
Lattice Cleaving: Conforming Tetrahedral
Meshes of Multimaterial Domains with
Bounded Quality

Jonathan R. Bronson, Joshua A. Levine, and Ross T. Whitaker

Scientific Computing and Imaging Institute, Salt Lake City, UT, U.S.A.
{bronson,jlevine,whitaker}@sci.utah.edu

Summary. We introduce a new algorithm for generating tetrahedral meshes that
conform to physical boundaries in volumetric domains consisting of multiple mate-
rials. The proposed method allows for an arbitrary number of materials, produces
high-quality tetrahedral meshes with upper and lower bounds on dihedral angles,
and guarantees geometric fidelity. Moreover, the method is combinatoric so its im-
plementation enables rapid mesh construction. These meshes are structured in a way
that also allows grading, in order to reduce element counts in regions of homogeneity.

Key words: tetrahedral meshing, multimaterial, multi-label, biomedical, conformal
meshing, watertight, mesh quality, bounded quality, adaptive meshing

1 Introduction

The finite element method (FEM) is ubiquitous in the field of scientific com-
puting when employing partial differential equations on complicated domains.
Its combination of flexibility and numerical consistency make it the method
of choice for simulations across a wide range of physical phenomena including
electromagnetics, fluid dynamics, and solid mechanics. FEM relies on a decom-
position of a domain into a union of discrete elements, in the form of a mesh.
These elements conform to important geometries in the domain, such as the
interfaces between materials or boundary conditions. While FEM allows for a
wide range of grid types and topologies, in practice many implementations use
tetrahedral domain decompositions because they offer a good compromise be-
tween simplicity of mesh generation, generality, ability to conform to complex
geometries, and numerics.

With FEM, the solutions of PDEs are associated with a linear system
induced by the operator and the boundary conditions. The approximated dif-
ferential operator depends on the mesh elements, and the shapes of these
elements impact the structure of this matrix—most importantly its condition
number [5]. The condition number of the linear system, which is usually quite
large, in turn controls the speed and/or accuracy of the numerical solution

2 To appear in Proceedings of the 21st International Meshing Roundtable

to the linear system. Thus, a second important requirement of the underly-
ing mesh is the quality of the underlying elements. The dual requirements of
meshes that conform to geometry and meshes that have good quality elements
are often in conflict. Thus, meshing algorithms must make tradeoffs between
quality and geometric fidelity.

These mesh requirements also interact with the specific nature of the ge-
ometric constraints and the mechanisms by which they are specified. In this
work, we consider FEM simulation problems that specify materials volumet-
rically. That is, the physical materials are given by functions on the domain
that evaluate to the appropriate material at a given location, and material
interfaces are where these functions transition from one value to another.
This volumetric specification is natural in biomedical simulations based on
images [25], where material boundaries are derived from segmentations or la-
bels, as well as simulations that rely on implicit representations of physical
interfaces [10]. In this paper we specifically address tetrahedral meshing with
multimaterial interfaces, where the geometric constraints are non-manifold
structures with higher-order junctions of three and four materials.

Contributions: In this paper we describe a new meshing algorithm, lat-
tice cleaving, for generating tetrahedral meshes for multimaterial domains
that are specified as a collection of continuous indicator functions. The out-
put meshes conform approximately to interfaces between materials, including
non-manifold regions where multiple materials meet. The output meshes have
tetrahedral elements with provably bounded dihedral angles as well as a guar-
anteed fidelity of sufficiently large features. Lattice cleaving relies on a regular
background lattice, with a resolution determined by the user, which is sub-
divided or cleaved to conform to material boundaries. For each cleaved back-
ground tetrahedra, it applies and modifies a stencil, used to approximate the
geometry while not destroying the good quality of elements in the background
lattice. Lattice cleaving requires a small, fixed number of passes through the
background grid and therefore leads to reliably fast run times. Results on
biomedical volumes and fluid simulations demonstrate the algorithm reliably
achieves fast run times, geometric fidelity, and good quality elements.

2 Related Work
The literature on unstructured 3D mesh generation is vast, partly as a byprod-
uct of the wide utility of these meshes to application areas in science and
engineering. Here we divide the discussion along the two major constraints on
this meshing problem: (1) producing high quality elements and (2) conforming
to complex surfaces. In addition, we review lattice-based meshing algorithms
which use, in part, similar techniques to our own.

2.1 Boundary Conforming Mesh Generation

In the past decade, a significant amount of effort has gone into building high
quality surface meshes using Delaunay triangulations. One of the most popu-
lar strategies relies on Delaunay refinement [11, 27], which iteratively inserts

To appear in Proceedings of the 21st International Meshing Roundtable. 3

sample points on the domain boundary until conditions are met for sufficiently
capturing both the topology and geometry of surfaces. These surface meshes
are typically inputs for conformal tetrahedral meshing algorithms, with further
refinements of the volumetric regions. Boissonnat and Oudot [4] and Cheng
et al. [9] pioneered the first variants on provable algorithms for performing
Delaunay refinement that capture the topology of smooth, surface-boundary
constraints. Extending these ideas to more complex, piecewise-smooth, and
non-manifold domains followed [8]. However, these algorithm rely on various
strategies for protecting features on the material boundaries, and the imple-
mentations of these schemes are challenging. Thus, simplifying assumptions
are required in the protection scheme to make them practical [12, 26].

The local, greedy strategy of Delaunay refinement schemes tend to find
suboptimal configurations for vertices. Variational meshing schemes attempt
to overcome this limitation by positioning vertices according to some global
energy function [6, 22, 30]. These strategies typically decouple, to various de-
grees, the vertex placement problem from the triangulation/tetrahedralization
problem. The optimizations are nonlinear and require multiple iterations on
gradient-descent-based strategies to find local minima. Thus, they are time
consuming, are sensitive to initializations and parameter tuning, and do not
provide typical criteria to establish guarantees on the quality of the output.

