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Biomedical computing applications often follow a computational pipeline:
experimental data or image acquisition, mathematical modeling, geometric
modeling (segmentation, mesh generation), material modeling, numerical ap-
proximation (finite element analysis, linear solvers, nonlinear optimization),
visualization (of the geometric model, material model, and solutions), and
validation. An important requirement of the numerical approximation and
visualization methods is the need to create a discrete decomposition of the
model geometry into a ‘mesh’. The meshes produced are used as input for com-
putational simulation, as well as, the geometric basis for which many of the
visualization results are displayed. Historically, the generation of these meshes
has been a critical bottleneck in efforts to efficiently generate biomedical sim-
ulations which can be utilized in understanding, planning, and diagnosing
biomedical conditions.

In this paper, we will outline a pipeline for more efficiently generating
meshes suitable for biomedical simulations. Because of the wide array of ge-
ometries and phenomena encountered in biomedical computing, this pipeline
will incorporate a flexible suite of tools that will offer some generality to mesh
generation of biomedical models. We will discuss several tools that have been
successfully used in past problems and how these tools have been incorpo-
rated into the suite of other tools. We will demonstrate mesh generation for
a couple of example problems along with methods for verifying the quality
of the meshes generated. Finally, we will discuss on-going and future efforts
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to bring all of these tools into a common environment to dramatically reduce
the difficulty of mesh generation for biomedical simulations.

1 Introduction

Advanced techniques in biomedical computing, imaging, and visualization are
changing the face of biology and medicine in both research and clinical prac-
tice. The goals of biomedical computing, imaging and visualization are mul-
tifaceted. While some images and visualizations facilitate diagnosis, others
help physicians plan surgery. Biomedical simulations can help to acquire a
better understanding of human physiology. Still other biomedical computing
and visualization techniques are used for medical training. Within biomedical
research, new computational technologies allow us to “see” into and under-
stand our bodies with unprecedented depth and detail. As a result of these
advances, biomedical imaging, simulation, and visualization will help produce
exciting new biomedical scientific discoveries and clinical treatments.

Biomedical simulations are dependent on numerical approximation meth-
ods, including finite element, finite difference, and finite volume methods, to
model the varied phenomena of interest. An important requirement of the
numerical approximation methods above is the need to create a discrete de-
composition of the model geometry into a ‘mesh’. The meshes produced are
used as input for computational simulation, as well as, the geometric basis for
which many of the visualization results are displayed. Historically, the gen-
eration of these meshes has been a critical bottleneck in efforts to efficiently
generate biomedical simulations which can be utilized in understanding, plan-
ning, and diagnosing biomedical conditions.

In this paper, we will outline a pipeline for more efficiently generating
meshes suitable for biomedical simulations. Because of the wide array of ge-
ometries and phenomena encountered in biomedical computing, this pipeline
will incorporate a flexible suite of tools that will offer some generality to mesh
generation of biomedical models. We will discuss several tools that have been
successfully used in past problems and how these tools have been incorpo-
rated into the suite of other tools. We will demonstrate mesh generation for
a couple of example problems along with methods for verifying the quality
of the meshes generated. Finally, we will discuss on-going and future efforts
to bring all of these tools into a common environment to dramatically reduce
the difficulty of mesh generation for biomedical simulations.

2 Motivation

All of the tools discussed throughout the remainder of this paper have been de-
veloped in or integrated into the SCIRun Problem Solving Environment (PSE)
[1, 15, 27]. SCIRun is an open source problem solving environment that allows
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Fig. 1. The SCIRun PSE showing the module network (middle), the visualization
window (right). Researchers can select UI (user interaction) buttons on many of the
modules that allow control and feedback of parameters within a particular module
(left).

the interactive construction, debugging, and steering of large-scale, typically
parallel, scientific computations (available at www.sci.utah.edu). SCIRun pro-
vides a component model, based on dataflow programming, that allows various
computational components and visualization components to be connected to-
gether. SCIRun can be envisioned as a “computational workbench,” in which
a scientist can design and modify simulations interactively via a component-
based visual programming model. SCIRun enables scientists to modify geo-
metric models and interactively change numerical parameters and boundary
conditions, as well as to modify the level of mesh adaptation needed for an
accurate numerical solution. As opposed to the typical “off-line” simulation
mode - in which the scientist manually sets input parameters, computes re-
sults, visualizes the results via a separate visualization package, then starts
again at the beginning - SCIRun “closes the loop” and allows interactive steer-
ing of the design, computation, and visualization phases of a simulation. An
example biomedical simulation utilizing the SCIRun environment is shown in
Figure 1.

There have been several over-arching goals that have governed much of
the development of the meshing pipeline presented in this paper, especially in
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Fig. 2. The meshing pipeline in SCIRun.

regard to development of these tools in the SCIRun environment. Specifically,
all of the tools in the meshing pipeline (as developed or integrated in SCIRun)
must be open-source, flexible enough for broad application, and fit into a
pipeline with a broad suite of other tools.

3 Pipeline

Figure 2 gives a broad overview of the meshing pipeline implemented in
SCIRun for preparing meshes for biomedical simulation. Because generality is
desired in this pipeline, that is, the pipeline should be applicable to a broad
array of possible biomedical simulations, the pipeline incorporates a suite of
tools that can be used flexibly and interchangeably among the various steps
within the pipeline. Each of the tools will be discussed in greater detail in the
next section, and a general overview of the entire pipeline will be outlined in
this section.

