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Particle Systems for Adaptive, Isotropic Meshing of CAD Models

Jonathan R. Bronson - Joshua A. Levine -

Abstract We present a particle-based approach for generat-
ing adaptive triangular surface and tetrahedral volume meshes
from CAD models. Input shapes are treated as a collection
of smooth, parametric surface patches that can meet non-
smoothly on boundaries. Our approach uses a hierarchical
sampling scheme that places particles on features in order
of increasing dimensionality. These particles reach a good
distribution by minimizing an energy computed in 3D world
space, with movements occurring in the parametric space of
each surface patch.

Rather than using a pre-computed measure of feature
size, our system automatically adapts to both curvature as
well as a notion of topological separation. It also enforces
a measure of smoothness on these constraints to construct a
sizing field that acts as a proxy to piecewise-smooth feature
size. We evaluate our technique with comparisons against
other popular triangular meshing techniques for this domain.

Keywords Adaptive meshing, particle systems, tetrahedral
meshing, CAD

1 Introduction

Tetrahedral mesh generation is a key tool in the computer-
aided design (CAD) pipeline. In particular, the conversion
of shapes presented by the output CAD systems and solid
modeling geometry kernels is necessary to provide input
meshes for structural analysis, CFD and other CAE appli-
cations. The data from these systems is usually in the form
of a boundary representation (B-Rep) made up of hierarchi-
cal connectivity (topology) and associated geometric enti-
ties. When the B-Rep is manifold and topologically closed,
shapes of arbitrary geometric complexity can be produced.
Care must be taken to provide accurate representations of
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these inherently piecewise-smooth solids while robustly pre-
serving the curved features defined by the input topological
description [18].

While many types of meshes are suitable for visualiza-
tion and simulation, simplicial meshes have emerged as one
of the dominant forms. Their popularity can be attributed to
both the ease at which simplicial meshing algorithms can
be implemented as well as the guarantees of termination
and quality that can often be shown. Technologies to con-
struct simplicial meshes vary greatly. Some of the most im-
portant paradigms include advancing-front [19,20,26], De-
launay refinement [10,25,29], and particle systems [22,33].
However, to build meshes that are adaptive, many variants
of these techniques require an input oracle that evaluates a
sizing field over the domain [4,8,23,27,32]. An early ex-
ception is the approach of Dey et al. [12] that uses Delau-
nay refinement for meshing smooth domains. Using the dual
Voronoi diagram and the concept of poles [2], this algorithm
automatically refines based on a simultaneously computed
approximation of the local feature size (distance to the me-
dial axis) of the shape whose accuracy increases as mesh
density increases.

Local feature size of smooth shapes is a natural choice
to use as a field to adapt to; however, most CAD models
are inherently non-smooth. A notion of local feature size for
piecewise-smooth shapes has been defined [8] by coupling
local feature size for the smooth regions with a topological
condition called gap size [9]. Computing this measure ro-
bustly is a significant challenge. The approach in this work
aims to automatically infer a global sizing field of equiv-
alent expressivity to [8] while using only locally available
information as done by [12]. Such a technique must force
a compromise, ours is to construct a proxy for feature size
that is Lipschitz continuous by coupling curvature adaptivity
with a topological separation condition.

Particle systems are an ideal framework for sampling
parametric domains since they only require local calcula-
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tions. We can minimize energy by movements solely within
the parameter space of each surface patch while knowing
each particle stays within the confines of the surface in world
space. Computing good quality triangulations from these sam-
ples can leverage the same benefits. We directly build trian-
gulations on the particles in parameter space using 2D De-
launay triangulations (implemented by Triangle [28]). As
3D Delaunay triangulations can be expensive to compute,
this provides a significant savings when only surface meshes
are required. While this approach cannot immediately build
triangles that are 3D Delaunay, we can improve their quality
significantly by local modifications (e.g. edge flipping) that
consider the world space positions of vertices. The resulting
surfaces meshes make ideal inputs for volumetric meshing
approaches, such as TetGen [30].

1.1 Contributions

This work focuses on automatic techniques for building tri-
angular meshes of the boundary surface, and ultimately tetra-
hedral representations of the interior solid. We also improve
the state-of-the-art for particle system-based techniques; our
contributions can be summarized as the following:

— An automatic technique for constructing isotropic sur-
face meshes by minimizing a world-space energy through
parameter-space movements.

— Hierarchical sampling of features in increasing dimen-
sion, inspired by weighted Delaunay-based approaches [8,
11].

— Algorithmic control for both uniform and adaptive sam-
pling, without requiring a pre-computation of global fea-
ture size needed by similar particle-based approaches [23].

— Fast mesh generation of these samples through the use
of the 2D Delaunay triangulation in parameter space and
3D Delaunay edge flipping [6].

— Experimental evaluation that compares our approach to
existing techniques [7, 15] for mesh generation of CAD
domains.

