
Eurographics Symposium on Parallel Graphics and Visualization (2012)

H. Childs, T. Kuhlen, and F. Marton (Editors)

GLuRay: Ray Tracing in Scientific Visualization Applications

using OpenGL Interception

Carson Brownlee1,2, Thomas Fogal2, and Charles D. Hansen1,2

1School of Computing, University of Utah
2SCI Institute, University of Utah

Abstract

Ray tracing in scientific visualization allows for substantial gains in performance and rendering quality with

large scale polygonal datasets compared to brute-force rasterization, however implementing new rendering ar-

chitectures into existing tools is often costly and time consuming. This paper presents a library, GLuRay, which

intercepts OpenGL calls from many common visualization applications and renders them with the CPU ray tracer

Manta without modification to the underlying visualization tool. Rendering polygonal models such as isosurfaces

can be done identically to an OpenGL implementation using provided material and camera properties or superior

rendering can be achieved using enhanced settings such as dielectric materials or pinhole cameras with depth

of field effects. Comparative benchmarks were conducted on the Texas Advanced Computing Center’s Longhorn

cluster using the popular visualization packages ParaView, VisIt, Ensight, and VAPOR. Through the parallel ren-

dering package ParaView, scaling up to 64 nodes is demonstrated. With our tests we show that using OpenGL

interception to accelerate and enhance visualization programs provides a viable enhancement to existing tools

with little overhead and no code modification while allowing for the creation of publication quality renderings us-

ing advanced effects and greatly improved large-scale software rendering performance within tools that scientists

are currently using.

Categories and Subject Descriptors (according to ACM CCS): K.6.1 [Computer Graphics]: Petascale visualization,

Flow visualization, Space visualization—

1. Introduction

Massively parallel ray tracing has proven to be an effec-

tive method for rendering large polygonal models which

scales well on increasingly parallel architectures [WSB01].

Ray tracing implementations are rare in scientific visual-

ization programs, which instead often rely on brute-force

OpenGL implementations for rendering. As such, they of-

ten scale poorly and become sub-interactive with increas-

ing geometry counts. Furthermore, many common scientific

visualization programs do not provide enhanced rendering

effects such as indirect lighting which give better approxi-

mations to the rendering equation than direct lighting alone

and provide better depth cues to users and more realistic im-

ages. To achieve such effects, scientists must use custom

visualization software which provides ray tracing capabili-

ties [PSL∗98, BSP06]. End users are reluctant to learn new

tools which are non-typical in their workflows. Integrating

ray tracing into common visualization tools through cus-

tom programming can offer faster and higher quality ren-

derings for scientists in the same programs used for data

exploration and analysis, however creating and maintain-

ing such integrated renderers across multiple programs and

versions is often a daunting task for developers. We there-

fore implement ray tracing across many existing visualiza-

tion programs by intercepting OpenGL calls and instead of

rasterizing the scene, we render those calls with the software

ray tracer Manta [BSP06]. Our approach is therefore largely

program agnostic for any visualization application using the

fixed function OpenGL pipeline and has been tested to work

with ParaView, VisIt, VAPOR, and EnSight as of the time of

this writing [CGM∗06, LLN10, UCA09, CEI10].

Achieving interactive performance in scientific visualiza-

tion is an important goal for data exploration and analy-

sis. When rendering on machines lacking graphics hard-

c© The Eurographics Association 2012.

Carson Brownlee & Thomas Fogal & Charles D. Hansen / GLuRay: Ray Tracing in Scientific Visualization Applications using OpenGL Interception

ware acceleration, programs such as VisIt and ParaView use

single-threaded Mesa rendering by default which often fails

to achieve interactive performance even for modestly sized

polygonal models. Furthermore, even when specialized ren-

dering clusters are used with graphics processing units, sub-

interactive performance is often observed for large data sizes

due to a lack of occlusion culling in many programs. To im-

prove performance, GLuRay implements acceleration struc-

tures to achieve logarithmic performance scaling with geom-

etry sizes while the ray tracing algorithm gains occlusion and

frustum culling implicitly through the nearest-hit algorithm.

As many of the programs tested use brute-force algorithms

and our implementation is a translation between rasterization

and ray tracing, this paper is not meant solely to compare

the performance of ray tracing and rasterization, but rather a

real-world solution with existing tools which do not neces-

sarily present ideal rasterization implementations. The main

contribution of this paper is the presentation of a ray tracing

implementation using OpenGL interception with interactive

performance and advanced rendering effects for scientific vi-

sualization applications. Scalability using the parallel ren-

dering tool ParaView is demonstrated across 64 nodes of a

cluster.

In this paper we describe previous work with massive

model rasterization and ray tracing in distributed systems

in Section 2. The implementation of GLuRay is then given

in Section 3 describing OpenGL interception, asynchronous

rendering, and generating high quality images. To under-

stand the trade-offs of our system for dealing with extremely

large datasets, we have employed an in-depth timing study

in Section 4 of three different rendering methods for large

polygonal data: software-based ray tracing, software-based

rasterization, and hardware-accelerated rasterization. We use

four different datasets: one synthetic, and three scientific.

Through these studies we show that our system can handle

large datasets of various types across multiple applications

with vastly improved interactive rendering times, scalability,

and enhanced quality over their built-in rendering engines.

Finally, the limitations of the system and future work are

discussed in Section 5.

2. Background

Many tools have been developed for rendering large-scale

scientific data using polygonal representations. VAPOR was

developed as visualization tool by Clyne et al. for atmo-

spheric scientists to explore data using isosurfaces, stream-

lines and volumetric representations [UCA09]. Programs

such as ParaView, VisIt and EnSight present visualization

solutions across large heterogeneous cluster environments

for data which are often too large to fit or be rendered ef-

ficiently on a single node [Kit10, LLN10, CEI10]. Many of

these systems utilize a client/server architecture with a sin-

gle client interface utilizing multiple server nodes made up

of render or data servers for rendering and analysis.