The choice of numerical method utilized in a biomedical simulation is of-
ten based upon the anticipated and acceptable level of error, the applicability
of the method for geometic modeling a given phenomenon, and the amount
of time required to prepare a model utilizing the chosen method. Two types
of geometric elements are commonly used for most numerical methods: tetra-
hedral elements or hexahedral elements. Because of differences in the gener-
ation methods for each of these element types, we will discuss these meshing
pipelines separately in this section.

Both the tetrahedral and hexahedral meshing pipelines typically start with
either a stack of images, or alternatively, a three-dimensional grid of scalar
values. The image stacks, or scalar grids, are often referred to as ‘volumetric’
data. To ensure better geometric accuracy, the volumetric data is commonly
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categorized or ‘segmented’ into a smaller subset of discrete values that focuses
the boundaries of features residing within the data. The volumetric data can
also be viewed as a regular hexahedral grid, or mesh, with each node or hex-
ahedra within this mesh containing one of the scalar values associated with
the original data.

3.1 Tetrahedral Meshing Pipeline

The first step in the tetrahedral pipeline is to extract the boundary surfaces
between the different segmentations. Extracting boundaries within the seg-
mented data can be done in several ways. The first commonly used method
is to run an isosurfacing algorithm, like Marching Cubes [24], to obtain a set
of triangle meshes representing the boundaries between features within the
volumetric data. While Marching Cube algorithms emit smoother models, in
many cases these algorithms don’t preserve the space partition property and
require that each sub volume is fully embedded inside another sub volume,
which often means that segmentations have to be altered to observe the con-
straints of the Marching Cubes algorithms. Another alternative is to emit a
quadrilateral face between any two voxels with a different segmentation value.
This results in a stairstep model of all the segmentation boundaries with some
nice properties. There are no holes in the new geometry, all the boundaries
are closed, and every closed piece contains a categorization.

Once the feature boundaries have been established from the volumetric
data, and a triangular mesh has been created describing these boundaries,
the next step in the pipeline is to optimize the mesh on the boundary to max-
imize the mesh quality and to embed constraints on the location of nodes (for
example to embed the locations of electrodes). Because of varied constraints
on the resulting boundary mesh, we have given the pipeline a suite of tools
to aid in the boundary optimization. These tools include surface remeshing
algorithms, mesh topology modifiers (including decimation), and geometric
and mesh smoothing algorithms. These algorithms will be discussed in more
detail in the next section.

Once a suitable boundary mesh has been established, the final steps in
the pipeline are to create a tetrahedralization or other volumetric mesh and
ensure that the mesh will be suitable for the subsequent analysis. The SCIRun
pipeline currently has methods for generating the tetrahedral mesh, volumet-
ric smoothing, and mesh refinement. The final step is to use mesh verification
techniques to ensure that the meshes generated contain elements of adequate
quality for computational analysis.

3.2 Hexahedral Meshing Pipeline

In addition to the tetrahedralization pipeline, SCIRun also contains support
for handling hexahedral elements directly. There are two main methodolo-
gies utilized in SCIRun for hexahedral meshes: hexahedral meshes with stair-
stepped boundaries and hexahedral meshes with smooth boundaries. Because
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the hexahedral meshes can be generated directly from the segmented model,
resolution of these meshes is often greater than needed, or desired. Therefore
some data reduction is often necessary. SCIRun contains algorithms for re-
sampling this data at more coarse hexahedral representations. Additionally,
a coarse lattice can also be built using resampling, with some localized re-
finement techniques to recover data in areas of importance back down to the
level of the original data, or levels beyond the resolution of the original data
which is sometimes needed for certain simulations that are constrained by
other factors than the volumetric data.

The hexahedral pipeline is finished in a similar fashion to the tetrahedral
pipeline with volumetric smoothing, and refinement techniques, followed by
mesh verification to ensure the resulting mesh is suitable for subsequent anal-
ysis. These techniques and algorithms will also be discussed in more detail in
the next sections.

4 Specific Tools in the Pipeline

In this section, we will describe in more detail the various tools which have
been implemented to date in the SCIRun meshing pipeline. The format for
this section will roughly follow the pipeline order described above. Where it
makes sense, the tools are meant to be interchangeable between tetrahedral
and hexahedral elements.

4.1 Surface Mesh Improvement Tools

Remeshing

Because the triangle meshes resulting from a Marching Cubes algorithm typ-
ically contain poor quality elements, sliver triangles, and/or dramatic size
variations, it is often desireable to remesh in an effort to obtain a better set
of triangles. Additionally, triangle meshes which are smoother and more uni-
form in size have several advantages for reduced tetrahedral element counts
and higher overall element quality.

Surface remeshing is an active area of on-going meshing research [2]. While
there are several tools available from the community, a tool that has demon-
strated success for triangle remeshing, and was readily available to us is Afront
(Advancing Front (Re)Meshing Algorithm) [30, 28]. Afront is currently limited
to isosurface boundaries (multi-material, or non-manifold, boundaries are not
allowed), therefore Afront is utilized to isosurface individual materials, and
provides control in offering more uniformly shaped triangles and smoother
surfaces.

When creating surfaces for adjacent materials intended as input to tetra-
hedralization, isosurface values are chosen to prevent materials from overlap-
ping. Overlapping surfaces lead to failure during the tetrahedralization step.
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Fig. 3. A series of images showing the process for finding and filling holes in a set
of triangles.

