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Abstract

The conditions sufficient to ensure positivity and linearity preser-
vation for a cell centered finite volume scheme for time-dependent
hyperbolic equations using irregular one-dimensional and triangular
two-dimensional meshes are derived. The conditions require standard
flux limiters to be modified and also involve possible constraints on
the meshes. The accuracy of this finite volume scheme is considered
and is illustrated by two simple numerical examples.

1 Introduction

An important trend in numerical methods for the spatial discretization of
partial differential equations is the move towards using finite element and fi-
nite volume methods on unstructured triangular or tetrahedral meshes. The
reasoning undelying this trend is that such methods offer one way of solving
problems adaptively on general geometries. The finite volume methods used
may be split into cell-vertex methods (in which the solution values are po-
sitioned at mesh points) and cell- centered methods (in which the solution
variables are positioned at the centroids of triangles). Cell-vertex methods
have a clear advantage over cell-centered methods in that there are fewer
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unknowns for a given mesh, but a possible disadvantage that the area (or
volume ) of each cell is larger. While both methods have their advocates
what is clear is that both classes of methods need to be well-understood.
In this respect more work has been done on the analysis and derivation of
cell-vertex schemes e.g. see Barth [1] , Struis et. al. [16] and van Leer [17]
and the references therein. One of the early papers to make an important
advance in this area was that of Cockburn et.al [7] which proves a maximum
principle for a discontinuous Galerkin method of order k+1 which may be
interpreted as a finite volume type scheme.

In the area of cell-centered schemes on triangles perhaps the first exten-
sion of successful one-dimensional schemes to triangles was that of Venkatakr-
ishnan and Barth [18]. Subsequent modifications, e.g. [10] and rediscoveries
Berzins et. al. [3, 19, 6] occurred almost simultaneously. These schemes
all attempt to transfer successful regular one-dimensional and quadrilateral
mesh two dimensional schemes e.g. [15], to unstructured triangular meshes.
The scheme of Durlofsky et. al. [8] has similarities with these methods, ex-
cept that the limited upwind interpolants used are different. More recently
Liu [11] showed that a modified form of this method satisfies a maximum
principle.

The intention in this paper is to show that the schemes of Ware and Berzins
[19] and Venkatakrishnan and Barth [18] satisfy the properties of linearity
preservation and positivity. These properties have been proposed by Stru-
ijs et. al. [16] as being of importance for multi-space dimensional schemes.
should possess linearity preservation and positivity. The positivity analysis
of such methods has often been confined to regular mesh cases e.g. Spekrei-
jse [15]. The intention in this paper is to extend Spekreijse’s analysis to the
one dimensional irregular mesh case and then to the unstructured triangular
mesh algorithm of Ware and Berzins [19]. This paper will show that the
new scheme has these properties under certain restrictions on the limiter
function, the mesh and on the interpolating functions used in the discretiza-
tion method. The analysis is extended to time integration using the Theta
method in a method of lines approach, [2].

An outline of this paper is as follows. Section 2 describes the spatial dis-
cretization method analyzed by Spekreijse. The extension of this method
to irregular meshes is considered in Section 3. The issue of positive time
integration is considered in Section 4. Section 5 extends the approach to
unstructured triangular meshes and considers accuracy issues. Section 6 con-



siders the linearity preservation and positivity of the scheme while Section 7
illustrates these results using two simple numerical examples.

2 Spekreijse’s Discretization Method.

Spekreijse, [15], considers regular square meshes in two space dimensions by
splitting the computation dimensionally. This makes it possible to consider
the extension to irregular meshes by looking at the scalar partial differential
equation in one space dimension given by:

us + [f (u)], =0 (1)

where f(u) is the advective flux function which describes wave movements
in the solution. Spekreijse, [15] , assumes that this can be split into positive
and negative parts:
fu) = filu) + fr(u) (2)

where

dfiliu) > 0 and df;iu) < 0. (3)
In this paper a slightly different set of conditions due to Lin et.al., [10] ,
which restrict only the numerical flux function will be used, see below. The
analysis undertaken will apply equally to both cases, however.
A spatial mesh, with constant spacing h, is defined by

Tiy1 = x; + h i=1l.n, 2y = a

and the mid-points by Tl = 1+ h/2 .