Data is commonly distributed in a data-parallel fashion in

large distributed memory systems. This balances both the

data loading and processing but also the rendering work

which is composited together using sort-last compositing

algorithms to combine each node’s portion of the rendered

scene. ParaView redistributes work further by sending gen-

erated geometry to render servers in an additional step in

cases where fewer rendering nodes may be needed com-

pared to analysis or vice-versa [CGM∗06]. Once geometry

has been distributed, rendering relies on hardware accelera-

tion to achieve interactive frame rates and often defaults to

Mesa for software rasterization on machines lacking graph-

ics processing hardware. Single-threaded Mesa performance

fails to utilize increasing numbers of cores on cluster nodes

or large distributed memory systems.

Mitra and Chiueh [MC98] developed a parallel Mesa soft-

ware rasterization implementation by running Mesa in par-

allel in the background through a serial interface. In or-

der to provide scalability they utilized compositing opera-

tions for each running instance of Mesa. Nouanesengsy et

al. [NAWS11] explored current performance of Mesa soft-

ware rasterization on large shared memory machines us-

ing various compositing methods. Their tests showed that

nearly-linear speedups could be achieved with the number

of threads using a hybrid sort-first and sort-last composit-

ing step, however running multiple instances of ParaView

by spawning additional MPI processes failed to scale well in

their tests. Howison et al. [MHC10] found that running with

a single MPI process with 6 threads in a hybrid parallelism

setup was significantly faster on a 12 core node than an MPI

only approach. We therefore focus our testing with a single

process scaling over multiple threads for all tests to demon-

strate the per-process optimizations of ray tracing. Addition-

ally, a scaling study is presented which demonstrates GLu-

Ray performance scaling over multiple nodes with ParaView

using data-parallel work distribution.

Ray tracing performance has been shown to be embar-

rassingly parallel [WSB01]. This makes it an ideal algo-

rithm for software rendering on compute clusters with in-

creasing core counts per node. Current implementations of

ray tracing for scientific visualization employ a custom ren-

dering framework as opposed to using standard visualization

tools [BSP06, PSL∗98, PPL∗99]. Marsalek et al. [MDG∗10]

recently implemented a ray tracing engine into a molecular

rendering tool for the purpose of generating advanced ren-

dering effects. Their implementation showed real-time per-

formance up to 56 thousand triangles on a single machine

but it is unknown how well it performs with millions of tri-

angles, how it compares with OpenGL performance, and was

only implemented for a single application.

The Manta real-time ray tracing software has proven scal-

ing performance on shared-memory machines [SBB∗06].

Thus, combining CPU rendering using Manta with other

cluster based visualization tools which handle data distribu-

c© The Eurographics Association 2012.

Carson Brownlee & Thomas Fogal & Charles D. Hansen / GLuRay: Ray Tracing in Scientific Visualization Applications using OpenGL Interception

tion, geometry creation, and image compositing provides a

working distributed rendering solution. Ize et al. [IBH11] de-

veloped a version of Manta which ran in real-time over dis-

tributed shared memory systems by using a paging scheme

to swap data between nodes and we implemented a simi-

lar scheme using replicated data, however we chose to focus

this paper on using existing tools’ data distribution and im-

age composition. Parker et al. developed RTSL [PBBR07],

a shading language for Manta which was largely a super-

set of GLSL. This provides the potential to translate GLSL

shaders for use with GLuRay, however this was not explored

for this paper. Wald et al. introduced a ray tracing API called

OpenRT which gave an API interface similar to OpenGL

and was shown to scale well using commodity PC clus-

ters [WBDS03]. Instead of creating another API which re-

quires developers to rewrite their visualization implementa-

tion however, we intercept OpenGL API calls from existing

programs.

OpenGL interception is a common method used for

debugging and profiling OpenGL applications with pro-

grams such as glTrace [SM97]. WireGL and Chromium

took OpenGL interception a step further by modifying the

behavior of the OpenGL calls into a stream processing

framework to support functions such as distributed ren-

dering with sort-first and sort-last compositing operations

[HEB∗01, HHN∗02]. The main contribution of this paper

is the presentation of a ray tracing implementation using

OpenGL interception with interactive performance and ad-

vanced rendering effects for scientific visualization applica-

tions.

3. Ray Tracing OpenGL

GLuRay operates as a ray tracer which runs with exist-

ing OpenGL programs. Implementing GLuRay required cre-

ating a false OpenGL library and dynamically linking it

with a host program at run-time using LD_PRELOAD or

dlopen. This library maps calls from the rasterization algo-

rithm present in OpenGL into a ray tracer.

3.1. Intercepting OpenGL calls

In order to capture function calls, an OpenGL implementa-

tion was created based on the official OpenGL specification.

The OpenGL debugging tool SpyGLass was used as a basis

for the program [Mag11]. Some calls are ignored with no

direct mapping such as clearing the depth buffer, some are

passed on to an actual OpenGL implementation such as GLX

calls, and some are sent to GLuRay’s ray tracing implemen-

tation for tracking state or rendering. Function calls which

are mapped to ray tracing include calls to modify transfor-

mation matrices, material parameters, light properties, ge-

ometry information, and rendering attributes. Calls which

are passed to another OpenGL specification include calls

such as glDrawPixels and glXSwapBuffers. When tracking

these calls, it helps to think of OpenGL as a state machine.

Each call either affects some given state or returns informa-

tion about the given state. In OpenGL, this state affects how

a polygon is drawn each time a draw call is made using ei-

ther glVertex calls in immediate mode, glCallList for display

lists, or a more modern glDrawArrays or equivalent call.

When ray tracing, multiple draw calls need to be avoided

as much as possible as the rendering time is k ·O(log(n)),
where n is the amount of geometry and k is the screen size.

For each draw call, the time complexity roughly linearly in-

creases as k expands. Therefore each draw call is recorded

and not rendered until the system determines a draw is re-

quired for the entire scene. This is determined through calls

to glXSwapBuffers, glFlush, glFinish, or glClear depending

on the application. This has the potential to break certain

behaviors such as depth-ordered blending modes, however

common uses of this are for transparency which can be han-

dled by using transparent material properties with ray trac-

ing and has not posed a problem for our current implemen-

tations.