In practice some iteration is needed to find isovalues that provide non overlap-
ping interior surfaces. Alternatively surfaces that show some kind of overlap
can be intersected with each other forming small additional compartments
which can be assigned later to one of the neighboring volumes.

Elemental Cleanup

In many cases, the bounding triangle meshes often contain small errors of
detail which result either from algorithmic issues, improper segmentations, or
unhandled exceptions. Because small errors in previous steps can lead to a
mesh with a few problems, it can be desireable to have a small set of tools
available for use when all other methods fail. We have developed some very
basic hand-editing tools for this purpose.

In all the previous steps we hope to eliminate the need for hand editing,
but a good user interface that allows for some hand-editing gives power to the
process and makes some dire situations tractable. Tools used to tetrahedralize
our input surfaces typically report problem areas that prevent it from com-
pleting. Finding the reported area and fixing it is the purpose of these cleanup
tools. One example of this process can be seen in Figure 3. Using the probe
widget (the blue sphere in Figure 3) we can locate the problem. We can then
focus the view on that area and visually inspect the problem area. Command
line tools are provided for deleting faces, adding triangles given specific node
and face indices viewable in SCIRun. The development version of BioMesh3D
has added a more user friendly selection mechanism, in which a set of faces,
can be targeted for deletion, and then by selecting nodes in order faces can be
added back. This allows models to more quickly be patched and made ready
for the tetrahedralization.

Decimation

Triangle surface models created by isosurfacing volumes are almost always
more dense than they need to be. However doing naive decimation can be
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Fig. 4. Example of decimation of triangles from a mesh of a brain. The original
mesh is shown at left, while the image on the right shows the mesh after decimation.

problematic for biological models where topological and geometric errors have
a bigger effect on diagnostic outcome. The decimation method needs to be
robust enough to preserve the topological properties of the model. Decimation
should not change the topology, nor should it create degeneracies. The ideal
method would also preserve the interior volume of the resulting segmentations.
After an overview of the decimation literature [34] we chose a quadric based
edge collapse method [12] adapted to preserve more topological constraints
than is usual.

The SCIRun triangle decimator computes the quadric equation for the
plane associated with each triangle. Then the quadrics are summed up for
each node and an error metric is computed for each edge. Next the edges are
collapsed in order of least error. Quadrics allow for the new metrics after a
collapse to be computed quickly and for the new collapsed point to be picked
optimally. In addition any collapses that would result in a topological error
are discarded. An example of decimation on a mesh of a brain model is shown
in Figure 4.

This algorithm works very well for our needs. However the filter for re-
jecting non-topological collapses could use some work to make it more robust
given non-manifold surfaces as input meshes.

Geometric Smoothing

In the process of generating isosurfaces, undesired geometric features are a
common occurrence. FairMesh is a geometric smoothing module in SCIRun
designed to smooth a mesh based on Gaussian filtering, without shrinking
the interior volume enclosed by the mesh. This module uses an algorithm
developed by Taubin [35], and uses a signal processing approach to surface
smoothing, reducing the problem to application of a low pass filter to the sur-
face signal. The algorithm moves nodes towards the weighted average of its
neighbors, first with a positive scale factor, then with a negative scale factor
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Fig. 5. The blue stair stepped mesh is the input to FairMesh, the green is the
smoothed output.

that avoids the shrinking expected with Gaussian filtering. The algorithm ex-
ecutes efficiently especially for the simplest weighting scheme appropriate for
the stair stepped meshes we obtain from Marching Cubes over medical image
data. An example of this process is shown in Figure 5 where an initial stair-
stepped mesh is geometrically smoothed resulting in a mesh with identical
topology, but a smoother geometric boundary.

Smoothing with equal edge costs tend to equalize the lengths of the edges.
While this is desirable for producing input to the tetrahedralization phase, it
does not produce good results for meshes that want to apply a texture map.
Desbrun [6] weights approximate the curvature normal, and tends to not move
a vertex when its neighboring faces are coplanar. We provide this weighting
scheme as an additional option in the FairMesh module. The curvature normal
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based weights need to be recomputed at each iteration step, causing this
algorithm to be computationally more expensive.

4.2 Volumetric Mesh Generation Tools

Currently in the research community, there are only a few tools for mesh
generation available for use. One of the basic goals in the development de-
scribed in this paper is to offer a set of tools that can be utilized and made
readily available for completing mesh generation tasks. Unfortunately, volu-
metric mesh generation is still difficult enough that few tools with adequate
track records of success and that are easily licensed for research purposes are
commonly available.

Tetrahedral Mesh Generation Tools

Robust, freely available, open source tetrahedral mesh generation tools are
highly desired but not commonly available to users. In this section, we will
discuss our efforts to incorporate two tetrahedral mesh generation libraries
into the SCIRun meshing pipeline. The major trade-offs with these tools are
with respect to the quality of the resulting meshes, and the ease of licensing
the product.

The current approach of generating isosurfaces as boundaries for a tetrahe-
dral mesh generation can be problematic. In the current pipeline, the selection
of isosurface values that guarantee non-overlapping surfaces gives us an artifi-
cial gap between adjacent surfaces that gets mapped to neither material. This
gap gets filled with numerous small tets, of some generic material, which arti-
ficially inflates the tetrahedra count, and increases the error in finite element
modeling with the artificial separating material. Additionally, this approach
produces models that are visually realistic, but not computationally ideal.
Therefore, we would like an isosurfacing step that produces a single surface
wall separating materials in the volume. This has led us to a new pipeline
approach that we describe in a later section.

