spher-
ical harmonics method (SPHARM) [15] and spherical wavelet analysis [18].

Raw p-values for the caudate analysis are shown at the bottom of Fig 5. No
significant differences on either shape were found after FDR correction. The raw
p-values, however, suggest that both structures may exhibit group differences
in the tail, and that the right caudate contains more group differences than the
left, an observation that agrees with results given in [17], [16], [15], and [18].
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Fig. 5: P-value maps for the hippocampus and caudate shape analyses, shown on the
mean shape. Red indicates significant group differences (p <= .05)

The current formulation of the particle method optimizes point correspondences
under the assumption of a Gaussian model with a single mean, and may introduce
a conservative bias that reduces group differences. We are investigating methods,
such as nonparametric density estimation, for addressing this issue.

5 Conclusions

We have presented a new method for constructing statistical representations of
ensembles of similar shapes that relies on an optimal distribution of a large set of
surface point correspondences, rather than the manipulation of a specific surface
parameterization. The proposed method produces results that compare favorably
with the state of the art, and statistical analysis of several clinical datasets
shows the particle-based method yields results consistent with those seen in the
literature. The method works directly on volumes, requires very little parameter
tuning, and generalizes easily to accommodate alternate sampling strategies such
as curvature adaptivity. The method can extend to other kinds of geometric
objects by modeling those objects as intersections of various constraints. For
instance, the nonmanifold boundaries that result from interfaces of three or more
tissue types can be represented through combinations of distance functions to the
individual tissue types. Curves can be represented as the intersection of the zero
sets of two scalar fields or where three different scalar fields achieve equality (such
as the curves where three materials meet). The application of these extensions
to joint modeling of multiple connected objects is currently under investigation.
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