2.2 Tetrahedral Element Quality

While a large number of measurements and ratios are used to judge the qual-
ity of elements in meshes, in this work we focus on isotropic measures of
quality applicable to linear finite elements [29]. These qualities, while some-
what generic, have the advantage of being numerically useful for the large
class of elliptic operators that appear in FEM simulations of many physical
phenomena, such as incompressible flows, diffusion, and electric fields. While
there are many reasonable measures of tetrahedral mesh quality, we rely on
the worst-case dihedral angles (both minimum and maximum) over all tetra-
hedra. The distance of dihedral angles from 0◦ and 180◦ correlates with most
other common element quality measures.

Measures of quality are typically independent of element size. Adaptivity
of mesh size/resolution provides another key ingredient in the definition of ele-
ment quality. Both Delaunay refinement [28] as well as variational schemes [1]
have been used to improve and adapt volumetric element quality, as well as
more greedy optimizations driven by local mesh improvements [14, 17]. More-
over, isotropic element quality is also indifferent to element orientations; i.e.
it penalizes anisotropy in all directions equally. The proposed work provides
graded meshes with smaller elements near surfaces, but does not address the
problem of adaptivity and anisotropy directly.

2.3 Lattice-Based Meshing Approaches

A very common strategy for building meshes is to start with a high-quality
(e.g. regular) background mesh and modify it to adhere to geometric con-

4 To appear in Proceedings of the 21st International Meshing Roundtable

straints. However, the problem of making a regular lattice conform to an
arbitrary surface presents some challenges, especially when tetrahedral qual-
ity is a concern. One strategy is to cut (or cleave) the cells of the input lattice
to match the surface, an idea popularized by the well known marching cubes
algorithm for isosurfacing [20]. The different configurations of surface/cell in-
tersections are typically represented by stencils with the appropriate topology.
Several authors propose surface reconstruction with a piecewise linear approx-
imation of surfaces as they cut through the tetrahedra of a body-centered
cubic (BCC) lattice [3, 24], with extensions to non-manifold surfaces using a
collection of indicator functions (instead of the single scalar field for isosurfac-
ing). These algorithms examine indicator functions locally at each vertex of
the mesh element. Depending on which indicator is maximal, they next label
each vertex with a material, a generalization of inside/outside for isosurfacing.

Working with lattices has advantages beyond just surfacing. An octree on
the regular lattice can be used to give adaptively sized elements [31]. Another
strategy for conforming is to warp a background lattice so that primitives
align with boundaries [15]. Molino et al. [23] use a BCC lattice coupled with
a red-green subdivision strategy, which they then optimize to conform to the
surface. That work empirically achieves good quality tetrahedra, albeit with
no proof of bounds. Labelle and Shewchuk [18] propose a combination of lattice
warping and stenciling, with appropriate rules that decide which combination
of strategies to use, based on the input data, in order to ensure good quality.
They describe a computer-assisted proof to compute quality bounds for their
isosurface stuffing algorithm. The proposed method shares several aspects of
the Labelle and Shewchuk approach. Like their algorithm, we cut a BCC
lattice to conform to a boundary mesh, and like their algorithm we rely on a
threshold α to locally warp the lattice to remove short edges and maintain high
quality elements. However, instead of considering a single smooth isosurface,
the multimaterial boundary constraints present nonsmooth and non-manifold
structures. This adds considerable complexity to the algorithm, which in the
past has only been approached using additional levels of subdivision, such as
in Liu et al. [19] or dual-contouring [32]. Here we show instead that a carefully
designed stencil set combined with appropriate rules for application provides
quality guarantees for the resulting tetrahedra.

3 Methodology

The proposed tetrahedral meshing algorithm operates on a collection of indi-
cator functions. We sample these functions onto a body-centered cubic (BCC)
lattice. Similar to many surfacing and meshing algorithms [16, 20], we rely on
a set of stencils that capture local material configurations. We use the strategy
of Labelle and Shewchuck [18] to construct a set of rules for each background
BCC lattice tetrahedron that switch between two cleaving modes—either de-
forming the background BCC lattice or splitting the background tetrahedra
in order to conform to boundary surfaces.

To appear in Proceedings of the 21st International Meshing Roundtable. 5

Within this context, the multimaterial meshing problem presents several
important challenges. Unlike the isosurface case, one cannot easily restrict the
size of features, because feature size [1] will always go to zero where three or
more materials meet. The complexity within each lattice cell is also challeng-
ing. Considering only the material labels at vertices, the number of cases is
daunting. Furthermore, even if one represents indicator functions along lat-
tice edges as linear, the number of possible interfaces passing through a single
edge grows with the number of materials, regardless of the conditions at the
vertices. Therefore, geometric and topological approximations are essential.

3.1 Indicator Functions

There are many papers on extensions of implicit surfaces or level sets to
multimaterial interfaces. Here we represent multimaterial interfaces using a
set of K-smooth, volumetric indicator functions, F = {fi|fi : V 7→ <} [21, 25].
A material label i is assigned to a point x ∈ V if (and only if) fi(x) >
fj(x) ∀ j 6= i. For any single material j, a continuous, inside-outside function

can be constructed as f̃j(x) = fj(x)−mini6=j(fi(x)), and the zero functions
of various materials will coincide at shared boundaries.

3.2 Background Lattice and Material Interfaces

Fig. 1: The BCC lattice is
composed of two grids of pri-
mal and dual vertices. Each
vertex is incident to 14 edges,
36 faces, and 24 tetrahedra.

Stenciling algorithms rely on a set of regu-
lar cells. The configuration of the interfaces
on these cells are used to generate an index
that corresponds to some predefined tessella-
tion. We employ a BCC lattice (Fig. 1), where
each cell is composed of 8 normal or primal
cubic lattice vertices, plus a 9th dual vertex
in the center. In addition to the 12 edges of a
regular cubic cell, there are 8 diagonal edges
connecting each dual vertex to its cell’s pri-
mal vertices, and 6 connecting dual to dual. Fanning out from the dual vertex
are 24 lattice tetrahedra, each of which spans two lattice cells.