CUBIT

CUBIT [5] is a full-featured software toolkit for geometric model generation
and robust generation of two- and three-dimensional finite element meshes
developed at Sandia National Laboratories. The main development goal for
CUBIT is to dramatically reduce the time required to generate meshes, partic-
ularly large hex meshes of complicated, interlocking assemblies. The CUBIT
toolkit also provides libraries to many useful meshing algorithms [4]. In partic-
ular, CUBIT utilizes the state-of-the-art GHS3D tetrahedral meshing library
[25] for generation of tetrahedral meshes. For users that are able to obtain
a license to CUBIT, the SCIRun meshing pipeline can be built to enable
tetrahedral mesh generation using some of the tools provided by the CUBIT
framework.
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TetGen

TetGen [32] is an open source solution to generating tetrahedral meshes from
our triangle surface input. Each surface generated from the isosurfacing step
is combined into a single mesh and provided as input to TetGen. If the model
has holes or self intersecting faces TetGen will fail and point out where such
problems occur in the mesh. In practice we iterate over the previous steps
until we have useable input.

TetGen can refine specified areas more or less densely. Separate regions can
be tagged and remapped to the original material types. The entire volume will
be tetrahedralized according to the input criteria. TetGen is a great tool for
incorporation into a research meshing pipeline because of it’s ready avail-
ability and the flexibility of the interface, i.e. the ease with which additional
points and surfaces can be added as additional constraints is particularly use-
ful for generating meshes for doing simulations. The quality of the output
mesh is typically lower than meshes generated by some commercial tetrahe-
dral packages [25], but because of fewer licensing restrictions it is a convenient
alternative.

Hexahedral Mesh Generation Tools

In addition to the grid re-sampling methods for hexahedral meshes mentioned
earlier, a method for generating conformal hexahedral meshes has been de-
veloped in SCIRun as outlined by Shepherd [31] and briefly described in this
section.

Given an existing hexahedral mesh and a triangulated surface representing
the shape of a new layer of hexahedral elements to be inserted into the mesh,
the general methodology in SCIRun is the following:

1. Locate all of the hexahedra that are intersected by one or more triangles
in the triangle mesh. A kdtree containing all of the triangles is utilized to
improve the efficiency of this search. If there is a triangle in the vicinity of
a given hexahedron, each edge of the hexahedron is tested for intersection
with the triangles in the region. Each of the intersected hexes is marked
as being intersected.

2. Separate the hexahedra into three groups: Side1, Side2, and Intersected.
Starting with an unmarked hexahedron (i.e., a nonintersected hexahe-
dron from the previous step), use a flood-fill algorithm to group all of the
hexahedra that are connected to this hexahedron and not marked (i.e.,
intersected by a triangle). This group will be known as ‘Side1’. All of the
marked, or intersected, hexahedra are placed in a second group, known as
‘Intersected’, and the remaining hexahedra are placed in a third group,
known as ‘Side2’. An example of this process is shown in Figure 6 where
a hemispherically-shaped triangle mesh is place in a hexahedral grid. The
boundary of the triangle mesh is shown in black, and the ‘Intersected’
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Fig. 6. A hemispherically-shaped triangle mesh (the boundary of the triangle mesh
is shown in black) is placed in a hexahedral grid. The hexahedra intersected by the
triangle mesh are shown in yellow, while ‘Side1’ is drawn in green and ‘Side2’ is
shown in blue.

hexes are drawn in yellow. ‘Side1’ is drawn in green and the remaining
hexahedra are placed in ‘Side2’ (shown in blue). The algorithm for detect-
ing intersecting triangles and separating the hexes into these three groups
is explained in further detail in [29].

3. Collate the ‘Intersected’ hexahedra with either ‘Side1’ or ‘Side2’ and in-
sert two new layers of hexahedral elements between these two groups of
hexahedra. The ‘Intersected’ hexahedra are subsequently added to either
‘Side1’ or ‘Side2’, and two layers of hexahedra are added around these
two groups. For the example highlighted in Figure 6, depending on which
side the intersected hexahedra are grouped, one of the meshes shown in
Figure 7 will result.
The new layer of hexahedral elements is inserted by (refer to Figure 8):
a. First, determining the quadrilateral boundary between the two sides

of the mesh,
b. separating the two meshes by shrinking the elements at this interface,
c. then, for each node on the separated boundary, project a new node to

the triangle mesh. A map to each node is retained by both sides of the
mesh, and once all of the projected nodes have been created on the
boundary, the hexahedral connectivity for the two new layers can be
developed by using the quadrilaterals on the interface boundary from
both sides and the map to each of the newly projected nodes.

4. Export the two new groups of hexahedra.

When inserting the new elements, the shrinking process often forces some
element inversion, so it is necessary to smooth the mesh to obtain the mesh
quality desired. Additionally, the projection of the nodes to the triangle mesh
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Fig. 7. Slightly different meshes result depending on which side the intersected
hexes are grouped. The image on the left shows the resulting mesh if the intersected
hexes are placed with Side1’s hexes, while the image on the right has the intersected
hexes being grouped with Side2.