2 Related Work and Background

While the history of tetrahedral mesh generation began much
earlier, a shift in the emphasis of techniques has become
popular within the past decade. In particular, variational ap-
proaches, i.e. based on energy minimization, have become
one of the most important tools for mesh generation. Al-
liez et al. [1] describe a variational technique for mesh gen-
eration that couples Delaunay refinement with a relaxation
process for vertex locations. This algorithm and later vari-
ants [31,32,34,37] base their energy minimization on a siz-
ing field for particle density coupled with an energy min-
imization grounded in the notion of a centroidal Voronoi

diagram [14] and its dual, the optimal Delaunay triangu-
lation [5]. Consequently, these meshing algorithms can gen-
erate nearly isotropic elements, as a byproduct of the cen-
troidal Voronoi condition, as well as leveraging many of the
benefits of Delaunay refinement techniques.

However, one deficiency is the need for knowledge of
an element sizing field a priori. Computing a sizing field is
considered expensive. Often, approaches for computing siz-
ing fields are based on the medial axis [13] or quadratures
of mesh elements [3], and thus can require O(nz) compu-
tations of dense point clouds to build accurate results. One
recent solution of Tournois et al. [32] solves this problem by
alternating a variational phase with a refinement phase. Af-
ter each level of refinement, the sizing function is updated
before switching back to variational phase. This interleaving
allows the available information to drive the computation of
a sizing field instead of necessitating a preprocessed compu-
tation. We aim to improve upon this theme by allowing an
energy minimization based on particle systems to automati-
cally improve its approximation of the sizing field.

A second thrust of recent algorithms is to provide prov-
ably good algorithms for meshing piecewise-smooth shapes.
This general class describes shapes with a topological de-
scription in the form of a piecewise-smooth complex of k-
cells that are compact subsets of k-manifolds. We use the
same definition as Cheng et al. [8]. In summary, surface
patches (2-cells) can meet non-smoothly at curves (1-cells)
bounded by points (0-cells). Two k-cells are adjacent if one
is on the boundary of the other.

Similar to the B-Rep definition, each k-cell has an as-
sociated geometric description. Recent Delaunay-based ap-
proaches [8,24] for meshing this domain have been able
to provide topological correctness guarantees using either
weighted Delaunay triangulations [8] or bounding the angle
deviations between smooth patches [24]. A missing piece
to the implementations of these algorithms is the ability to
adapt to a sizing field, primarily because there is no consen-
sus on what is the correct sizing field for non-smooth shapes
and how best to compute it. However, they do show that a
careful sampling of points on sharp creases can preserve the
features of a shape. Our approach is a natural extension of
this work, but instead of requiring an accurate sizing field
to guarantee topological correctness, our scheme will build
watertight meshes provided a few easily satisfied conditions
are met by the particle system (described in Section 4.3).

2.1 Particle Systems

At the core of our meshing scheme is a paradigm for sam-
pling shapes using particles. The idea of using repulsive point
clouds to (re-)sample a mesh was first introduced by Turk
in the context of polygonal remeshing [33]. The first full
particle system for meshing was later developed by Witkin
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and Heckbert [35]. Their technique was primarily used as a
mechanism to sample and control implicit surfaces, which
was notoriously difficult under other schemes at the time.
The key idea behind their work was the introduction of a
Gaussian energy function to control the interaction between
particles. Improvements to their scheme were made by Hart
et al. [17]. Yamakawa and Shimada proposed a meshing
scheme similar to particles by using packings of ellipsoidal
bubbles [36].

Meyer et al. [21] formulated a more robust and stable
solution for evolving particle systems. The new energy ker-
nel was a modified cotangent function, with finite support.
By falling off to a finite range, the resulting particle systems
were more stable and more quickly lead to ideal packings.
Additionally, this kernel was nearly scale invariant. Meyer et
al. [23] later introduced a hierarchical scheme for particle-
based sampling multi-material surfaces. For such datasets,
the boundaries between the different materials can be rep-
resented as a piecewise-smooth complex. While without the
formal guarantees of [8], they use a similar strategy of hi-
erarchically sampling topological features in increasing di-
mension to build consistent, watertight meshes.

3 Particle System Formulation

In this section we provide the mathematical formulation be-
hind our particle system. We define the total energy in the
system as the sum of each energy E; calculated with respect
to particle p;. Each particle p; has a corresponding o; value
representing the radius of its ball of influence B; centered at
pi. It is the varying of o; that provides adaptivity. Each en-
ergy E; is the sum of the energies between particle p; and
all neighboring particles p;. Particles p; and p; are consid-
ered neighbors if either p; falls within B; or if p; falls within
B;. We use a variation of the modified cotangent for the en-
ergy (1) between any two particles, E;;. By varying o;, the
potential function must be scaled to account for this new,
lopsided interaction between particles. Thus, we scale both
the modified cotangent function and its derivative (2) by o;.