For stencils to be applicable, decisions about the structure of each cell
must be strictly local and enumerable a priori. Our strategy for mapping data
onto the lattice entails several approximations. Each lattice vertex represents
a single material at that point, which is given by the indicator function with
maximum value. Ties are settled by a very small push away from a prioritized
(or random) material. Any lattice edge that contains vertices with two differ-
ent labels contains a material transition, called a cut-point, or cut [18]. These
edge-cuts sample a surface separating two materials.

A similar logic applies to junctions of more than two materials. A lattice
face with 3 unique material labels on its vertices must have an associated
transition point where all three materials meet. We refer to this point as a
triple-point (triple). The collection of triple-points in the domain define curves

6 To appear in Proceedings of the 21st International Meshing Roundtable

where 3 materials meet. A lattice tetrahedron may have up to four unique
material labels. The 4 vertices, and the 4 function values associated with the
material labels on each vertex, define a single, isolated, material transition
point. We refer to this point as a quadruple-point (quadruple).

a b

c

!"

#"

$"

!"

#"

Fig. 2: An edge with
materials a and b max-
imum on its endpoints,
but with a third material
c becoming maximum on
the interval between.

We restrict the number of material transitions
defined on a tetrahedron. Each lattice simplex may
contain at most a single transition point matching
its dimensionality: an edge may have only a sin-
gle cut, each face a single triple, and each tetrahe-
dron a single quadruple. These approximations are
the multimaterial generalizations of the approxi-
mation that underlies stencil-based isosurface al-
gorithms, which ignore features that pass between
vertices. Fig. 2 illustrates how such a situation
might manifest on an edge. These various mate-
rial interfaces are defined as the points where the
values of indicator functions of the materials on
the vertices are equal, and, in general, we assume
these locations are given by an oracle.

For an edge, these transitions lie on the line
segment connecting the two vertices. However, for triple or quadruple-points,
they could lie outside of the corresponding triangular face or tetrahedron,
respectively. In such cases, these points are projected back onto the tetrahe-
dron, so that local stencils can apply (Fig. 3). These approximation lead to
a smoothing or removal of thin features that fall below the resolution of the
grid—i.e. the exceptions to the above conditions are indicative of features that
fit between grid points, as proved in Section 4.2.

(a) (b)

Fig. 3: Triples (a) and quadruples (b) are forced to lie within the primitive
that contains the associated edge-cuts.

3.3 Quality Criteria

Within a lattice tetrahedron, we approximate the material interfaces as a
set of triangular facets that connect the various cut-points with the correct
topology. With no additional processing of the mesh data, there are only 5
unique topological cases, distinguishable by the number of edges that contain
a cut: 0, 3, 4, 5, or 6. It is impossible for a lattice tetrahedron to contain only
1 or 2 edge cuts. As illustrated in Fig. 4, these cases are composed of three
types of polyhedra: tetrahedra, triangular prisms, and hexahedra.

While these polyhedra admit multiple consistent tessellations, the output
tetrahedra could become arbitrarily bad (regardless of the tessellation chosen)

To appear in Proceedings of the 21st International Meshing Roundtable. 7

(a) 0-cut (b) 3-cut (c) 4-cut (d) 5-cut (e) 6-cut

Fig. 4: The 5 unique interface topologies determined by the number of cut-
points present on a lattice tetrahedron.

depending on where interface points are located. Thus, we define a set of
violation conditions that characterize the configurations of interface points
that lead to bad tetrahedra. These conditions are used to decide when it is
appropriate to warp the background lattice (changing topology) and when it is
appropriate to leave a configuration intact. The conditions entail a threshold
on the proximity between features, denoted α, and are expressed as a fraction
of the edge lengths on the background lattice.

There are three different ways in which an interface might be violating.
First, an interface point of any type may violate a lattice vertex. A cut violates
a lattice vertex if it lies within a distance α to it along the shared edge. As
shown in Fig. 5(a), even in 2D, no matter how you choose to tessellate a face,
there will always be an angle that is arbitrarily bad as the cut approaches the
lattice vertex. This principle extends to interface points of higher order (i.e.
triples and quadruples). Triple points can move within the 2D space interior
to a lattice face, and so their vertex violation region is a quadrilateral patch.
This patch is formed by the intersection of two half spaces. Each halfspace is
defined by connecting the point at distance α on one edge, to the opposite
lattice vertex (Fig. 5(b)). Similarly, quadruple-points can be anywhere inside
the lattice tetrahedron, so their vertex violation regions are formed by the
intersection of 3 half-spaces defined by planes. (Fig. 5(c)).

α

(a) c-vertex

α

(b) t-vertex

α

(c) q-vertex

α

(d) t-edge

α

(e) q-edge

α

(f) q-face

Fig. 5: An interface point violates a feature if it falls within an intersection of
half spaces defined using α. Vertices can be violated by (a) cuts, (b) triples,
and (c) quads. Edges can be violated by (d) triples and (e) quadruples. Faces
can only be violated by (f) quadruples.

The second group of violations pertain to edges. Degenerate tetrahedra
can also arise if triple-points or quadruple-points lie too close to an edge.
We define the notion of edge violation in a manner consistent with vertex
violations, similarly bounding the angles. Dividing lines are formed between
each vertex on the edge and the respective α position on the edge opposite that

8 To appear in Proceedings of the 21st International Meshing Roundtable

vertex (Figs. 5(d,e)). Finally, a quadruple-point has one additional violation
condition, arising from its distance to adjacent faces. This violation region for
faces follows the same logic as the others (Fig. 5(f)).