Fig. 8. Image A shows the shrunken hexahedra with the triangle mesh shown in
between the hexahedra. Image B shows a newly projected node to the triangle mesh
for each node on the boundary of the shrunken mesh (note that a single node on
the triangle mesh corresponds to one node on each of the shrunken boundaries).
Image C shows the newly created hexahedron by mapping the quadrilaterals on
the boundary to the appropriate nodes (recently projected) on the triangle surface
mesh.

often results in nonuniform sizing of the quadrilateral elements on the bound-
ary. This is also remedied using a smoothing operation.
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4.3 Volumetric Mesh Improvement Tools

We have utilized the TSTT Mesh Quality and Improvement Toolkit (MESQUITE)
library of smoothing algorithms [26, 3] to accomplish the optimization of the
meshes in the SCIRun Meshing Pipeline. Within the MESQUITE class of
mesh smoothers we have access to both untangling smoothers (a tangled mesh
contains elements that are inverted, or have a negative Jacobian value) and a
wide range of optimization algorithms for untangled meshes. We have utilized
an inverse mean ratio smoother (as described by Knupp [22]), that incorpo-
rates an L2-norm template with guarantees that (1) the mesh will remain
untangled if the initial mesh is untangled, and (2) the average value of the
inverse mean ratio will either stay the same, or be decreased.

While there are a wide variety of smoothing algorithms available, includ-
ing Laplacian [13, 9], centroidal area [16], Winslow [19], angle-based [38],
and many others, we will highlight three algorithms that have been imple-
mented within SCIRun. These smoothers include Laplacian smoothing, a hy-
brid smoothing/optimization algorithm known as Smart Laplacian [10], and
a mesh optimization algorithm for improving the ‘shape’ metric, called Shape
Improvement Optimization [22]. In SCIRun, these smoothing/optimization al-
gorithms are available for smoothing quadrilaterals or hexahedral meshes (as
well as triangle and tetrahedral meshes). These operations can be performed
on a section of the mesh or the entire mesh can be optimized. The current
implementation allows for setting up constraints on the smoothing operations
so nodes that need to be in a certain location for simulation purposes can be
pinned to that location.

Laplacian Smoothing.

Of all the available mesh smoothing algorithms that are currently available,
the most common algorithm is known as Laplacian smoothing. The easiest
way to visualize Laplacian smoothing is to consider each edge attached to a
node in the mesh as a spring. When the lengths of each of the edges attached
to the node are identical, the spring force is balanced. When they are not equal
the node is pulled towards the springs with the greatest force. Because this
process iterates over each of the nodes, the spring forces may be constantly
changing after each iteration, while the total force in the system should be
dimished with each iteration.

The advantages of Laplacian smoothing are that the algorithm is easy to
implement and is computationally efficient. However, it also has several dis-
advantages, including that it may generate inverted elements, element shapes
are not necessarily optimized, and features may not be preserved if too many
iterations are performed. Despite these disadvantages, Laplacian smoothing
is a very powerful mesh optimization tool, especially when coupled with other
optimization-based smoothing techniques [10].
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Fig. 9. Example of smart Laplacian smoothing (from the MESQUITE toolkit im-
plemented in SCIRun) on a tetrahedral mesh. The image on the left shows the mesh
before smoothing, and the images on the right is the same mesh after smoothing.

Smart-Laplacian Smoothing

Utilizing the guarantees of the L2-norm template available in MESQUITE,
Laplacian smoothing can be augmented to prevent element inversion. Using
this ‘smart’ version of Laplacian’ smoothing we can assume that if the nodes
on the boundary of the mesh are fixed in place while the interior nodes are
free to move during optimization, then the smoothed mesh will have either the
same or better quality upon completion of the optimization. We, therefore,
can run the smoother until the optimization converges with the given geom-
etry and mesh topology for the Laplacian criterion. While it may be possible
to subsequently improve the quality of some of the individual elements, it
would be done at the expense of the quality of the adjacent elements. There-
fore, we have some confidence that the average element quality for the given
mesh topology and geometry is optimal, and only modifications to the mesh
topology can be utilized to gain additional average quality improvements in
the reported meshes. Figure 9 visually demonstrates the difference in mesh
quality after using a smart Laplacian smoother for surface meshes generated
using a Marching Cubes approach.

Mesh Untangling

A mesh untangling algorithm [18] uses node movement to remove nonconvex-
ities of elements within a mesh. The Jacobian matrix is calculated for each
node with respect to an element. For each node in a tetrahedron or hexahe-
dron, there are exactly three ‘neighbor’ nodes connected via an edge in the
element. For a single node, the Jacobian matrix is defined as:
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A0 =

∣∣∣∣∣∣
x1 − x0 x2 − x0 x3 − x0

y1 − y0 y2 − y0 y3 − y0

z1 − z0 z2 − z0 z3 − z0

∣∣∣∣∣∣
The minimal determinant of these matrices for each node of an element

is known as the ‘Jacobian’ of the element [21]. By allowing nodal movement
for each of these elements, an optimization problem can be formulated to
maximize the following objective function (other similar functions have also
been utilized):

f(A) = 0.5 ∗
∑

(|αm| − αm)

where αm is the determinant a single Jacobian for a mesh with m elements.
If the mesh is untangled then the summation reaches a maximum value

of zero. It is common to use local optimization algorithms, such as conju-
gate gradient methods, to obtain a solution to the untangling optimization
problem. However, because the untangling problem can be nonconvex, it is
possible to reach a local maxima without obtaining an optimal solution. This
is an ongoing and challenging research area [18, 36, 23, 11].