G Irij| w, rijlm =@
Etj = O-z] |f:0t( Gij §)+ Gij 5_5 (1)

di’ _r ll —gin 2 (Mn)] )
Fij 2 ij 2

In this form, |r; j| is the distance between particles p; and
p; and the value oj; is taken to be the max of o; and ¢;. The
hexagonal packings that result from this and related parti-
cle systems requires the particles to reach a critical density
on the surface being sampled. For any surface and any set

of o values, there will always be an ideal number of parti-
cles, but calculating this number is not tractable. Like previ-
ous systems, we use splitting and deleting to control energy
densities. Particles follow the rules:

Ef =E;(1+¢) 3)
if Ef < 0.35E19  Split 4)
if Ef > 1.75E1%  Delete )

Using a hexagonal lattice packing as our notion of an
ideal distribution, the ideal energy E}deal for a particle p; is
six times the energy felt between p; and p; at the character-
istic distance of approximately 0.58 [21]. This reflects the
energies felt from the six particles in the one-ring neighbor-
hood (connected directly by one edge in a hexagonal lat-
tice). The two-ring particles (connected through two edges
in a hexagonal lattice) are at distance 1.0 from particle p;,
allowing Equation (6) to compactly describes this relation-
ship. Additionally, we scale this value by o©; to match the
scaling of actual energies.
|7 0.5

o —B= /6 ~0.58 (6)

El% — 6,6E(B), with

Since one cannot predict what an ideal neighborhood
will look like in the adaptive case, the ideal energy is less
precise than in the constant case. This leads to more frequent
splits and deletes for higher local variation, but ultimately
provides much better packings than if the original energy
was not scaled proportional to . An alternative to this ap-
proach would be to use a notion of scaled distance d’ = %,
and forego the o; scaling. Then, to still achieve the high
quality packings, a different scheme for deletion of poorly
configured particles would need to be devised.

To allow the system to adapt to splits and deletes, E;
is biased by a small random number, 0 < € < 1, in Equa-
tion (3). This makes the discrete energy jumps have less of
an impact on the speed at which the system stabilizes, by
allowing time for the system to adapt between jumps. Ad-
ditionally, this can help resolve any regions which are stuck
in bad configurations. As the solution to the system con-
verges, this bias can be adjusted to stop splits and deletes all
together, ensuring termination.

To find the ideal packing of particles, we use a Newton-
Raphson scheme, updating particle information after each
movement (Equations (8), (9), and (10)). Each particle main-
tains its position in both world space (x}’°) and parame-
ter space (x}"). Particles move with a velocity v; generated
by inter-particle forces between neighbors. Though energies
between particles are computed in 3D world space, particles
move strictly in parametric space (10), avoiding the error-
prone projection onto the surface that results from 3D move-
ments. Taking these steps in parameter space only requires
a change of coordinates (7)(9). From each surface we can
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obtain parametric derivatives du and dv, which we use to
construct the metric tensor M and Jacobian J needed for the
inverse transformation.

E =du-du
EF du’
M:{FG} F=du-dv J:[d‘V‘T] %)
G=dv-dv
Xxyz Lij
V= Y dEy L ®)
i 1]
v = (M) v ©)
X = x4y (10)

As mentioned earlier, we use a hierarchical sampling
scheme, which works well for parametric models. First, we
place particles on the O-cells, the intersection of edges on
the models. Next, we place particles on the 1-cells and al-
low them to be optimized. Finally, we place particles on the
surface patch interiors and the final optimization proceeds.
At each phase, the new optimization uses the fixed positions
from the previous phase, ensuring consistency across sur-
face patch boundaries.

3.1 Inferred Sizing Field

We recognize that there are several factors that often de-
termine good sizing fields: local curvature, some notion of
feature size, and a desired level of adaptivity. Additionally,
users may have desires for mesh resolution limits, both min-
imum and maximum triangle or edge size. Other domain-
specific factors also often come into play. In this section, we
illustrate the constraints we would like to place on a sizing
field. We show that these constraints can be inferred in a
reliable way and used to form a smooth sizing field during
energy minimization.

We aim for meshes that provide arbitrary levels of geo-
metric accuracy and adaptivity, using high quality isotropic
elements. In order to provide high quality elements, particle
systems require enough spatial freedom to be able to move
to lower energy states. Thus, the distance between nearby
k-cells imposes its own sizing constraint on the particles.
Thus, in order to determine the sizing field value o; at a par-
ticular point p; on a model, we must consider the constraints
placed on this location by curvature, topological distance,
and desired level of adaptive continuity. We refer to these
constraints as Oy, Or, and O.¢, respectively. The actual siz-
ing field value at a particle location is resolved by finding
the o; that respects all constraints. This can be expressed
compactly as:

0; = Max { Gpin, Min{OGpax, Ok, Oz, O } } (11)

Curvature

Since the curvature at a point is defined as the inverse of
the radius of the osculating circle at that point, a reasonable
default sizing field value is the radius of that circle itself.
Thus, we use 0 = % which can be easily computable for
parametric surfaces, or queried by middleware packages.

Ox

Fig. 1 Default curvature constraint on sizing field.