In the serial implementation of GLuRay, rendering oc-

curs as soon as a draw is required. Acceleration structures

are built as needed which are instanced with their trans-

forms, lighting information, material parameters, and geom-

etry. When a render is requested by the host program, the

rendered scene is drawn into the OpenGL context, and data

is cleared as shown in Figure 1.

Figure 1: Sequential architecture of GluRay.

3.2. Asynchronous Rendering

To speed up interactive rendering, the option to add a one

frame lag between rendering calls was added. This alleviate

the idle time for GLuRay waiting for rendering calls from

single-threaded applications. When a draw call is made, the

previous frame is copied to the framebuffer and returns.

While the next batch of OpenGL calls are being made, the

multithreaded system is rendering and building accelera-

tion structures for the previous frame. For this we use a

packet based Bounding Volume Hierarchy, BVH [WBS07].

To further decrease the time to build acceleration structures,

an approximate BVH can be used which builds faster but

c© The Eurographics Association 2012.

Carson Brownlee & Thomas Fogal & Charles D. Hansen / GLuRay: Ray Tracing in Scientific Visualization Applications using OpenGL Interception

Figure 2: Parallel architecture of GluRay.

gives moderately slower runtime performance. This effec-

tively gives a variable which can be changed depending on

whether a system needs to be more interactive for updates to

the underlying geometry or faster for changes to the camera.

This system is shown in Figure 2.

3.3. High Quality Rendering

Ray tracing allows for advanced effects such as global illu-

mination, accurate reflections, depth of field, soft shadows,

transparency, and refraction to name a few. These techniques

can be handled through other means, however our imple-

mentation provides an intuitive implementation of the ren-

dering equation using light rays which can be used for pub-

lication quality images. Manta supports path tracing, how-

ever it was not used in our testing. Figure 3(a) shows GLu-

Ray running within the visualization tool ParaView render-

ing a Richtmyer-Meshkov Instability with ambient occlu-

sion. Camera manipulations operate just as they would with

OpenGL and material and light properties are updated when-

ever OpenGL state changes are made in the host program.

Not all material properties can be provided through OpenGL

alone, such as refractive indices of glass objects or ambient

occlusion options. Such additional material properties pro-

prietary to GLuRay are exposed through an external GUI ap-

plication shown in Figure 3(b). Changes are applied globally

to all objects in the current scene. Modifications are broad-

cast to running programs through TCP sockets over the lo-

calhost.

Figure 4 shows the comparison between a phong shad-

ing of a human skull and the same rendering with am-

bient occlusion added. Ambient occlusion provides depth

cues not present in the phong shaded image by occluding

light blocked by nearby geometry. Psychological user stud-

ies have validated that more realistic lighting using approx-

imations of global light can aid comprehension of complex

(a) (b)

Figure 3: GLuRay running within ParaView (a) and an ex-

ternal GUI (b).

features in data [GP06] when compared to purely local light-

ing algorithms such as phong shading. Figure 5 shows a side-

by-side comparison of an OpenGL rendering within Par-

aView of an aluminum ball hitting an aluminum plate and

GLuRay rendering the same dataset within the same pro-

gram using additional effects. Data loading, interaction, and

rendering calls, were all done within the host program with-

out noticeable differences to the user until special render-

ing modes were selected. Figure 6(b) shows an astrophysics

simulation of magnetic reversal in a solar-type star rendered

within VAPOR using GLuRay [BMB∗11]. Ambient occlu-

sion enhances streamlines while reflections and soft shad-

ows add to the realism of the rendered image compared to

only using local lighting as shown in Figure 6(a). Secondary

rays are only supported on shared-memory systems or GLu-

Ray’s ray-parallel distributed mode which was implemented

similar to Ize et al. [IBH11] but as of this writing this imple-

mentation only works with replicated data on each node.

(a) (b)

Figure 4: Shading effects such as ambient occlusion shown

in (b) add more depth cues compared to a standard phong

shading technique (a).

4. Results

We evaluated the rendering performance of GLuRay

compared to hardware-accelerated OpenGL and software

OpenGL rendering using Mesa on a single node of the ren-

dering cluster Longhorn, an NSF XD visualization and data

analysis cluster located at the Texas Advanced Computing

c© The Eurographics Association 2012.

Carson Brownlee & Thomas Fogal & Charles D. Hansen / GLuRay: Ray Tracing in Scientific Visualization Applications using OpenGL Interception

(a) (b)

Figure 5: Rendering of an impact dataset with ParaView us-

ing OpenGL (a) and a rendering using GLuRay showing re-

flections, soft shadows and ambient occlusion (b).

Center (TACC). Longhorn has 256 4X QDR InfiniBand con-

nected nodes, each with 2 Intel Nehalem quad core CPUs

(model E5540) at 2.53 GHz and 48-144 GB of RAM. Each

node of Longhorn also has 2 NVidia FX 5800 GPUs. We

used datasets of varying sizes, including a synthetic wavelet

dataset, a dataset from Los Alamos’s plasma simulation code

VPIC, a simulation of magnetic reversal in a solar-type star,

and a time step from a Richtmyer-Meshkov Instability (RM)

simulation rendered with two different views. All images

were rendered at 1024x1024 resolution with the same set-

tings and views across VisIt and ParaView where applica-

ble. ParaView, VisIt and Ensight are built with Mvapich2

1.4 which is provided on Longhorn. ParaView was run on

Longhorn using taccxrun, pvbatch, and offscreen rendering

for the GPU and Mesa render timings. GLuRay was run

using vglrun, except for the scaling study in which case

pvbatch, taccxrun and offscreen rendering were used. All

benchmarked timings for GLuRay have the same illumina-

tion model as OpenGL with local lighting only and no shad-

ows computed. Benchmarks were conducted with up to 6000

frames and an initial warmup period. This shows an expected

frame rate from camera exploration of an isosurface which

is the focus of our study, but not necessarily what may be

achieved when exploring isosurface values or other updates

which require rebuilding acceleration structures each frame.