Denote by U;(t) the solution value U(x;,t) at the meshpoint x; at time ¢.
Throughout the paper it will be assumed that all solution values, derivatives
and fluxes depend on the time ¢. The semi-discrete form of equation (1) is

AU:  fixay2 — fic1y2

ar + 2

=0, (4)

where f;11/o and f;_1/, are the fluxes at the mid-points Tip1 and T;_1 re-

spectively. Spekreijse’s method [15] makes use of an approximate Riemann



solver such as the well-known Roe or Osher solvers to calculate these fluxes.
The flux calculated by this approximate Riemann solver will be defined as

Sro (Ul 1, UL ) (5)
and following Lin et.al. [10] , is assumed to satisfy:

* fRm u,u) ( );

® [rn(u,v) is nondecreasing in u and nonincreasing in v;
e frm(-,-) is Lipschitz;

o frm(w,v) = —fru(v,u).

In order to use this approach it is necessary to construct left, Uz'l+l , and right,
2
UlL, solution values at the midpoints z;4,/,. A standard first-order scheme
2

uses U;(t) as the left value and U;11(f) as the right value. In Spekreijse’s
second order scheme the limited left and right solution values at the cell
interface x; L1 are defined by

Ulys = Ui+ 5 (U Uiy) (r;) (6)
1 1
Ui = Ui — 2 (Uitz = Uizr) ®( ) (7)
2 Ti+1

where Uz'l+l and U/, are the limited upwind solutions on the left and right
2

2
respectively. The ratio of gradients, r; , and the limiter function, ®(.) , are

defined as
U = U;

Ui = Uiy’
where ®(.) is van Leer’s harmonic limiter, [15].
The semi-discrete form of equation (1) now becomes

R+ |R|
1+ |R|’

®(R) = (8)

r, =

ou; 1 , ,
o = 5 =T (Ul Ul ) + o (UL, U]

where fr,,(U', U") denotes the flux value calculated by solving the approxi-
mate Riemann problem with left and right states U' and U” respectively.



Spekreijse splits the flux function, f , into its positive and negative parts as
in equation (2) and uses the forward Euler method with time step k to get
the equations:

Uiltasn) = Uilta) + & [£(UL

h )_fT(UZL;—)_fl(UZ_

)+ U )]

L
2

[T

where:=1,...nand t,4; =1, + k.

3 1-d Variable Mesh Formulation

There are two alternative formulations that allow the one-dimensional flux
limiter scheme described above to be used on non-uniform meshes. One is
a cell-vertex approach, as used in the software of Pennington and Berzins,
[12] and the other is a cell-centered approach. The cell-centered approach is
closer to the two-dimensional case of interest and so will be considered first.
In this case the point x; is assumed to be at the center of a cell of width h;,
and so the spatial mesh is defined by

Tigr = ¥ + (hi+hip1)/2, i=1,..,n, 1 = a,
and the mid-points by Tl = ¥ + hi/2 =z — hiz1/2.

Three new terms are introduced to cater for the irregular mesh. The first

two are the linearly extrapolated upwind values on the left and right of the

cell interface: Uzﬁ—l and Uﬁ_;- The third is the linearly interpolated centered
2 2

value, Ug_ 1. These terms are defined as follows:
2

hi (U; — Ui_q)

L — .
Ui+§ = Ui+ hii+ by (9)
hivi (Uiz2 — Uitr)
Ul = Uy — == , 10
+3 +1 hi-l—l n hi-|—2 ( )

hi (Uier — Uy)
C o ) 7 1+1 7
UH% = Uit hi 4+ higq
hiv1 (Uipr = U)
hiy1 + hy

= Uy —



where dependence of the solution values on the time ¢ has been omitted but
is understood.

The limited upwind value on the left of the cell interface is given by a modified
form of equation (6) i.e.

A Gl ISy

l —_—
UH% hi + hi—y

(I)(rg-k;—)v

where the limiter function ®(.) may be defined as in equation(8), and the

ratio of gradients with left upwind bias is rﬁ_l_l, rather than r;, and will be
2

defined below. This equation can be rewritten using equation (9) as
I
Uiy

=U; + ‘I)(TL%)(UZ&% - U;). (13)

[N

A similar process gives the limited upwind value on the right,

Uyr = Uspr + @0, (U1 = Unga). (14)

The irregular mesh equivalent of the ratio of the regular mesh gradients r;
as defined in equation (8) is

! l U = U; ] " l Ui —U;_4 ]_1
r.. 1 = 9
2 (hi + hiy1)/2 (hi + hi—1)/2

which may be rewritten using equations (9) to (12) as

_[jC L -1

= UG U x [Uh —u
Using a similar process on the right, the ratios of gradients is

P [_ Uipn — U; ] [_ Uiga — Uipa ]_1
" (fi + hig1)/2 (hiy1 4 hig2)/2]

7

NI

which may be again rewritten using equations (9) to (12) as

-1

TTLZ[UC

. R _ g7
= [0, = U] < [0~ U]

The limiter function @(.) is assumed to be unchanged for the moment.