To increase or decrease the field relative to this radius,
a scaling factor s is exposed as a user parameter. Given a
unit system, this value can be used to provide constraints
to respect geometry to arbitrary levels of accuracy. Finally,
Kmin and Kmax values are user parameters used to handle
straight edges and arbitrarily high curvature, respectively.
These form the total bounds for the sizing field as:

Omin = 1/(SKKmax) (12)
Omax = 1/(SKKmin) (13)

For 2-cells, we use the maximum principal curvature,
since this size will dominate an isotropic sampling. For 1-
cells, using the curvature of the edge itself is insufficient.
The maximum principal curvature on both intersecting sur-
faces must also be considered, since the curve may either be
a trim or a boundary curve, and there is no way of knowing
which curvature will dominate. Last, 0-cells use the maxi-
mum curvature of all 1-cells terminating at its point.

Figure 2 illustrates the intuitive effect of modifying the
curvature scaling parameter s, to achieve a better geomet-
ric fit. For practical purposes, a good scaling parameter will
usually be based on the unit of measurement of the model.

Gap Size

If available, using the distance to the model’s medial axis
would provide a sizing field constraint that generates good
samplings in a particle system. However, computing the me-
dial axis on parametric models is a difficult task and still
an active area of research. Instead, we use the notion of
gap size, introduced by Chang & Poon [9] in the context
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Fig. 2 Effects of changing curvature scaling parameter s

of piecewise linear mesh generation. For a point p on a k-
cell ¢, its gap size is the distance to the nearest non-adjacent
(i.e. not on the boundary of c) cell. This measure also pre-
serves topological features inherent to the model’s decom-
position into parametric patches. Depending on the model
and the way it was created, this measure may sometimes be
equivalent to definitions of local feature size. Figure 3 shows
an example where the two are equivalent by a factor of one
half.

We make the assumption that the topological represen-
tation provided as input for the CAD model should be re-
spected in an output mesh. A byproduct of this approach is
that some models have adaptivity in regions that are of lit-
tle benefit to representing the geometry of the model. One
could remove adaptivity in regions that do not actually need
it by taking a pass over the model and detecting topological
junctions that are G' continuous, and flagging them to be ig-
nored. The remaining geometrically discontinuous junctions
could then be preserved using our sampling scheme.

Gap size is approximated directly from inter-particle re-
lationships. Particles store which k-cell they lie on, and each
k-cell stores which particles lie on it. We define the topo-
logical constraint ¢; to be the shortest distance from par-
ticle p; to another particle p; lying on a non-adjacent fea-
ture. That is, a O-cell particle interacting with another 0-cell
particle, a 1-cell particle interacting with another 1-cell par-
ticle, or a O-cell particle interacting with a 1-cell particle
that does not terminate at that O-cell. This notion can be ex-
tended to 2-cells as well. We further provide a scaling factor
st as a user parameter to allow for higher densities of par-
ticles within these regions. This proves useful when sam-

medial axis

Q
|

i
5

C

Fig. 3 Gap size constraint on sizing field. In this case, the gap size is
equivalent to the distance to the medial axis by a factor of two.

pling highly elongated surfaces, with parallel k-cells. Scal-
ing the distance o allows more rows of particles, allowing
for better energy minimization, and ultimately better trian-
gulations.

(b)

(©

Fig. 4 Effects of changing topological scaling parameter s¢

Figure 4 illustrates how changing the topological scaling
parameter s; effects the distribution of particles. As the pa-
rameter decreases, more particles can fit in the same space
enclosed by neighboring 1-cells. Depending on the mini-
mum allowable curvature, and scaling, this parameter may
or may not come into play.

Lipschitz Continuity

In order to provide finer control over the adaptivity of the
particle samples, the system adheres to a Lipschitz constraint
o that enforces the Lipschitz continuity . on the sizing
field. The Lipschitz condition can be expressed in terms of
our formulation as:

‘X,'—Xj|§$‘6i—6j| (14)

The 0.« induced by this constraint is simply the minimum
allowable value that satisfies this condition:

oz =min{|rj|-£ +0}} (15)
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Respecting this Lipschitz continuity provides more grad-
ual adaptivity between areas of high and low particle den-
sities. Lower values of .# produce samplings that result in
more isotropic triangles, while large values provide increased
levels of adaptivity, at the cost of isotropy. Figure 5 illus-
trates the effects of changing the Lipschitz parameter, .Z,
for a conic surface patch. The parameter is set values rang-
ing from 0.0 (a) to 0.3 (d). When . goes to zero, a uniform
sizing field is produced, fitting the smallest constraint on the
model. In this case, the sharp tip of the cone is the limit-
ing feature. We found a default value of 0.3 provides a good
trade-off between triangle quality and adaptivity.