Datasets

• Astrophysics The astrophysics dataset shows a Sun-like

star visualized with 48000 streamlines representing mag-

netic field lines [BMB∗11]. Figure 6(a) shows a rendering

of this dataset in VAPOR.

• Wavelet The wavelet triangle dataset is a computed syn-

thetic dataset source released with ParaView. We gener-

ated a 2013 dataset and then calculated as many isosur-

faces as needed to produce a certain quantity of triangles.

The isosurfaces are nested within each other. Images pro-

duced with 16 million triangles are shown in Figure 6(c).

• VPIC Visualization Using a singe time-step from the

VPIC plasma simulation, we calculated an isosurface and

extracted streamtubes that combined totaled 102 million

(a) (b)

(c) (d) (e) (f)

Figure 6: Magnetic fields from an astrophysics simulation

colored with streamlines (a), the astrophysics dataset ren-

dered with advanced effects (b), a wavelet contour (c), VPIC

Plamsa simulation (d), RM zoomed in (e), and RM zoomed

out (f) datasets used for benchmarking.

polygons. A view of this dataset rendered in ParaView can

be seen in Figure 6(d).

• Richtmyer-Meshkov Instability The Richtmyer-

Meshkov Instability simulation, RM, presents a com-

monly used scientific dataset. We created a polygonal

representation with an isosurface from a single time-step

resulting in 316 million triangles. To understand the

behavior of the ray tracer we have rendered both a

zoomed out view of the RM dataset, RMO, seen in Figure

6(f) and a closeup view in Figure 6(e), RMI. The closeup

view shows a smaller portion of the overall data, however

it also takes up more screen space.

Scientific Visualization Programs

• VAPOR VAPOR is a visualization program developed by

NCAR and designed for oceanic, atmospheric, and so-

lar research focusing on isosurfaces, volumes and stream-

lines. Rendering is done through vertex arrays and display

lists. Version 2.0.2 was used in our timing study.

• EnSight EnSight is an in-depth visualization package fea-

turing volume rendering, streamlines, glyphs, and con-

tours to name a few of the rendering modes supported.

Rendering uses immediate mode rendering or display

lists. Version 9.2 was used for our benchmarks.

• ParaView ParaView is a distributed visualization pro-

gram built around VTK and designed for use on large

cluster environments. Rendering is done through imme-

diate mode rendering in OpenGL or display lists. For our

tests we used the most recent available version when our

tests were conducted, 3.11.0.

c© The Eurographics Association 2012.

Carson Brownlee & Thomas Fogal & Charles D. Hansen / GLuRay: Ray Tracing in Scientific Visualization Applications using OpenGL Interception

• VisIt VisIt is a distributed visualization program built

around VTK for use on large clusters similar to ParaView.

We utilized visit 2.4.0 for our tests.

For this paper we tested four visualization programs with

three different rendering modes: software ray tracing using

GLuRay, OpenGL software rasterization using Mesa, and

hardware-accelerated OpenGL. Mesa is not multi-threaded

nor the fastest available software rasterization package, how-

ever it is the only one supported as build options with Par-

aView and VisIt and is commonly used when GPUs are not

available. The OpenGL implementation within these pro-

grams is a brute-force implementation with no advanced ac-

celeration methods used. This comparison is therefore not a

comparison of the ultimate potential of rasterization vs. ray

tracing algorithms but rather a real-world study of their exist-

ing performance in commonly utilized tools with real world

problems.

To test the scaling of these methods, the synthetic wavelet

dataset was scaled from 1 to 256 million triangles in Par-

aView and VisIt. The dataset is shown with 16 million trian-

gles in Figure 6(c). Mesa manages over one fps in ParaView

only when the triangle count remains under 2 million tri-

angles. The hardware-accelerated OpenGL implementation

retains interactive performance at one to two million trian-

gles in ParaView and VisIt, however performance degrades

roughly linearly with triangle count. Slow GPU performance

may be due to ParaView’s rendering code which was built

around immediate-mode rendering and accelerated through

a display list. This leads to a large number of function calls

for the initial build and updates compared with using vertex

buffers, which can specify large numbers of vertices with a

single function call. We found rendering performance to be

roughly a tenth of what it could be by using vertex buffer

objects or multiple display lists in our tests. Another issue

is that display lists on Longhorn crash after about 32 mil-

lion triangles. This could be fixed by splitting up the data

across multiple display lists in a custom implementation,

however immediate-mode rendering was used above 32 mil-

lion triangles for the hardware-accelerated runs in our tests

as this method that worked with an unaltered code base.

VisIt was slower than ParaView at lower geometry counts

in our tests due to increased overhead for each frame which

accounts for the slightly slower GLuRay performance with

VisIt. Additionally, VisIt uses a textured colormap which

was set to interpolate between two identical colors for our

tests whereas ParaView uses a single solid color resulting in

fewer OpenGL calls. GluRay shows sub-linear performance

degradation when the triangle count increases, scaling well

into the hundreds of millions of triangles and only drop-

ping below 5 fps past 128 million triangles in ParaView.

Performance sometimes decreases with increased geome-

try counts. This may be a caching issue with some data

sizes exhibiting better caching behavior than smaller trian-

gle counts and differences in background space around the

datasets which can be easily culled by the ray tracer.

��

��

��

��

��

���

���

���

���

���

�� �� �� �� ��� ��� ��� ���� ��	�

�
�

������������������

��������������� ������!��"�#�$����

����$��!%&�'
����$��!%����

����$��!%&(�)��
*��+�%&�'

*��+�%&(�)��
*��+�%����

Figure 7: Performance timings for increasing triangle

counts for a wavelet dataset as seen in Figure 6(c).