3.4 Topological and Geometric Operations

The lattice cleaving algorithm uses two fundamental operations to ensure
mesh quality. A snap operation merges an interface point with another point
of lower order, collapsing the implicit edge between them in an output stencil.
This operation is performed on interface points that are in violation, ensuring
output stencil tetrahedra do not span bad angles. In conjuction, vertices are
warped spatially in order to conform to the interface surfaces.

The multimaterial case introduces some extra complexities in dealing with
the consequences of snaps and warps. The first challenge arises when a vio-
lated lattice vertex is incident to multiple lattice edges that have cuts. In the
two-material case, Labelle and Shewchuk [18] perform a single warp to a sin-
gle cut and remove the other cuts, essentially pulling them into the warped
vertex. In the multimaterial case, this is unsatisfactory, because the adjacent
cuts could be interfaces to several different materials. After warping, these
additional materials may still be present on the remaining edges. Thus, we
must ensure that all of the cuts and triples on incident edges and faces are
updated appropriately.

(a) cut-project (b) triple-project

Fig. 6: When a vertex warps (green
arrow), (a) cuts and (b) triples
on incident faces must be updated
(blue arrow) to reflect the their new
locations on the surfaces.

When an edge moves because one of
its vertices is warped, any cut on that
edge must move along the interface the
cut represents. In practice we use a lin-
ear approximation to the interface sur-
face to perform this update. If the cut
interface is of the same type as the vio-
lating cut that caused the warp, it natu-
rally gets pulled into the snap like the 2-
material case. If the new location of the
cut is no longer on the edge (e.g. moves
off of one of the ends), we bring it back
onto the line segment at the appropriate

end point. In this way, the stenciling operation remains local. We call this
operation of recomputing the position of an interface on the warped lattice a
projection, shown in Fig. 6. If the new cut position is violating, we perform
a snap to the lattice vertex, and warp the vertex only if it has not already
been warped previously. In this way, each lattice vertex undergoes at most
one warp.

If a lattice face moves because one of its vertices is warped, any triple on
that face may also move. We update its location using the same strategy as
with edges. If the triple leaves the face, we bring it back on, and followup
with appropriate snaps and warps as needed. Quadruples need no projection
unless a face moves in such a way that the quadruple falls outside of the new

To appear in Proceedings of the 21st International Meshing Roundtable. 9

tetrahedron—in which case it will be moved onto the nearest edge/face and
colocated with the corresponding cut/triple on that face.

Fig. 7: Degenerate triples or
quadruples are removed by
subsequent snaps.

This strict hierarchy of interface types
raises another complexity unique to the mul-
timaterial case. Snaps may cause material in-
terfaces to degenerate such that they violate
the hierarchy of interface types. For example,
consider a face with a triple-point. If the cuts
on two adjacent edges snap to the same lat-
tice vertex, the triple-point is now represent-
ing only a 2-material interface, with a degen-
erate material region along the remaining line segment. To fix this degeneracy,
the triple-point joins the two associated cuts at their warp destination, as in
Fig. 7. A triple-point snap may also cause cuts to become degenerate, and a
quadruple-point snap may cause cuts and triples to become degenerate. The
number of these cases is quite limited, and each one is tested and corrected in
a way that ensures a consistent hierarchy of features and a consistent mesh.

3.5 Generalized Stencil

inconsistent

Fig. 8: Stencils for lattice
tetrahedra must be consis-
tent across faces.

After snapping and warping, the polyhedra from
the topological cases described in Section 3.3
may have collapsed into intermediate topolo-
gies. Each such topology demands not only
a valid tessellation stencil, but one that does
not permit degenerate tetrahedra when inter-
face points are in nonviolating configurations.
Moreover, each such stencil must be consistent
both within the lattice tetrahedron, as well as
across lattice faces (Fig. 8). One of the contri-

butions of this paper is presenting a single generalized stencil that can be used
as a master stencil for all achievable topologies. Not only does this keep the
problem of stenciling local (avoiding inconsistency issues), but it also removes
the requirement of implementing and storing a large stencil table that is prone
to construction and transcription errors [13].

The generalized stencil is constructed from the most complicated topolog-
ical case, the 6-cut case. An edge is formed between every pair of points that
could be snapped, ensuring the snapping procedure of Section 3.4 always sim-
plifies the topology in a manner equivalent to a series of edge coallapses. On
each lattice face, edges star out from the triple-point to every edge-cut and
vertex on the boundary of the face. Similarly, on the interior of the lattice
tetrahedron, edges star out from the quadruple-point to every triple-point,
edge-cut, and vertex on the boundary of the lattice tetrahedron (Fig. 9). In
the regular case, this is equivalent to barycentric subdivision of the tetra-
hedron. This construction tessellates the lattice tetrahedron into 24 stencil
tetrahedra, each composed of a single vertex, cut, triple, and quadruple.

10 To appear in Proceedings of the 21st International Meshing Roundtable

For every lattice tetrahedron that does not have this full complexity of
material interfaces (6-cuts), we choose vertices, cuts or triples, to have virtual
material boundaries, as if they had already snapped. This allows us a consis-
tent way to tetrahedralize the polyhedra in the multimaterial stencils without
worrying about inconsistencies or tangles across faces between stencils, keep-
ing the stenciling operation local.

Fig. 9: The generalized sten-
cil is constructed from the 6-
cut case. Edges connect each
interface point to its associ-
ated lower order features.

To maintain consistency between adjacent
tetrahedra, virtual cuts are chosen first. The
remaining virtual points all cascade into place
from this decision. For a face that has no
triple-point, we label one of the three cuts as a
virtual triple-point. To maintain valid topolo-
gies, we always choose a cut that lies on an
edge that already contains a virtual cut. If
there is no virtual cut, a predetermined cut
is chosen. Finally, if a quadruple-point is not
present, we must choose a triple-point loca-
tion to represent the virtual quadruple-point.
We pick a triple-point using the same method
a triple uses to pick a cutpoint. If there are
multiple options, we choose the point that is
collocated with the most other points, virtual
or real.