A

VAVAVANINVAVAVAYS

AV

S
avia
S

N\
N

A,

5
5K

ivd

5
PO

4
s
s

sy
Ay,

R
Y4\
VAVAVAVANRSAVAT )

e
PAVAVAVAVA Y

Ay

AN

AN

A,
AVAS,

AVAY,
<]

AVAN

AVANAV,Y

s
AV
=
AV

=~
VAVAVAYA
AVAY

X
=
X
e
VAt
S
KK
SEES
VAV,
N

7

=
1%
ats
*x
e
LA
AV)

VAV
iV

2

cl
5
%
K
K7
S,

VAY
4AVAVA)

17
ARIR
RN
SV
VAV,
i

i

VAVAY,

SVAVAVAY)
VAVAVA
VAVAVAN

VA
\VAVA

NININT

RN
i
-

AVAVA

%
SVAYAY

"

o]

el

i
2

A

K5

ST
AVAVaY
:VAVAVAVA
/Al

75
V)

~

%
KRR
N/

Zaay
Vaval

VAVAY
AVAVAVAVAVAN

S
vy N
o

N

1

(© (@

Fig. 5 Effects of changing Lipschitz parameter . = 0.0 to .Z = 0.3,
(a) to (d) respectively.

It is worth noting that the Lipschitz continuity is not sat-
isfiable for arbitrary surfaces. Since we place samples hier-
archically, it is possible the sizing field may need to adapt
more quickly on the interior of the surface than it does on
the edges. In these situations, the Lipschitz constraint needs
to be relaxed to allow the sizing field to adjust.

4 Algorithm

Our implementation takes as input a parametric model and
outputs a triangular mesh. We use the middleware package
CAPRI [16] to provide us direct geometry access to shapes
generated by CAD software. It also gives access to the topol-
ogy of the model, including access to the O-cells, 1-cells, and

2-cells, and their boundary adjacencies. In this section, we
elaborate only on the parts of the update algorithm that are
independent from the middleware.

4.1 Particle Optimization

The sampling algorithm consists of three phases: Phase 1
optimizes O-cell and 1-cell samples based strictly on the
curvature and the Lipschitz constraints, ¢ and 0. Phase
2 continues the O-cell/1-cell optimization, but includes the
topological constraint ¢;. Finally, Phase 3 optimizes sam-
ples with surface patches. A phase is considered complete
when the change from one iteration to the next drops below
some threshold.

We initialize Phase 1 by placing one particle on each 0-
cell, and one particle on the midpoint of each 1-cell. Along
the 1-cells, splitting happens to increase particle density as
the sizing field is inferred. Similarly, if user parameters make
any l-cell particle unnecessary, it will be deleted. Phase 3
is initialized by placing k random samples in the parameter
domain of the surface. Each iteration of the optimization, a
particle updates both its position as well as its sizing field
value ;. A scaling factor A; is used to increase stability.
Pseudocode for the updates of particle positions is shown
in Algorithm 1.

Algorithm 1 Position Update

1: for all particles do

2:  Compute energies E;, dE; (Equations 1,2)

3:  Compute velocity v}’ (Equation 8)

4:  Transform to parameter space, obtain v; (Equation 9)
5:  Compute scaling vi"" = Ay}

6:  Compute new particle position u}*" (Equation 10)

7 Transform to world space x}'*V

8:  Compute the new energy value, E*Y

9: if E/*Y >=E; then

10: if li <= A'min then

11: Skip to next particle on list

12: end if

13: Decrease A; by a factor of 10 and go back to Step 3.
14: end if

15: end for

4.2 Corner Cases

The motivation for splitting the optimization of O-cells and
1-cells into two phases is illustrated in Figure 6. When it
comes to enforcing the topological condition, just as feature
size goes to zero in discontinuous corners, so does our no-
tion of topological feature size. Left unchecked, particles in
corners would continually shrink their o7, split and move in
closer to the corner.
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(a)

Fig. 6 (a) Phase 1, respecting only curvature and Lipschitz constraints.
ball.

To curtail this response, we detect and label corners in
the first phase. Figure 6(a) shows what one corner might
look like after Phase 1 has completed. Notice only the cur-
vature and Lipschitz constraints have been met. The o; value
of the particle on the O-cell is saved as the size of the 0-cell’s
corner ball. This is similar to the protecting ball idea in De-
launay meshing [9]. Figure 6(b) shows the same corner after
Phase 2 has completed. The topological constraint is satis-
fied for all particles that lie outside of the corner ball. The
particles inside adapt smoothly and guarantee the sampling
terminates. An alternative approach would be to fix the po-
sition of particles laying on this corner ball boundary. The
downside to such an approach is that it could easily vio-
late the Lipschitz constraint. With corner cases considered
as part of the o; constraint, the pseudocode for the sigma
update is shown in Algorithm 2.