Mesh Optimization

In addition to traditional mesh smoothing techniques, there has been a
tremendous amount of research conducted in optimization-based smooth-
ing. Traditional smoothing methods work heuristically and can create invalid
meshes or elements containing worse quality than the original mesh. In con-
trast, optimization-based methods work to optimize a metric value associated
with each of the mesh elements. Common metrics for optimizing include shape
[22], condition number [18], Jacobian [20], and mean ratio [8, 21]. While these
methods can be extremely effective at maximizing metric values, they can also
be very computationally expensive. To reduce the computational expense, hy-
brid algorithms have been proposed which combine some of the speed advan-
tages of the traditional methods while maintaining the quality improvement
guarantees of the optimization-based techniques [10]. As mentioned earlier, a
‘shape’ optimization algorithm has been implemented in SCIRun using the
MESQUITE toolkit.

Refinement

SCIRun contains two different methods for refining hexahedral grids. The
first is based upon Harris [14] and has been modified to use the four different
hexahedral templates presented in that work within a Marching Cubes style
lookup table scheme. This means that it is very fast to compute a refinement
as it is O(N) over the original mesh size. The most dense template is a regular
27:1 cut of each hex and thus nicely preserves the shape of the original hexes.
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However the four templates presented in that work can only be used to
refine a convex region of a hexahedral mesh. As a preprocess the refinement
region is expanded outward until it is convex. This can result in a much larger
area of refinement than desired, particularly if the refinement area is sparse.
For example a wire electrode in a torso can cause the convex region to cover
many more hexahedra than would otherwise be refined.

SCIRun also contains a novel hexahedral refinement scheme based upon
recursively dicing up the corners of hexahedra around nodes marked to be
refined. This is the one node template from the Harris method applied over
and over until all the desired refinements have been made. This allows an
arbitrary refinement to be made without a convex region requirement and
thus offers much better results for sparse refinement areas. However the most
dense template in this case is a 49:1 cut and results in hexahedra with a less
regular cut than the convex scheme. If the convex region is less than two times
as big as the non-convex region then the Harris method should offer better
results.

4.4 Mesh Verification Tools

Significant research has gone into defining metrics for judging the quality
of elements in a mesh. Element quality criteria are generally agreed upon
standards for acceptance of a mesh for simulation purposes. Verdict [37] is
a software library containing a comprehensive suite of mesh quality metrics
for evaluating the quality of hex, tet, quad and triangle finite elements. The
SCIRun Meshing Pipeline provides a module with an interface to the Verdict
library for calculating and evaluating mesh quality using standardized mesh
quality metrics.

5 Results

In this section, we demonstrate two example meshes generated using the tools
described previously. The first example is a mesh of a pediatric torso using
the tetrahedral mesh generation pipeline. The second example is a skull and
cranial model using the hexahedral meshing pipeline.

Because the Jacobian matrix for a mesh element is used to map the el-
ement to a reference element in solution space in most numerical methods
(particularly in finite element analysis [7]), a poor element Jacobian may re-
sult in increased error in the solution. To ensure proper element quality control
within the meshes presented in this section, we will display all quality results
utilizing the determinant of a scaled Jacobian matrix as calculated by the
Verdict [37] library for each of the elements within the mesh.
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5.1 Pediatric Torso

The goal in processing the pediatric torso was to use tools that already existed
and see if we could build a finite element mesh from a segmented volume. We
also desired to gauge the quality of such a mesh while also comparing how
well the different tools compared to each other.

The input to the pediatric torso pipeline was a segmented volume image
data set (i.e., a NRRD file [17] 512x512x111, consisting of 11 different ma-
terials categories). Each material in the segementation was separated into a
separate volume prior to isosurfacing. Using the Teem tools, each of the sep-
arate material files were resampled into a 111x111x111, by filtering down in
x and y to get a uniform size in each dimension.

Each of the materials included in the final mesh were isosurfaced using
either Afront or a standard Marching Cubes algorithm (Figure 10 illustrates
the results of both methods of isosurface generation). For this model, we chose
to include the torso, bone, lung, and heart segments. The resulting surfaces
could not overlap each other in any way, and had to be ’water-tight’ prior to
generating the volumetric elements interior to the surface. Therefore isosurface
values were chosen such that the resulting surfaces would not overlap. (Ideally,
the lung and heart would have portions of their surfaces that sharing a single
interface surface. However, if both were isosurfaced at a common value the two
surfaces along this area would overlap resulting in a failure during volumetric
mesh generation. To prevent this failure, isovalues were chosen to be different
and the heart and lungs were not directly interfaced.)

The sets of surfaces generated from Afront and Marching Cubes were
separately configured as input for TetGen and CAMAL using the SCIRun
interface. The original intention was to create four tetrahedral meshes: 1.
Afront surfaces to TetGen volumes, 2. Afront surfaces to CAMAL volumes, 3.
Marching Cubes surfaces to TetGen volumes, and 4. Marching Cubes surfaces
to CAMAL volumes. However, using the Marching Cubes algorithm, we could
not generate a valid model containing the torso, bone, lung and heart without
overlap. After generating a tetrahedral mesh using the Marching Cubes sur-
faces of the torso, bone, and lungs and reviewing the resulting mesh generation
timing and quality, it was obvious that the Marching Cubes surfaces would
not provide adequate results without significant work to improve the surface
meshes. Therefore, only a single model was generated using the Marching
Cubes approach. These results are shown in Table 1.