Table 1 shows timings for various datasets over multiple

applications. All times are averages of several render frame

times after a few initial warmup frames and include all host

program overhead which is the most accurate view of perfor-

mance for an asynchronous renderer. Seven render threads

were used on an 8-core node, leaving one main thread for

processing OpenGL state changes and image display. GLu-

Ray is faster in all cases we tested with and achieves bet-

ter than 300x speedup over Mesa for the RMO dataset and

a 62x speedup over the GPU implementation for VPIC in

ParaView. GLuRay has at least a 90x performance increase

over Mesa while speedup over the GPU ranges from 3.57x

speedup rendering the astrophysics dataset in VAPOR, up to

a 123.85x speedup over the GPU rendering the RMO dataset

when zoomed out in ParaView. The RM dataset zoomed in

and out achieved similar performance for each view when

rendered with the GPU. GLuRay and Mesa, however, have

differing results between the two views of the RM dataset.

This is because the geometry took up a larger portion of the

scene in GLuRay when zoomed in, and in Mesa this is likely

showing that clipping triangles outside of the viewport gave

a greater speedup for Mesa than for the GPU. GLuRay is

the only rendering method to achieve above 5-10 fps for

interactive rendering for the 16M triangle wavelet dataset

with 12.33 fps in ParaView and 9.69 fps in VisIt. GLu-

Ray achieved 5.02, 6.94, and 2.55 fps rendering the VPIC

datasets in ParaView, EnSight, and VisIt which was as much

as a 62.75x performance improvement over OpenGL. Tim-

ings of the same dataset are different across different pro-

grams as each program incurs its own overhead as well as

differing OpenGL calls per frame which affects the GPU,

GLuRay, and to a lesser extent the Mesa performance. In the

case of the astrophysics dataset with VAPOR, only a 3.57x

speedup was achieved over the GPU. This is likely due to

VAPOR’s use of vertex buffers instead of the glVertex calls

used by the other programs which greatly accelerated the

GPU rendering.

The time to render the first frame is usually a combination

of data loading, geometry generation, passing data to GLu-

Ray, and finally acceleration structure construction and ren-

dering. Approximate acceleration structure builds decrease

c© The Eurographics Association 2012.

Carson Brownlee & Thomas Fogal & Charles D. Hansen / GLuRay: Ray Tracing in Scientific Visualization Applications using OpenGL Interception

 0

 10

 20

 30

 40

 50

 60

 1 2 4 8 16 32 64 128 256

S
e
c
o
n
d
s

Triangles (Million)

BVH Build Times vs Mesa Render Times

BVH Build Time
Mesa Render

Figure 8: BVH build times for the wavelet dataset compared

to Mesa rendering time for a single frame.

rendering performance but speed up build times. The over-

head from the acceleration structure builds using approxi-

mate builds for the wavelet dataset is shown in Figure 8.

This overhead varies from less than a second at 1 million

triangles to over a minute with 256 million triangles, how-

ever this time is still less than rendering a single frame with

software Mesa in all cases. Users of visualization programs

typically generate an isosurface of data which is then ex-

plored through transformations to the camera. A duration of

10 seconds moving the camera with a render time of less

than 0.1s per frame thus produces over a hundred rendered

frames, making the time to process a single acceleration

structure insignificant in overall runtime. Cases where geom-

etry is animated, however, could need to build acceleration

structures for each rendered frame which could limit perfor-

mance for our program. When textures or color arrays are

used in OpenGL, updating colormaps does not require re-

building geometry. However, when colors are built into dis-

play lists those display lists must be rebuilt, which requires

acceleration structures to be updated.

The overall build and runtime behavior of GLuRay is

shown through Gantt charts in Figure 9 which illustrate a

run from program start to end in ParaView with an 8 million

triangle wavelet dataset and a closeup of rendering behavior

from the same run at the bottom. There are 9 rows in total,

one for the main thread at the top and 8 render threads below.

The empty space at the beginning shows program startup

and idle GLuRay threads waiting on the host program to

send data through OpenGL function calls. The brown line

after data loading shows the host program making millions

of OpenGL calls such as glVertex and glNormal, which copy

geometry into GLuRay. The following blue bars display the

construction of acceleration structures and then turn gold for

rendering. A lazy system was used for BVH construction,

resulting in some of the rendering time being used for ad-

ditional BVH processing which can be seen in the initial

setup phase. As shown in the Gantt chart, the time to build

acceleration structures and setup the first frame in the ren-

dering threads is roughly equivalent to the time the program

spends specifying the geometry through OpenGL. Grey de-

notes time spent waiting for the render threads to finish in the

main thread. In between each render call, global acceleration

structures must be updated and images copied to the frame-

buffer. The global acceleration structure takes into account

the transforms applied to each stored set of geometry, such

as changes to the ModelView matrix applied to the geom-

etry from glCallList in OpenGL. The closeup of rendering

performance at the bottom shows that the rendering threads

are well utilized with very little overhead for building accel-

eration structures in between rendering or downtime waiting

for updates.

In order to benchmark strong scaling across multiple

nodes, the 316 million triangle RMO dataset was rendered

on one to 64 nodes using the Longhorn visualization cluster

and the parallel visualization tool ParaView using the same

camera position shown in Figure 6(f). For parallel render-

ing, ParaView uses sort-last compositing through the IceT li-

brary, which introduces an additional compositing step at the

end of every frame. Howison et al. [MHC10] used a sort-last

compositing algorithm on the Jaguar supercomputer, where

they found that compositing was their biggest bottleneck for

a high resolution image. Their maximum achieved frame

rate was 2 fps for a 21 million pixel image over 216,000

cores. Assuming this performance scales down to a 1 mil-

lion pixel image, the maximum frame rate from composit-

ing would be approximately 42 fps. We therefore aim to ap-

proach real-time rendering rates using our method for image

sizes of 10242. Render times are reported from hardware-

accelerated OpenGL and GLuRay in Figure 10. In compari-

son to the single node timings shown in Table 1, the scaling

runs for ParaView use the parallel version of ParaView, pv-

batch, with offscreen rendering enabled and use Longhorn’s

batch configuration script which decreases overhead from

image display. To generate the correct image when needed

by the compositor, rendering for GLuRay was modified to

render upon calls to glCallList or glReadPixels, which IceT

uses to gather the rendered scene for compositing. Enabling

GLuRay’s frame lag would result in a frame rate which is

approximately equal to the maximum of the render time and

the compositing time instead of the aggregate of the two.