Algorithm 2 Sigma Update

1: for all particles do
2:  if p; € 1-cell then

3 forall p; €N do

4 if edge(p;) # edge(p;) and not in corner then

5: Set topology constraint 6; = min {O‘T, |x,~ —X J|}

6 end if

7 Set Lipschitz constraint 6. = min {Gf, !rij | L+ Gj}
8 end for

9:  endif

10:  Satisfy Eq. 11: 6; = max {Oyin, min {Gpax, Sx Ok, 507,02 } }
11: end for

4.3 Triangulation in Parameter Space

Our formulation builds a distribution of samples in 3D. To
construct a mesh from these samples, one alternative would
be to directly build a 3D Delaunay triangulation of the point
cloud. Through pruning and filtration one could construct
the surface triangulation and interior tetrahedralization. How-
ever, because of the parametric nature of the system, we
can instead construct triangulations for each 2-cell and its

()

(b) Phase 2, additionally respecting topology constraints outside the corner

boundary in the parameter space. This dimensional reduc-
tion gains us speed in terms of building the triangulation.
However, particles distributed well in 3D may be in poor
configurations in their corresponding parameter space, we
account for this using local modifications after constructing
an initial triangulation.

Fig. 7 Example parameter space before (a) and after (b) affine scaling.

Since the parameter space set of samples may be highly
distorted, we first perform an affine scaling to regularize the
2-cell as much as possible. Figure 7 shows an example of
one such scaling, transforming the parameter space 7(a) into
parameter space 7(b). We obtain this transform by solving
the least squares solution to the transform that best preserves
Euclidean distances. This constraint can be expressed as:

min A Jui— | | (16
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This constraint urges pairwise distances between par-
ticles’ 2D parametric coordinates to be as similar as pos-
sible to pairwise distances in 3D euclidean space. While
we found this transform to be sufficient for the models we
tested, clearly more sophisticated transformations could be
utilized to remove distortion more uniformly in parameter
space. It is conceivable that a sufficiently distorted surface
patch might not benefit from a transformation as simple as
an affine scaling. Given that such a system already requires
the ability to query the surface patch, an optimal transfor-
mation would probably need to take surface information into
account as much as the world space position of particle sam-
ples.

Next, for each 2-cell we construct the 2D Delaunay tri-
angulation of its particle samples as well as the samples on
its boundary curves using Triangle [28]. This triangulation
has two problems which we address. (1) This triangulation
includes extra triangles (within the convex hull) that may
in fact be trimmed portions of the parameter space. (2) The
quality of the triangles lifted back in 3D may be poor.

Our hierarchical sampling scheme is devised in part to
correct for the first concern. The samples of the 1-cells cre-
ate a dense sample of each curve in both spaces. Moreover,
the particle energies on these samples repel particles within
neighboring 2-cells away. As a result, these samples act in
a role similar to a weighted sample used in recent Delau-
nay refinement schemes [8]. If each curve is sampled dense
enough so that in the 2D triangulation each pair of adjacent
1-cell particles has a Delaunay edge, then we can recover
the 1-cell. Will a formal proof of this fact remains future
work, our experimentation indicates we can handle arbitrar-
ily sharp edges, without the need for a weighted Delaunay.
If we were using a full 3D Delaunay triangulation without
weights, we would suffer from angle limitations, as noted
by [24].

Having the 1-cells recovered as a sequence of edges in
the 2D Delaunay triangulation is sufficient to prune away tri-
angles that are exterior to trims. Once we have pruned these
triangles, the remaining triangles are lifted to form the sur-
face triangles of the 2-cell in 3D. However, because of the
distortion of the 2-cells parameterization, they may be of
poor surface quality. A recent result of Cheng and Dey [6]
discusses a scheme to use edge flipping to recover Delaunay
surface triangulations. In their technique, a Gabriel prop-
erty is enforced for each triangle, requiring that each trian-
gle’s diametric ball is empty (a stronger version of the De-
launay property). We use a similar scheme, for each edge,
we check if two triangles that share that edge have diamet-
ric balls that do not contain the opposite, unshared vertex. If
they do not, we flip. The recent theoretical result of Cheng
and Dey showed this property would only work for e-dense
surface triangulations; however, we found our point sets to
be flippable in nearly all cases. A few rare edges could flip

indefinitely. To break these ties, we selected the triangle pair
that maximize the minimum circumradius (similar to the
Delaunay property). Figure 8 shows an example of a two-
patch sphere model that undergoes this process. Figure 8(a)
shows the mesh resulting from the affine scaled 2D Delau-
nay triangulation, while Figure 8(b) shows the mesh after
edge flipping.

t%"

(®)

Fig. 8 Parametric Delaunay before (a) and after (b) edge flips.

4.4 Tetrahedralization

The resultant triangulations are not true 3D Delaunay as we
do not ensure that each triangle has a circumball empty of
all other points. However, we found they still had two desir-
able properties. First, nearly all triangles had excellent as-
pect ratio (shown in the experimental results). Second, these
meshes were quite suitable for a constrained Delaunay tri-
angulation that preserves each triangle. We use TetGen [30]
to generate high quality tetrahedralizations of these surface
meshes.

5 Evaluation

We break the evaluation of this meshing technique into two
parts. First, we compare it with two other popular triangular
meshing techniques for this domain. Then, we evaluate the
technique for its own sake, including: strengths, weaknesses,
and convergence properties.