The higher surface quality from the Afront generated surfaces resulted in
shorter tetrahedral mesh generation timings, as well as overall higher quality
tetrahedral elements. Table 2 lists several of the resulting quality metrics for
the mesh generated by CAMAL using the GHS3D tetrahedral mesh generator.
In figure 11 a histogram is given of the scaled Jacobian metric per element,
showing that only a small portion of the elements has a low quality and
that most elements are properly shaped. The final mesh contains 3,415,236
tetrahedra, and a cut-away view of this mesh is displayed in Figure 12.
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Fig. 10. Triangle surface meshes generated by afront (top) and standard Marching
Cubes (bottom).

The Afront generated surfaces were also used as input to TetGen. Table 3
lists several of the resulting quality metrics for the mesh generated by TetGen

Table 1. Table indicating resulting tetrahedral quality for the pediatric torso model
(torso, bone, and lung materials only using Marching Cubes surfaces and TetGen.
Time to generate mesh: 1 hour 35 minutes.

Total Elements: 14,300,408 tetrahedra 29,156,724 faces 17,524,972 edges 2,668,657 nodes

Quality Metric Low Value Average Value High Value

Aspect Ratio 1.00006 1.06422e+21 1.45221e+28
Volume 3.83988e-19 1.4405 266.872

Scaled Jacobian 1.40881e-15 0.37441 0.995652
Shape 1.90147e-10 0.635895 0.999953
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Table 2. Table indicating resulting tetrahedral quality for the pediatric torso model
(torso, bone, heart and lung materials using Afront-generated surfaces and CAMAL.
Time to generate mesh: 4.42 minutes (including mesh joining).

Total Elements: 3,415,236 tetrahedra 6,837,477 faces 3,997,659 edges 575,422 nodes

Quality Metric Low Value Average Value High Value

Aspect Ratio 1.00002 1.32974 1553.55
Volume 3.23703e-06 6.01067 1068.21

Scaled Jacobian 0.0070007 0.618421 0.997181
Shape 0.0563958 0.829903 0.99998

Fig. 11. Element quality of the pediatric torso mesh generated by the GHS3D
(CAMAL) tetrahedral mesher as expressed in the scaled Jacobian metric.

and Figure 13 shows the histogram of element quality based on the scaled
Jacobian metric. This mesh contains 4,133,993 tetrahedra. The average quality
of this mesh is substantially lower than the mesh generated by CAMAL and
indicates that some volumetric improvement might be useful prior to using the
mesh in a subsequent simulation. A cut-away view of this mesh is displayed
in Figure 14.

5.2 Skull Model

The skull model is provided courtesy of INRIA by the AIM@SHAPE Shape
Repository (http://shapes.aim-at-shape.net/index.php). The difficulty in gen-
erating this model with traditional hexahedral methods is several fold. First,
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Fig. 12. Cutting plane view through torso with input surfaces and resulting tetrahe-
dra edges shown in partially transparent blue. The tetrahedral mesh was generated
by CAMAL.

Table 3. Table indicating resulting tetrahedral quality for the pediatric torso model
(torso, bone, heart and lung materials using Afront-generated surfaces and TetGen.
Time to generate mesh: 3.21 minutes.

Total Elements: 4,133,993 tetrahedra 8,292,237 faces 4,860,849 edges 702,606 nodes

Quality Metric Low Value Average Value High Value

Aspect Ratio 1.00011 15.2247 5.00456e+07
Volume 1.74183e-07 4.96587 267.951

Scaled Jacobian 6.33094e-05 0.371769 0.990632
Shape 0.00182271 0.648091 0.999912

the original model was constructed from a triangle mesh only, and no solid
model description of this model is available. Therefore traditional decomposi-
tion strategies with solid modeling operations is not readily accessible. Second,
since there are no boundary curves in the model, traditional methods for de-
termining a decomposition strategy for common hexahedral methods are not
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Fig. 13. Element quality of the pediatric torso mesh generated by TetGen as ex-
pressed in the scaled Jacobian metric.

present. With methods that are commonly available for performing hexahe-
dral mesh generation, this model would be extremely difficult to produce.

The hexahedral mesh of the skull model, shown in Figure 15, was generated
in SCIRun and contains 19,330 hexahedra in the skull bone and an additional
34,815 hexahedra in the mesh of the cranial cavity. The mesh is completely
conformal throughout the model, but is separated into the two material blocks.
A transparent view of the geometry showing the bone and cranial cavity is
given in Figure 16.

This model was generated by placing a triangle mesh describing the ge-
ometry of the skull bone (minus the surface describing the cranial cavity) in
a regular grid of hexahedra and inserting two layers of hexahedral elements
using the triangle mesh to guide the placement of the newly formed hexa-
hedra. The mesh exterior to the skull was discarded, and an additional set
of hexahedral element layers was added using a triangle mesh describing the
cranial cavity to control the placement of the new hexahedral elements. This
generation process is shown in Figure 17.

The newly created hexahedral mesh was optimized using smoothing and
mesh optimization routines in CUBIT [5]. First, a centroidal-area smoother
was utilized on the surface of the exterior skull and the shared surface of the
cranial cavity. Volumetric Laplacian smoothing was then utilized on the hex-
ahedra in both volumes. Additional mesh untangling and condition number
optimization were performed on the hexahedra in the mesh of the bone. The
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Fig. 14. Cutting plane view through torso with input surfaces and resulting tetrahe-
dra edges shown in partially transparent blue. The tetrahedral mesh was generated
by TetGen.

final mesh quality, dictated by the scaled Jacobian metric, is shown in the
distribution in Figure 18.