Therefore, in order to time just rendering, GLuRay was run

without a frame lag such that asynchronous rendering was

not utilized.

In our strong scaling study, GPU-accelerated average ren-

der times drop from 29.46 seconds to 0.28 seconds from

1 to 64 nodes respectively as the average triangle count

drops from 316 million triangles to about 5 million trian-

gles per node. Rendering times for GLuRay start at 0.21

seconds on a single node and decrease to 0.037 seconds for

64 nodes, which resulted in an overall frame rate of 18.47

fps on 64 nodes with compositing and other overhead within

ParaView. The GPU render times at 64 nodes do not reach

the performance of a single node with GLuRay, while GLu-

Ray continues to increase in performance with each node

c© The Eurographics Association 2012.

Carson Brownlee & Thomas Fogal & Charles D. Hansen / GLuRay: Ray Tracing in Scientific Visualization Applications using OpenGL Interception

Figure 9: Gantt charts showing a rendering of a wavelet dataset with 8 million triangles. An overall view of setup time, geometry

transfer, acceleration builds and rendering is shown in the top runs while a closeup of the rendering is shown in the bottom.

The gold color displays the efficiency of the asynchronous renderer while the blue displays the cost of BVH builds in relation to

data loading and geometry specification through OpenGL shown in brown.

DataSet Triangles (M) FPS Mesa GPU Speedup vs. Mesa Speedup vs. GPU

PV-Wavelet 16 12.33 0.13 1.22 94.85 10.11

VI-Wavelet 16 9.69 0.085 0.79 113.99 12.27

PV-VPIC 102 5.02 0.026 0.08 193.08 62.75

VI-VPIC 102 2.55 0.012 0.069 212.49 39.96

Ensight-VPIC 102 6.94 0.02 0.23 347.15 30.19

PV-RMI 316 2.53 0.001 0.03 180.71 93.70

PV-RMO 316 3.22 0.009 0.03 357.78 123.85

VAPOR-Star 86 2.39 0.03 0.67 95.60 3.57

Table 1: Performance timings for various datasets across different applications with varying amounts of triangles specified in

the millions. PV signifies ParaView and VI refers to VisIt. RMI and RMO are the Richtmyer-Meshkov datasets zoomed in and

out respectively. GLuRay achieves significant speedups in all runs tested with large polygon counts.

added. GLuRay render times do not decrease as dramati-

cally as the GPU render times with each node added be-

cause the acceleration structures used scale well with in-

creasingly large amounts of geometry as seen in Figure 7.

Therefore, decreasing the triangle count per node does not

impact performance as much as OpenGL. In order to achieve

better work distribution with GLuRay, view-dependent dis-

tribution of the data would be needed. Running GLuRay

over programs which utilize sort-first data distribution or a

hybrid technique such as the one used by Nouanesengsy et

al. [NAWS11] could provide better scaling behavior for ray

tracing. Ize et al [IBH11] achieved up to 100 fps for a two

megapixel rendering of the RM dataset using 60 nodes of a

cluster using ray-parallel work distribution.

5. Limitations and Future Work

The interception nature of GLuRay and the ray tracing en-

gine produces a few limitations. GLuRay usually relies en-

tirely on the data distribution of the host program and since

��������

�������

������

�����

����

��

��

�	

�

���

���

�� �� �	 �
 ��� ��� ��	

�
�

�
�
�
�

�����

����������������
�����������������	������

����� !"#�
����� !$�%

�&'!"#�
�&'!$�%

Figure 10: Rendering times for the RMO dataset in Par-

aView using the Longhorn visualization cluster. "Avg" de-

notes the averaged render times across every node while

"Max" designates the maximum render time across all

nodes.

c© The Eurographics Association 2012.

Carson Brownlee & Thomas Fogal & Charles D. Hansen / GLuRay: Ray Tracing in Scientific Visualization Applications using OpenGL Interception

that host program typically relies on data-parallel distribu-

tion, but with this method there is no way to access other por-

tions of the scene from remote nodes for secondary effects

such as shadows at run-time. Adjacent areas can be dupli-

cated across nodes for some effects such as distance-limited

ambient occlusion, however this is not common in the pro-

grams we have tested with. Data distribution in distributed-

memory systems may be solved by implementing distri-

bution through GLuRay in the background similar to such

programs as Pomegranate or Chromium [EIH00, HHN∗02].

Currently a ray-parallel work distribution similar to Ize et

al. [IBH11] was implemented for GLuRay but as of this writ-

ing only supports replicated data on each node and has been

tested with ParaView, where data distributed by ParaView is

sent to each node and only node zero sends image data to

ParaView. An out-of-core solution where nodes can page in

data as needed is in developement. Stephens et al. showed

Manta scaling very well on a large shared-memory system

using transparency and other effects [SBB∗06]. The main

limitation of GLuRay is the memory overhead incurred by

storing geometry and building acceleration structures. For a

dataset with n polygons a typical BVH will be bounded by

2(n− 1) BVH nodes. In clusters where memory is at a pre-

mium and compute is cheap, a slower but less memory inten-

sive implementation may be ideal, however system memory

is often much larger than that found on GPUs. The additional

time to build acceleration structures is also a concern, but in

exploratory visualization, a user will typically generate an

isosurface to be interactively viewed resulting in many ren-

derings for each update to geometry.

GLuRay is not a full mapping of OpenGL. Shaders are

not supported yet and multi-pass rendering can significantly

slow down the running system. Multiple passes are often

used for effects such as shadows. In our testing many of the

scientific visualization packages do not use such techniques

and if they did, such systems could likely be turned off and

their intended purpose replicated through the ray tracer in a

single pass for performance considerations. There are many

operations within OpenGL which may break the current pro-

gram architecture and are not currently supported such as

blending functions or state changes beyond geometry, tex-

ture or materials within display lists. Programs which use

OpenGL to render out GUI elements could prove problem-

atic, however none of the production level visualization tools

we tested with use this method. None of these shortcomings

have proven problematic for the generally simplistic render-

ing implementations within the tools we have tested with.