5.1 Method Comparison

We compare our particle system technique (PSYS) to DelPSC
[7] and CAPRI’s meshing algorithm [15]. We chose these
methods because they were both readily available, and ac-
tively used in practice. We evaluate the three methods using
surface triangle aspect ratio and volume tetrahedra aspect
ratio. To provide a fair test environment, we hand tuned the
parameters of each algorithm to generate surface meshes of
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Fig. 9 From left to right, top to bottom: the output volume meshes of PSYS for the Block, Disk, Hanoi, Screw, Table, and Wingnut models.

approximately the same number of vertices. PSYS uses de-
fault settings of s, = 2, s¢ = 0.5, and .Z = 0.3 for all input
models.

Figure 9 shows the output volume meshes of PSYS while
Figure 10 shows a comparison of the surface meshes for
each of the three algorithms. In the insets of Figure 10 we
show close up views of mesh to highlight how PSYS’s adap-

tivity can build superior geometric approximations using the
same number vertices. While the shape of elements is good
for all meshes, PSYS can produce especially isostropic tri-
angles. Even in areas of high variability for curvature, PSYS
was able to adapt especially well without sacrificing element
quality.
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DelPSC

Fig. 10 Various models meshed. From top to bottom we show the Block, Disk, Hanoi, Screw, Table, and WingNut meshes for PSYS. Insets
show comparison between CAPRI, DelPSC, and PSYS. For some inputs (such as the Block and WingNut) DelPSC approximated smooth regions
without sampling topological curves.
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To investigate this aspect further, we report the geomet-
ric quality of elements on both the surface triangulation as
well as the volume tetrahedra. We use the aspect ratio (cir-
cumradius to shortest edge length ratio) as a criteria for mesh
element quality. Figure 11 shows plots of both mesh qual-
ity statistics for the mesh of each model using each algo-
rithm. For triangle quality, in Figure 11(a), it is interesting
to note that PSYS did exceptionally well in the median case.
DelPSC has a user parameter to bound triangle quality, the
conservative theoretical bounds to guarantee termination re-
quire it to be set near 1.0. In addition, DelPSC does not im-
prove element quality near sharp features. As a result, it out-
performs CAPRI’s surface meshing scheme (which has no
refinement parameters for triangle quality), but its median
behavior is slightly worse than PSYS.

For volume meshing, the algorithms all behave quite sim-
ilarly in the median case as shown by Figure 11(b). Since
TetGen is used for two of the algorithms, this is not an un-
expected result. The full 3D Delaunay refinement used by
DelPSC also achieves results on par with the other algo-
rithms. We remark that setting naive parameters to CAPRI’s
meshing algorithm would build surfaces meshes not suitable
to TetGen. Since CAPRI provides no direct control over the
quality of surface triangles, if their angles are too sharp Tet-
Gen’s refinement could require an impossible number of in-
sertions. We found that PSYS’s good quality triangles al-
ways lead to suitable inputs for TetGen.

5.2 Evaluating PSYS

For most models, we are able to obtain good distributions in
only a few hundred iterations total. The convergence rates
for the particle system to find optimal distributions are based
primarily on the number of particles needed and the level
of adaptivity. Thus, most iterations take place in Phase 3
of the algorithm. It should be clear why more samples re-
quire more iterations, as information has a longer path to
travel before reaching equilibrium. How adaptivity comes
into play is more subtle. We enforce the Lipschitz condi-
tion at every iteration, which means boundary values pull
down local o values very quickly. This change propagates
outward to areas that can otherwise tolerate a larger 6. This
means surfaces may become oversampled prior to fitting the
Lipschitz continuous field. As the field values increase, so
do energies, and particles begin to delete to make room for
particles of larger ¢ values. Relaxing the Lipschitz condi-
tion towards the beginning of the energy minimization could
provide improved converge rates. Additionally, relaxing the
energy requirements for insertion and deletion can improve
convergence rates, but at the cost of less ideal packings.
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(b
Fig. 11 Box plots of the aspect ratios (circumradius/shortest edge
length) on a log scale. We show for triangles (a) and tetrahedra (b)
of each output mesh of each algorithm. These plots show the mini-
mum, 25th percentile, median, 75th percentile, and maximum aspect
ratio over all elements in each mesh.

5.2.1 Performance

The execution time of an iterative particle meshing algo-
rithm is based on two factors: The cost of running a single
iteration, and the number of iterations required for conver-
gence. A naive particle system can behave like an n-body
system, requiring an O(nz) update cost per iteration. While
the work in this paper was motivated by quality, we utilized
a gridded binning structure to reduce the number of particle-
particle lookups for neighborhood computations. More effi-
cient spatial binning structures (e.g. octrees, kd-trees) can
be used, however, our system adds a unique challenge to
these structures. Since we compute a proxy to feature-size
during optimization, the structures need to be optimized for
self-updates as the particle system refines and coarsens. Care
must be taken to ensure that this overhead does not cancel
out the gains of reduced lookup times.