Note that these rules for generalizing lattice tetrahedra operate once; they
are merely the mechanism for generating a consistent set of stencils. Also,
these rules for choosing arbitrary, but consistent, transitions from the 6-cut
case to all of the others produce different (but valid and good quality) tetra-
hedralizations of the similar cut patterns, depending on their orientation on
the BCC lattice. This mechanism for ensuring consistency is a multimaterial
alternative to the parity scheme used in the two-material case [18].

3.6 Algorithm

The full lattice cleaving algorithm proceeds as follows. Using an octree struc-
ture to reduce storage and allow grading, we first sample and label each BCC
lattice vertex. Cuts, triples and quadruples are computed for each lattice tetra-
hedron that has multiple materials. Any lattice tetrahedron that is not the
6-cut case is generalized by labeling the locations of virtual cuts, triples, and
quadruples. This is followed by three phases of snapping and warping.

In the first phase, all violated lattice vertices are identified and visited
exactly once. Any violating interfaces on incident edges, faces, or tetrahedra
are snapped to the vertex, and the vertex warps to the center of mass of
the interfaces, distributing any round-off equally. All adjacent nonviolating
interface points are projected to remain on their respective simplices. All
degeneracies are fixed with additional snaps.

To appear in Proceedings of the 21st International Meshing Roundtable. 11

In the second phase, all violated lattice edges are identified and visited
exactly once. If one or more triples or quadruples violates an edge, we snap
them to that edge. These snaps are implemented so that a lattice edge or face
may contain singular points of transitions or be a single material across its
entirety; we do not allow materials to lie on the half-edge, or half-face.

In the final phase, we address the problem of quadruple-points that are
too close to lattice faces. Using the face violation condition, we snap any
such quadruple-point to the triple on the face that was violated. Sometimes a
quadruple-point violates a face that no longer contains a triple. It may have
snapped to an edge-cut, or to a vertex. The quadruple-point always follows the
triple-point, maintaining the hierarchy of features on each edge and face. To
finish, we output all stencil tetrahedra that contain 4 unique vertices, skipping
over any that were removed during the warping and snapping process.

4 Dihedral Angles and Geometric Fidelity

The algorithm described in Section 3.6 is designed to ensure that both dihedral
angles are bounded and geometric distortion of input surfaces is controlled.
In what follows, we sketch proofs of these properties.

4.1 Bounded Dihedral Angles

The violation rules defined in Section 3.3 disallow vertex positions that could
lead to undesirable tetrahedra. The following proof relies on these carefully
designed rules for vertex placement, a particular set of properties in the gen-
eralized stencil set, and their interaction with the background lattice.

There are several ways to classify types of bad tetrahedron [2, 7]. One use-
ful partitioning groups such tetrahedra into two sets: tetrahedra whose vertices
are nearly collinear, and tetrahedra whose vertices are nearly coplanar. This
classification includes not only tetrahedra with bad dihedral angles, but also
tetrahedra with bad solid angles (i.e. the spire). It is also useful to classify the
types of triangular faces that can occur these undesirable tetrahedra. These
triangles have vertices that are nearly collinear. While a tetrahedron may
still be badly shaped without their presence, (e.g. slivers), a tetrahedron that
contains poor quality triangles will certainly be of bad quality.

The rules comprising our algorithm make it impossible for output tetrahe-
dra to become badly shaped (and consequently, they have bounded dihedral
angles). First, we show that background lattice tetrahedra stay of good quality.
This properties induce constraints on the polyhedra of our output stencils. Fi-
nally, we show that these constraints, combined with our violation conditions
for warping and snapping, always lead to tetrahedra with bounded dihedral
angles. Unlike the computational proof of Labelle and Shewchuk, which relies
on interval arithmetic and a numerical search, this approach does not give a
specific angle bound. This direct proof does, however, provide insights into
why this algorithm is successful at achieving bounded dihedral angles and
gives a foundation for modifications or extensions.

12 To appear in Proceedings of the 21st International Meshing Roundtable

Definition 1. A dihedral angle θ is the angle between two planes.

A tetrahedron contains 6 internal dihedral angles. The dihedral angle be-
tween triangular faces can be expressed as a function Φ : V 2 7→ < of the face
unit normals n̂1 and n̂2:

Φ = arccos (n̂1 · n̂2) (1)

Definition 2. The aspect ratio, arf = a/l, for a triangular face, f , where a
the length of the shortest altitude and l is the length of the longest edge.

Definition 3. The aspect ratio, art = a/l, for a tetrahedron, t, where a the
length of the shortest altitude and l is the length of the longest edge.

For triangles, the aspect ratio goes to zero as the vertices approach
collinearity. For tetrahedra, aspect ratio is a measure for how close the vertices
of a tetrahedron are to being either collinear or coplanar. It turns out that
when tetrahedra degerenate in these ways, it must be the case that there are
either dihedral angles of 0◦, 180◦, or both. We next define a notion of ε-good.

Definition 4. For ε > 0, let θmin and θmax be the minimum and maximum
dihedral angles for all possible tetrahedra with art > ε. A dihedral angle, θ, is
called ε-good if and only if θmin ≤ θ ≤ θmax. Similarly, let φmin and φmax be
the minimum and maximum interior angles, respectively, of all triangles with
arf > ε. We call a planar angle, φ, ε-good if and only if φmin ≤ φ ≤ φmax.

Lemma 1. For a tetrahedron, t, with minimum and maximum dihedral angles
θmin and θmax, art > 0 iff there exists κ > 0◦ such that κ < θmin and θmax <
180◦−κ. Similarly, for a triangle face f , with minimum and maximum interior
angles φmin and φmax, arf > 0 iff there exists κ > 0◦ such that κ < φmin and
φmax < 180◦ − κ.