There is significant future work which could benefit ray

tracing through OpenGL. Knoll et al. [KTW∗11] recently

demonstrated that direct volume rendering through CPU ray

casting presents a very viable approach for volume and iso-

surface rendering with large speed advantages compared to

out-of-core GPU rendering. Supporting volume rendering

and shaders would be highly beneficial but is beyond the

scope of this paper and is left for future work. Much work

still needs to be done to accommodate visualization includ-

ing maximizing single node performance for other parts of

the visualization pipeline such as IO, isosurfacing, calcula-

tor operations, and implicit geometry rendering without us-

ing additional memory for geometry generation and storage.

GPU accelerated ray tracing is another avenue of research

which was not considered for this paper but worth further

study. Although we have shown the capability of GLuRay to

scale when running ParaView on a cluster, an in-depth study

of render times in cluster environments would be worthwhile

to determine the compositing and data-distribution impact of

programs intended for rasterization.

6. Conclusion

We have shown that current rendering algorithms utilized

in many scientific visualization tools do not always achieve

sufficient performance to interactively handle ever increas-

ing data sizes. With GLuRay, we have proven that by inter-

cepting OpenGL calls and using an optimized software ray

tracer, we can achieve significant improvements in render-

ing performance in some of our tests using millions of poly-

gons over several common scientific visualization programs

which otherwise fail to achieve interactivity on the Longhorn

visualization cluster. We have shown that ray tracing with

OpenGL interception presents an efficient method of ray

tracing over programs running the fixed-function OpenGL

pipeline with display lists and single-pass rendering. Addi-

tionally, we have shown that GLuRay performance scales

on a distributed-memory cluster environment using Par-

aView’s data-parallel work distribution and sort-last com-

positing. Since interactive rendering for gigatriangle sized

datasets is already possible using GLuRay with current sys-

tems, we believe frame rates will improve on future ma-

chines as the number of cores per node increase. For users

who do not need increased performance, we have also pre-

sented advanced rendering for publication quality images

and enhanced insight within existing tools without the need

for learning additional rendering programs. Limitations of

our approach include decreased performance from building

acceleration structures each frame with dynamic data and

the currently limited domain of the four visualization pro-

grams using the fixed function OpenGL pipeline we have

tested with.

7. Acknowledgements

This research was sponsored by the National Nuclear Se-

curity Administration under the Advanced Simulation and

Computing program through DOE Cooperative Agreement

#DE-NA0000740, and by Award No. KUS-C1-016-04,

made by King Abdullah University of Science and Tech-

nology (KAUST), and DOE SciDAC:VACET, NSF OCI-

0906379, NIH-1R01GM098151-01. Special thanks to Hank

Childs, Kadi Bouatouch, Thiago Ize, Ben Brown, and Brad

Whitlock.

c© The Eurographics Association 2012.

Carson Brownlee & Thomas Fogal & Charles D. Hansen / GLuRay: Ray Tracing in Scientific Visualization Applications using OpenGL Interception

References

[BMB∗11] BROWN B. P., MIESCH M. S., BROWNING

M. K., BRUN A. S., TOOMRE J.: Magnetic Cycles in
a Convective Dynamo Simulation of a Young Solar-type
Star. apj 731 (Apr. 2011), 69. arXiv:1102.1993,
doi:10.1088/0004-637X/731/1/69. 4, 5

[BSP06] BIGLER J., STEPHENS A., PARKER S.: Design for par-
allel interactive ray tracing systems. In Interactive Ray Trac-

ing 2006, IEEE Symposium on (Sept. 2006), pp. 187 –196.
doi:10.1109/RT.2006.280230. 1, 2

[CEI10] CEI: Cei-creators of ensight visualization software,
2010. http://www.ensight.com/. 1, 2

[CGM∗06] CEDILNIK A., GEVECI B., MOREL K., AHRENS J.,
FAVRE J.: Remote large data visualization in the paraview frame-
work. In Eurographics Parallel Graphics and Visualization 2006

(May 2006), pp. 162–170. 1, 2

[EIH00] ELDRIDGE M., IGEHY H., HANRAHAN

P.: Pomegranate: a fully scalable graphics archi-
tecture. In Proceedings of the 27th annual confer-

ence on Computer graphics and interactive techniques

(New York, NY, USA, 2000), SIGGRAPH 00, ACM
Press/Addison-Wesley Publishing Co., pp. 443–454. URL:
http://dx.doi.org/10.1145/344779.344981,
doi:http://dx.doi.org/10.1145/344779.344981.
9

[GP06] GRIBBLE C. P., PARKER S. G.: Enhancing in-
teractive particle visualization with advanced shading
models. In Proceedings of the 3rd symposium on Ap-

plied perception in graphics and visualization (New York,
NY, USA, 2006), APGV ’06, ACM, pp. 111–118. URL:
http://doi.acm.org/10.1145/1140491.1140514,
doi:http://doi.acm.org/10.1145/1140491.1140514.
4

[HEB∗01] HUMPHREYS G., ELDRIDGE M., BUCK I., STOLL

G., EVERETT M., HANRAHAN P.: Wiregl: a scalable graphics
system for clusters. In Proceedings of the 28th annual conference

on Computer graphics and interactive techniques (New York,
NY, USA, 2001), SIGGRAPH ’01, ACM, pp. 129–140. URL:
http://doi.acm.org/10.1145/383259.383272,
doi:http://doi.acm.org/10.1145/383259.383272.
3

[HHN∗02] HUMPHREYS G., HOUSTON M., NG R., FRANK R.,
AHERN S., KIRCHNER P. D., KLOSOWSKI J. T.: Chromium:
a stream-processing framework for interactive rendering on
clusters. In Proceedings of the 29th annual conference on