An important avenue unexplored in this work is using
parallel computations to improved of these systems. Parti-
cle systems have a natural parallelism associated to them,
as only local information is required to make an informed
update. The specific formulations could extend well to par-
allel computing environments such as GPUs. Additionally,
any particle system that uses a k-cell hierarchy may poten-
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tially achieve further parallelism across edges and surface
patches, with minimal k-cell interaction.

While we do not have theoretical bounds on convergence
rates, there are two observations that we have made about
these systems. First, like many optimization problems, the
initial state of the system plays a large role in the distance
to convergence. Our seeding strategy is naive in that it at-
tempts to use as few samples as possible early on, causing
many particles to be generated during the early stages of
each phase. A heuristic to bootstrap initial samplings could
provide large speedups for models that require fine sam-
plings. Second, we observe that the Lipschitz constraint tend
to propagate outwards from corners. This means that par-
ticularly long edges with sharp corners tend to take longer
to converge then both long edges without sharp features, as
well as short edges with very sharp features.

5.2.2 Discussion and Limitations

For our test examples, we used default settings that were all
derived in intuitive ways. The curvature parameter was in
unit proportion to surface curvature. The Lipschitz param-
eter provided a fair compromise between triangle isotropy
and adaptivity. Even the topological parameter was set to
be half unit distance, to ensure sampling room on surfaces
with restrictive boundaries. While a typical user might find
themselves modifying these values for particular applica-
tions, care should be taken to ensure that these values are
compatible with the geometry and topology of the model.
This is especially true for the topological parameter. For ex-
ample, the effect of using too large a value is shown in Fig-
ure 12.
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Fig. 12 Example of bad and good topological scaling parameters:
(a) sy =1.0(b) s =0.5

The mesh in Figure 12(a), while still valid, has low qual-
ity elements on this edge region, where particles did not
have enough freedom to distribute evenly. The mesh in Fig-
ure 12(b) instead uses the default topological scaling value,
and allows sufficient freedom for particles to distribute and
provide a more isotropic triangulation.

Due to the nature of discrete samplings in real spaces,
there will always be situations in which a uniform packing is

simply not possible. Most often this error will be distributed
over much of the samples and will not be visually noticeable.
However, occasionally, pockets of low energy show up that
cannot be rectified using our rules, since no single particle
has an energy that is too low or too high.
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Fig. 13 (a) Configuration where pentagonal region remains open.
(b) Configuration where pentagonal region is completed.

Figure 13 illustrates this problem on the endcap of a
cylinder. The triangulation generated in Figure 13(a) has
formed an energy pocket in the center, due to the geome-
try of the cap. The second triangulation in Figure 13(b) has
no such issue, simply due to a differing particle count. This
problem is not unique to PSYS, but rather a shortcoming of
formulating a discrete sampling scheme as a continuous en-
ergy problem. The likelihood of this artifact occurring could
be reduced by increasing the sensitivity of energy measures
for splits and deletes, but the gains would be balanced by a
decrease in stability of the system.

As described, our implementation makes two assump-
tions that may not apply to all models. The first is that curves
and surfaces vary smoothly, with eccentric surface regions
modeled as separate surface patches, rather than higher or-
der surfaces. For a user who wishes to model with higher
order surfaces, our seeding strategy of a single particle per
edge is likely not sufficient. Since particles utilize only local
information, it is conceivable that a sufficiently sharp spike
in curvature could be missed. Remedies for this range from
increasing the initial seed counts, to running a preprocess
for finding local peaks and valleys in the domain. Our affine
scaling step would also be effected by isolated peaks of high
curvature.

The second assumption that our system makes is that 1-
cell corners (sharp edges generated by two surfaces meeting)
will also be protected by guarding 0-cells since these edges
must be bounded. Again, it is conceivable that a complex
patch might have safe O-cell corners, but a sharp interior 1-
cell corner due to some atypical curvature. In such a case,
our implementation would need to apply the same principal
of corner protection to the 1-cells, as it currently does to the
0O-cells.
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6 Conclusions & Future Work

The high quality results generated from our algorithm il-
lustrate how well-suited such particle systems are for sam-
pling parametric domains. Compared to the other methods
we evaluated, our system was able to generate better quality
triangle meshes with the added benefit of adaptively sized
elements. Moreover, the sizing field we adapt to can be in-
ferred directly from the point samples, removing the need
for model preprocessing.

The success of this technique indicates that there are
many unexplored avenues to take with respect to particle
meshing. The approach in this paper is centered around gen-
erating quality isotropic surface meshes, which happen to be
good inputs to a constrained 3D Delaunay solution. How-
ever, optimizing a particle system directly in 3D space from
the start may allow for high-quality, isotropic tetrahedral
meshes similar to other variational techniques [1]. An in-
teresting direction would be to infer the tetrahedralization
without requiring computing a 3D Delaunay triangulation.

Another avenue we believe could prove fruitful is the in-
troduction of anisotropic kernels to the energy formulation.
Doing so could provide an easy and powerful method for
generating anisotropic surface and volume meshes. Coupled
with adaptivity, these meshes could provide ideal inputs to
simulations across many application areas.
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