We omit the proof for brevity. Lemma 1 provides a crucial link between
the bound on aspect ratio and then bound on the minimum and maximum
dihedral angles. The mechanisms of our algorithm are such that they specif-
ically ensure the property of ε-good for tetrahedra, and in doing so, coupled
with Lemma 1. it must be the case that they have bounded dihedral angles.

Definition 5. Let p be a polyhedron subdivided into a set of polyhedra S. A
polyhedral face f from the set S is considered external if it is incident to ∂p.

Lemma 2. There exists a set of violation parameters αshort and αlong for
which all BCC lattice tetrahedra maintain ε-good dihedral angles after warping
as described in Section 3.4.

To appear in Proceedings of the 21st International Meshing Roundtable. 13

Proof. Let t be a BCC lattice tetrahedron and rα be the radius of a ball
around each vertex. Each ball contains the possible set of points to which
its vertex may warp, given the violation parameters αshort and αlong (the
violation parameters for short and long edges, respectively). If rα = 0, no
warping takes place, and t has aspect ratio art = 0.866025. Because the worst
dihedral angle of a tetrahedron can be defined as a continuous function of
vertex positions, by the intermediate value theorem, there must exist an rα
for which art = ε > 0. Thus, by Definition 4, there must exist an αshort and
αlong for which the lattice tetrahedra maintain ε-good dihedral angles after
warping. ut

Lemma 3. All stencil polyhedra with nonviolating vertices maintain ε-good
dihedral angles around edges incident to at least one external face.

Proof. For every dihedral angle of a stencil polyhedron that spans an edge
incident to an external face, either one face or both faces are external. If
both faces are external, then the dihedral angle equals that of the enclosing
background polyhedron. By Lemma 2, we know this is an ε-good dihedral
angle. If one face is internal and the other external, there is at least one vertex,
vi, on the internal face that is not incident to the external face. The only way
for the dihedral angle to lose the ε-good property is by moving vi arbitrarily
close to the external face, its edges, or its vertices. In each case, a violation
condition from Section 3.3 would be triggered making these impossible. ut

Lemma 4. All output tetrahedra span at least two stencil polyhedron faces
that meet at ε-good dihedral angles.

Proof. In general, any two faces may either both be external, one external and
one internal, or both internal. If both are external, by Lemma 3 we know that
the dihedral angle between these faces will remain ε-good. If one is external
and the other internal, by the violation conditions of Section 3.3 we know
these faces are ε-good The case of two internal faces is explicitly prevented,
for brevity we summarize why. There are 5 regular topological stencil cases
before snaps. Snapping can only simplify polyhedra, never creating additional
internal faces. Thus, if no tetrahedra span two internal faces of the polyhedra
in the regular topological cases, it is also the case that no tetrahedra span two
internal faces after edge collapses. Among the regular topological cases, only
the 5-cut and 6-cut cases have the potential for multiple internal tetrahedron
faces. The generalized stencil is designed specifically to avoid any tetrahedra
spanning the faces that are not guarded by violation conditions. ut

Lemma 5. All stencil triangles maintain ε-good planar angles after snapping
and warping, as described in Section 3.4.

Proof. All output stencils are composed from only four types of vertices: (lat-
tice) vertices, cuts, triples, and quadruples, abbreviated v,c,t, and q, respec-
tively. The vertices of a stencil triangle can exist in three ways. Either all

14 To appear in Proceedings of the 21st International Meshing Roundtable

three vertices lie on the same lattice face, two vertices lie on the same lattice
face, or all three lie on unique lattice faces.

If all three vertices lie on the same lattice face, the violation conditions
for cuts and triples guard against such an aspect ratio. There are only three
sets of points that can become collinear, and our stencils specifically preclude
them: vcv, vtc, and ctc.

If two vertices lie on the same lattice face, the triangle’s aspect ratio, arf ,
can only fall below ε if the third vertex is in violation of the face containing
the other two. This includes the third vertex violating an edge of the lattice
face containing the two vertices.

Finally, if all three vertices lie on unique lattice faces, the triangle’s aspect
ratio, arf can only fall below ε if all three vertices are violating the vertex
incident to all three lattice faces. ut

Lemma 6. All output tetrahedron have ε-good dihedral angles.

Proof. Let t be an output tetrahedron. By Lemma 4, t has at least two faces
joined at an ε-good dihedral angle along edge e. By Lemma 5 the triangles
incident to edge e are ε-good. The existence of one good dihedral angle with
two good faces incident to it implies t must have ε-good dihedral angles ev-
erywhere, since it positions all four vertices. ut

Theorem 1. There exists a dihedral angle, θ∗ > 0◦, such that the dihedral
angles of all tetrahedra are bounded from below by θ∗ and above by 180◦ − θ∗.

Proof. By Lemmas 6 and 1. ut
This proof shows that the meshes from the lattice-cleaving algorithm never

degenerate, in fact Lemma 5 also ensures we produce no bad solid angles (e.g.
“spires”), despite them lacking bad dihedral angles. Moreover, in practice,
with proper choice of α, this bound, θ∗, is significant, and empirical results in
Section 5 corroborate this fact.

4.2 Geometric Fidelity

We next make a statement about the quality of the surface approximation.
Let Σ be the interface surface, the complex of smooth surface patches where
two materials meet, as well as the associated curves where three materials
are coincident, and the points where four meet. Σ is a CW-complex, and
geometrically behaves as a piecewise-smooth complex [8]. It also has a well
defined medial axis MΣ that we define as the closure of the set of points in R3

that have at least two closest points in Σ. Each point in MΣ is the center of a
ball that meets Σ only tangentially. Using the medial axis, we can quantify of
the scale of features at each point p ∈ Σ. In particular, we define local feature
size, lfs : Σ → R, as the distance from each surface point to the medial axis.
Local feature size is well studied in smooth surfaces [1]. In our setting, local
feature size approaches zero near triple junctions, which meet nonsmoothly.