6 Future Plans

The goal of BioMesh3D is to generate a stand alone application that is easy
accessible to a large variety of biomedical computing users. The tools pre-
sented in this paper are currently in different stages of development and will
be released as open source software along with the SCIRun problem solving
environment available from www.sci.utah.edu.

In order to come up with an intuitive and easy to use interface, we are
currently integrating these meshing tools into our SCIRun framework. The
goal is to integrate the meshing tools inside a full modeling pipeline. Here the
modeling pipeline refers to the process starting from extracting segmentations
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Fig. 15. Hexahedral mesh of the skull model. Bone (left) and cranial cavity (right)
meshes are shown separately.

from medical images and ending in the analysis of biomedical parameters that
are useful for clinicians. As the SCIRun framework contains tools for building
finite element models and tools for doing simulations, embedding our pipeline
in this framework will ensure that we can test the effectiveness of the different
meshing strategies for different biomedical applications.

In order to evaluate the effectiveness of the algorithms, we are currently
setting up modeling pipelines for a variety of biolectromagnetic applications.
The first targeted application is the evaluation of defibrillation thresholds
in children with an Implantable Cardiac Defibrillator (ICD). In this project
we are computing the effects on the electric field inside the heart resulting
from anatomical differences in the children. Other examples we are working
on include localization of electrical sources in the brain, and simulating the
propagation of action potentials in the heart. Each of these application adds a
different focus to the meshing. For instance, in the case of simulating the prop-
agation of action potentials, the regularity of the mesh is important, whereas
preliminary results for the defibrillation project show that local refinement to
obtain a high mesh density around the electrodes is important and can im-
prove performance [33]. Because of the broad range of potential requirements
within biomedical applications, a flexible pipeline containing a wide array of
tools that can be applied differently depending on the biomedical application
is necessary.

The application design incorporates the following paradigms: (1) the input
for the application will consist of segmented data and additional geometrical



BioMesh3D: A Meshing Pipeline for Biomedical Computing 25

Fig. 16. Transparent view of the combined geometry generated from the facets of
the hexahedral mesh of the skull model.

models and points for the boundary conditions, (2) the output will be a mesh
or a series of meshes with data assigned to the mesh for subsequent simu-

Fig. 17. Pictorial flow chart demonstrating the mesh generation process for creating
the hexahedral mesh of the skull. Triangle meshes (pink) are utilized to guide place-
ment of layers of hexahedral elements into existing hexahedral meshes to achieve
new meshes that are conformal with the original solid geometry.
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Fig. 18. Element quality of the skull model generated by the proposed hexahedral
pipeline as expressed in the scaled Jacobian metric.

lations, (3) the application has to be visual (i.e., the user should be able to
browse through the mesh each step of the process), (4) the meshing pipeline
should be reasonably simplistic (i.e., the program should have only a few
steps that user needs to follow in order to build a mesh), and (5) the program
will both render meshes with tetrahedral as well as hexahedral elements, and
optionally triangulated surfaces can be exported for methods like boundary el-
ements. Figure 19 gives an example framework for the integrated BioMesh3D
application.

7 Conclusion

In this paper we have outlined a pipeline for generating computational meshes
suitable for biomedical simulations. Because of the wide array of geometries
and phenomena encountered in biomedical computing, this pipeline incorpo-
rates a flexible suite of tools that offer some generality to mesh generation
of biomedical models. Many of these tools have been successfully used in
past problems, including surface remeshing strategies, geometric smoothing,
mesh smoothing and optimization, volumetric mesh generation, refinement
and decimation techniques, and mesh verification using standardized mesh
quality metrics. These tools have been incorporated into suite of other tools
in the SCIRun Problem Solving Environment. Using this environment, we
have demonstrated mesh generation for a couple of example problems of in-
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Fig. 19. Dataflow diagram of a stand alone meshing application that will combine
all the different algorithms for creating a mesh. BioMesh3D will combine hexahedral
and tetrahedral meshing into one application.

terest to the biomedical community including a tetrahedral mesh of a pediatric
torso and a hexahedral mesh of a skull and cranial cavity. Using standardized
mesh quality metrics, we showed that these meshes would be suitable for use
in biomedical simulation. We plan to incorporate the tools presented in this
paper into an integrated meshing tool for use by the biomedical community.
It is hoped that this tool can be utilized to dramatically reduce the difficulty
of mesh generation for biomedical simulations.

In this paper we compared meshing techniques for a few examples by means
of the scaled Jacobian metric. However there may be other factors determin-
ing what is suitable for an application (i.e., speed of the meshing procedure,
control of element sizing, simulation boundary conditions, etc.). To determine
what is appropriate to use for certain application, one should consider the
full modeling pipeline. For instance, if the intent is to use a single mesh for a
number of of time-intensive simulations, it may be best to optimize the mesh
with fewer elements with higher quality, whereas a mesh is to be used for a
single simulation, a speedier meshing method that results in a lot of elements
may be more appropriate for the problem. Hence, having the meshing tools
incorporated with segmentation, simulation and visualization tools within a
larger problem solving framework like SCIRun, will have the added benefit
of being able to test these different tools within a common environment. In
this way, the performance of the meshing algorithms can also be compared by
looking at the results of a visualization or simulation, providing an alternative
metric for assessing performance of the meshing strategy.
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