Computer graphics and interactive techniques (New York,
NY, USA, 2002), SIGGRAPH ’02, ACM, pp. 693–702. URL:
http://doi.acm.org/10.1145/566570.566639,
doi:http://doi.acm.org/10.1145/566570.566639.
3, 9

[IBH11] IZE T., BROWNLEE C., HANSEN C. D.: Revisiting par-
allel rendering for shared memory machines. In Proceedings of

Eurographics Symposium on Parallel Graphics and Visualization

(2011), pp. 61–69. 3, 4, 8, 9

[Kit10] KITWARE: Paraview - Open Source Scientific Visualiza-

tion, 2010. http://www.paraview.org/. 2

[KTW∗11] KNOLL A., THELEN S., WALD I., HANSEN

C. D., HAGEN H., PAPKA M. E.: Full-resolution in-
teractive cpu volume rendering with coherent bvh traver-
sal. In Proceedings of the 2011 IEEE Pacific Visualiza-

tion Symposium (Washington, DC, USA, 2011), PACI-
FICVIS ’11, IEEE Computer Society, pp. 3–10. URL:
http://dl.acm.org/citation.cfm?id=2015551.2015627.
9

[LLN10] LLNL: VisIt Visualization Tool, 2010.
https://wci.llnl.gov/codes/visit/. 1, 2

[Mag11] MAGALLŮN M. E.: spyglass: an opengl call tracer and
debugging tool, 2011. 3

[MC98] MITRA T., CHIUEH T.-C.: Implementation and eval-
uation of the parallel mesa library. In Parallel and Dis-

tributed Systems, 1998. Proceedings. (dec 1998), pp. 84 –91.
doi:10.1109/ICPADS.1998.741023. 2

[MDG∗10] MARSALEK L., DEHOF A., GEORGIEV I., LENHOF

H.-P., SLUSALLEK P., HILDEBRANDT A.: Real-time ray trac-
ing of complex molecular scenes. In Information Visualiza-

tion: Information Visualization in Biomedical Informatics (IVBI)

(2010). 2

[MHC10] M. HOWISON E. B., CHILDS H.: Mpi-hybrid paral-
lelism for volume rendering on large, multi-core systems. In Eu-

rographics Symposium on Parallel Graphics and Visualization

(EGPGV) (May 2010). 2, 7

[NAWS11] NOUANESENGSY B., AHRENS J., WOODRING J.,
SHEN H.: Revisiting parallel rendering for shared memory ma-
chines. In Proceedings of Eurographics Symposium on Parallel

Graphics and Visualization (2011), pp. 31–40. 2, 8

[PBBR07] PARKER S., BOULOS S., BIGLER J., ROBISON A.:
Rtsl: a ray tracing shading language. In Interactive Ray Tracing,

2007. RT ’07. IEEE Symposium on (sept. 2007), pp. 149 –160.
doi:10.1109/RT.2007.4342603. 3

[PPL∗99] PARKER S., PARKER M., LIVNAT Y., SLOAN P.-
P., HANSEN C., SHIRLEY P.: Interactive ray tracing for
volume visualization. Visualization and Computer Graph-

ics, IEEE Transactions on 5, 3 (jul-sep 1999), 238 –250.
doi:10.1109/2945.795215. 2

[PSL∗98] PARKER S., SHIRLEY P., LIVNAT Y., HANSEN C.,
SLOAN P.-P.: Interactive ray tracing for isosurface rendering.
In Visualization ’98. Proceedings (oct. 1998), pp. 233 –238.
doi:10.1109/VISUAL.1998.745713. 1, 2

[SBB∗06] STEPHENS A., BOULOS S., BIGLER J., WALD I.,
PARKER S. G.: An application of scalable massive model in-
teraction using shared memory systems. In Proceedings of the

Eurographics Symposium on Parallel Graphics and Visualization

(2006), pp. 19–26. 2, 9

[SM97] SGI, MILES J.: gltrace, 1997.
http://reality.sgi.com/opengl/gltrace/.
3

[UCA09] UCAR: Vapor, 2009.
http://www.vapor.ucar.edu/. 1, 2

[WBDS03] WALD I., BENTHIN C., DIETRICH A., SLUSALLEK

P.: Interactive ray tracing on commodity pc clusters. LECTURE

NOTES IN COMPUTER SCIENCE (2003), 499–508. 3

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray tracing de-
formable scenes using dynamic bounding volume hierarchies.
ACM Trans. Graph. 26, 1 (Jan. 2007). 3

[WSB01] WALD I., SLUSALLEK P., BENTHIN C.: Interactive
distributed ray tracing of highly complex models. In Proc. of

Eurographics Workshop on Rendering (2001), pp. 274–285. 1, 2

c© The Eurographics Association 2012.

http://arxiv.org/abs/1102.1993
http://dx.doi.org/10.1088/0004-637X/731/1/69
http://dx.doi.org/10.1109/RT.2006.280230
http://www.ensight.com/
http://dx.doi.org/10.1145/344779.344981
http://dx.doi.org/http://dx.doi.org/10.1145/344779.344981
http://doi.acm.org/10.1145/1140491.1140514
http://dx.doi.org/http://doi.acm.org/10.1145/1140491.1140514
http://doi.acm.org/10.1145/383259.383272
http://dx.doi.org/http://doi.acm.org/10.1145/383259.383272
http://doi.acm.org/10.1145/566570.566639
http://dx.doi.org/http://doi.acm.org/10.1145/566570.566639
http://www.paraview.org/
http://dl.acm.org/citation.cfm?id=2015551.2015627
https://wci.llnl.gov/codes/visit/
http://dx.doi.org/10.1109/ICPADS.1998.741023
http://dx.doi.org/10.1109/RT.2007.4342603
http://dx.doi.org/10.1109/2945.795215
http://dx.doi.org/10.1109/VISUAL.1998.745713
http://reality.sgi.com/opengl/gltrace/
http://www.vapor.ucar.edu/