To appear in Proceedings of the 21st International Meshing Roundtable. 15

Consequently, we define the set of h-regular points, Σh = {p ∈ Σ | lfs(p) > h}
and restrict our claims to these.

Given a tetrahedron c in the mesh, we make a claim regarding its vertices.
For c let Σ|c be the restriction of Σ to c, defined as Σ ∩ c. We define an
h-regular tetrahedron c as one where the set of p ∈ Σ|c are regular.

Lemma 7. Given an h-regular tetrahedron c constructed from BCC lattice
edges which are no longer than h, any vertex v of c that is labeled as having
two materials (surface vertex) lies on Σ

Proof. Because v has two materials, it is the byproduct of a warp and snap
to bring it to the Σ. Prior to this, v underwent a sequence of operations that
depended on the cuts of edges incident to v. As long as there was only one
such cut, v only warped once, and directly to the surface as computed by our
indicator function oracle. We prove that because c is h-regular, this is always
the case. Assume, for sake of contradiction, that there were multiple cuts,
of different materials, on edges incident to v (if the materials were identical
we preferentially pick the closest cut to move to). Without loss of generality,
assume there are two cuts of material type AB and BC, we call x and y. Both
x and y lie in the violating zone, on an edge incident to v. They are no further
apart than 2hαshort < h. This indicates that the two surface patches defining
these cuts are no further apart than h as well.

We show there must be a medial axis point within distance h of Σ|c. Con-
sider the medial axis for any single connected material region. By definition
it is a deformation retract of this region, and in addition, it touches any point
where three materials meet. Thus within a single region the medial axis is a
single connected component which connects all triple-points. If we walk along
the line segment joining x and y we must therefore cross the medial axis,
because otherwise it would violate the above property. As a result, there is
a medial axis point at this crossing. This medial axis point must be within
distance h of v. However, because v lies on Σ|c, this violates the fact that c
is h-regular, leading to a contradiction.

In generalizing this case to when more than two cuts are adjacent v, the
same logic holds for any pair of them, which is sufficient to create the same
contradiction above. ut

All h-regular tetrahedron are well-behaved; in general, they act just like
the tetrahedra in the isosurface stuffing algorithm [18]. Most importantly,
when they do mesh a piece of the surface, they geometrically approximate
the surface. As with any pointwise probe, it is impossible to guarantee that
there are no tiny features missed on account of the mesh resolution being too
coarse. However, we can guarantee that for h-regular tetrahedra containing
surface patches of Σ, every point on an interface triangle representing this
patch lies close to Σ. This “one-sided” notion of distances mirrors Theorem
2 of [18] (only the distance of every mesh vertex to Σ is bounded). When
the mesh is of fine enough resolution and each surface patch of Σ sufficiently
smooth, the distance bound for h-regular tetrahedra becomes two-sided—the
claim follows for distances from Σ to the mesh.

16 To appear in Proceedings of the 21st International Meshing Roundtable

5 Results
Our implementation of lattice cleaving is extremely fast, requires virtually no
user interaction, and achieves bounded dihedral angles. These bounds depend
on choices of the violation parameters αlong and αshort. Because our meshes
represent volumes on both sides of each interface surface, the most appropriate
parameters would seem to be those used by Labelle and Shewchuk [18] in the
double-sided surface case. However, our multimaterial violation conditions use
slightly more conservative bounds to take into account the dihedral angles
near triples and quadruples. We picked the parameters αshort = 0.357 and
αlong = 0.203 and found they achieved a worse case minimum angle of 2.76◦

and worst case maximum angle of 175.426◦. In practice, after simulating many
hundreds of times steps of several dozen fluid simulations, corresponding to
hundreds of millions of tetrahedra, we see much better angles for the vast
majority of meshes.

To illustrate some of the datasets for which lattice cleaving can be used, we
provide several examples. Fig. 10(a) shows a mesh generated from a segmented
MRI scan of a human head. The algorithm completed in about 100 seconds
and produced a mesh with roughly 5 million elements, all with dihedral angles
between 4.33◦ and 157.98◦. Fig. 10(b) shows a mesh generated from a simi-
lar scan of a human torso. The algorithm completed in under a minute and
produced a mesh with roughly 12 million elements, all with dihedral angles
between 5.11◦ and 159.91◦.

(a) head (b) torso

Fig. 10: Meshes generated from medical data. (a) MRI scan of a human head.
Resolution: 264x264x264. Dihedral angles: [4.33◦ − 157.98◦]. ≈ 5.3 million
elements. (b) MRI scan of a human torso. Resolution: 208x96x208. Dihedral
angles: [5.11◦ − 159.91◦]. ≈ 12.6 million elements

This work also applies to multiphase fluid simulation and animation. To
demonstrate this, we utilize the lattice cleaving algorithm in the core of a
multiphase viscous fluid simulation. Fig. 11(a) shows a rendering and cut-
away view of the underlying mesh used for physics. This simulation used a
643 background lattice (primal vertices), required 8 seconds to mesh, and
produces, on average 1.2 million tetrahedra. Fig. 11(b) shows a histogram of
the dihedral angles generated from 350 simulation frames. The majority of
elements are of excellent quality, with small tails near the expected bounds.

To appear in Proceedings of the 21st International Meshing Roundtable. 17

(a)

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 0 20 40 60 80 100 120 140 160 180

F
re

q
u

e
n

c
y

Dihedral Angle

count
count/20

(b)

Fig. 11: A multiphase viscous fluid simulation. (a) Each frame uses a conform-
ing mesh to perform fluid physics. (b) A histogram of all the angles produced
throughout the simulation.

Acknowledgments:

This work was supported in part by grants from the US National Insti-
tutes of Health/National Center for Research Resources Center for Integrative
Biomedical Computing, 2P41 RR01125523-12.

References

1. N. Amenta, S. Choi, T. K. Dey, and N. Leekha. A simple algorithm for homeo-
morphic surface reconstruction. Int. J. Comput. Geometry Appl., 12(1-2), 2002.

2. M. Bern, P. Chew, D. Eppstein, and J. Ruppert. Dihedral bounds for mesh
generation in high dimensions. In SODA, pages 189–196, 1995.

3. J. Bloomenthal and K. Ferguson. Polygonization of non-manifold implicit sur-
faces. In SIGGRAPH, pages 309–316, 1995.

4. J.-D. Boissonnat and S. Oudot. Provably good sampling and meshing of surfaces.
Graphical Models, 67(5):405–451, 2005.

5. L. Branets and G. F. Carey. Condition number bounds and mesh quality. Nu-
merical Linear Algebra with Applications, 17(5):855–869, 2010.

6. J. R. Bronson, J. A. Levine, and R. T. Whitaker. Particle systems for adaptive,
isotropic meshing of CAD models. In IMR, pages 279–296, Oct. 2010.

7. S.-W. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello, and S.-H. Teng. Sliver
exudation. In Symp. on Comp. Geom., pages 1–13, 1999.

8. S.-W. Cheng, T. K. Dey, and E. A. Ramos. Delaunay refinement for piecewise
smooth complexes. Discrete & Computational Geometry, 43(1):121–166, 2010.

9. S.-W. Cheng, T. K. Dey, E. A. Ramos, and T. Ray. Sampling and meshing a
surface with guaranteed topology and geometry. SIAM J. Comput., 37(4):1199–
1227, 2007.

10. N. Chentanez, B. E. Feldman, F. Labelle, J. F. O’Brien, and J. R. Shewchuk.
Liquid simulation on lattice-based tetrahedral meshes. In SCA, pages 219–228,
Aug. 2007.

11. L. P. Chew. Guaranteed-quality mesh generation for curved surfaces. In Symp.
on Comp. Geom., pages 274–280, 1993.

18 To appear in Proceedings of the 21st International Meshing Roundtable

12. T. K. Dey, F. Janoos, and J. A. Levine. Meshing interfaces of multi-label data
with Delaunay refinement. Engineering with Computers, 28(1):71–82, Jan. 2012.

13. T. Etiene, L. Nonato, C. Scheidegger, J. Tienry, T. Peters, V. Pascucci, R. Kirby,
and C. Silva. Topology verification for isosurface extraction. IEEE TVCG,
18(6):952–965, 2012.

14. L. A. Freitag and C. Ollivier-Gooch. Tetrahedral mesh improvement using swap-
ping and smoothing. Int. J. Num. Meth. Eng., 40(21):3979–4002, 1997.

15. A. Fuchs. Automatic grid generation with almost regular Delaunay tetrahedra.
In IMR, pages 133–147, 1998.

16. A. Guéziec and R. A. Hummel. Exploiting triangulated surface extraction using
tetrahedral decomposition. IEEE TVCG, 1(4):328–342, 1995.

17. B. M. Klingner and J. R. Shewchuk. Aggressive tetrahedral mesh improvement.
In IMR, pages 3–23, 2007.

18. F. Labelle and J. R. Shewchuk. Isosurface stuffing: fast tetrahedral meshes with
good dihedral angles. In SIGGRAPH, 2007.

19. Y. Liu, P. Foteinos, A. Chernikov, and N. Chrisochoides. Multi-tissue mesh
generation for brain image. In 19th IMR, pages 367–384, October 2010.

20. W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface
construction algorithm. In SIGGRAPH, pages 163–169. ACM, 1987.

21. B. Merriman, J. K. Bence, and S. J. Osher. Motion of multiple junctions: A
level set approach. Journal of Computational Physics, 112(2):334 – 363, 1994.

22. M. D. Meyer, R. T. Whitaker, R. M. Kirby, C. Ledergerber, and H. Pfister.
Particle-based sampling and meshing of surfaces in multimaterial volumes. IEEE
Trans. Vis. Comput. Graph., 14(6):1539–1546, 2008.

23. N. Molino, R. Bridson, J. Teran, and R. Fedkiw. A crystalline, red green strategy
for meshing highly deformable objects with tetrahedra. In IMR, pages 103–114,
2003.

24. G. M. Nielson and R. Franke. Computing the separating surface for segmented
data. In IEEE Visualization, pages 229–233, 1997.

25. A. A. Pasko, V. Adzhiev, A. Sourin, and V. V. Savchenko. Function represen-
tation in geometric modeling: concepts, implementation and applications. The
Visual Computer, 11(8):429–446, 1995.

26. J.-P. Pons, F. Ségonne, J.-D. Boissonnat, L. Rineau, M. Yvinec, and R. Keriven.
High-quality consistent meshing of multi-label datasets. In IPMI, pages 198–
210, 2007.

27. J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh
generation. J. Algorithms, 18(3):548–585, 1995.

28. J. R. Shewchuk. Tetrahedral mesh generation by Delaunay refinement. In Symp.
on Comp. Geom., pages 86–95, 1998.

29. J. R. Shewchuk. What is a good linear element? interpolation, conditioning,
and quality measures. In IMR, pages 115–126, 2002.

30. J. Tournois, C. Wormser, P. Alliez, and M. Desbrun. Interleaving Delaunay
refinement and optimization for practical isotropic tetrahedron mesh generation.
ACM Trans. Graph., 28(3), 2009.

31. M. A. Yerry and M. S. Shephard. Automatic three-dimensional mesh generation
by the modified-octree technique. Int. J. Num. Meth. Eng., 20:1965–1990, 1984.

32. Y. Zhang, T. Hughes, and C. L. Bajaj. Automatic 3d mesh generation for a
domain with multiple materials. In IMR, pages 367–386, 2007.