Using the values UL 1, UR 1 and UO L the scheme devised by Spekreijse can
2

2

be extended to the 1rregular mesh case. Substituting the values defined by
equations (13) and (14) into equation (4) enables the scheme to be written

as
oU; 1 ) )
7t = [ (Ul U)o+ o (U4, 0)].

Addition and subtraction of the term fgr,, (U 1, UT ) gives

11—

% _ [me (Ul U l) Frm (Uf UL )]

t+ [frm (UL, ULy ) = o (U3, Ul -

hi

At a particular time ¢,, this can now be written as

% Alyy o (Uiga (tn) = Ui(tn)) + Bity jo(Ui(tn) = Uia (L)) (15)

where
) | Srn(UL Ul ) = (UL UL ULy = ULy
2T T U, = UL, Uir1(ty) — Us(tn)
§ 1 me(U+;,UZ?°+%) —me(Uj_%,U;;%) Uj% — Uj_%
2Ty, UL, —UL, Ui(tn) — Uir(tn)

Spekreijse’s flux splitting approach leads to very similar coefficients.

. 1 fl(U;_l)_fl( Z_;) Ulin — UL

i1/2 T h; UZT+— — UZ_% Ui (tn) — Ui(ty)
1 fT(Ul )_fT(UZ'l_l_) Ul_|_1_ _UZ'I_l_

i-1/2 — T 1 T 77l : . >
U, UL, Uil Ul

Applying the forward Fuler method with time step &k gives:

Uiltns1) = Ui(tn) + kAL (Ui (tn) = Ui(1n)) = kBiLy o (Uis(tn) = Ui (20))-



The definition of positivity, [16], requires that every new value U;(t,41) can
be written as a convex combination of old values:

(tnt1) Zc] t,) with ¥Ye¢; >0, (16)

while 3" ¢; = 1 for consistency. This guarantees, [16], a maximum principle
for the discrete steady state solution thus prohibiting the occurrence of new
extrema and imposing stability on the explicit scheme. From this definition

and B! is that

the requirement on the coefficients A" /2

2-|—1/2>0 Bz 1/2>0 and 1 kAZ-I—l/? kBZ 1/2>0.

—-1/2

Application of the mean value theorem to the definitions of the coefficients
A?_l_l/2 and B, and use of either Spekreijse’s flux function splitting prop-
erties defined in equation (2) or the Riemann solver properties defined in
equation (5) show that this requires that
r r l l

UH— UZ_E > 0 and UH—_ Ui_%
Consider the right-hand term for example. Substituting from equations (13)
and (9) gives

U+_ Ul_% . h; O, ) — hiog  @(riiiys)
Ui(tn) — Ui—a (1) hithioy - T2 hithicn Ty,

> 0.

Following Spekreijse, this is positive if

h; hiog 1
" ®(R) — — 1
hi + hi—q (£) h‘l’hzls
From this equation and equation (2.13) in Spekreijse it follows that

oh, ohi s O(R)
< — O <M —M<
@ = hi + hi—q (#) = M. ~ hi+hi1 R

where ae[—2,0] and M is a positive constant. In other words the standard
limiter ®(R) in Spekreijse’s equation (2.13) is replaced by the limiter ®(R)
multiplied by —==— . A slight rearrangement of equation (17) gives:

1+ ®(S) >0 VR S (I7)

<2+ a,

2h;_
hithi—1

h‘I'hzl

hi_y ¢(9)
R — - 7 > X
(1+q)(R))+hi‘|‘hi—1 (1 5 ) >0 VR, S



Consideration of extreme mesh ratios in this equation shows that the limiter
must satisfy

—1 < ®R) <M and —M < %@(S)gw%, S, (18)

This shows that standard limiters may need to be modified for the irregular
mesh case. For example the van Leer limiter as defined in equation (9) may
be replaced by one which satisfies equation (18) with M =2 i.e.

R+ |R|

(k) = L+ max(1,|R]|)

(19)

Remark In the case when the mesh cells and midpoints are defined by
Tig1 = x; + hyy, t=1,..n 11 = a

and the mid-points by Tigr = rp + hi/2 , as in the software of Pennington
and Berzins, [12], a similar analysis to that above leads to an equivalent
equation to (17) given by

h; 1

() - =90 > .
R — S 0(S) 2 0 VRS

From this it follows that the van Leer limiter may be used without modifica-

2 +

tion in a cell-vertex scheme but other limiters that allow negative values when
hﬁil is large will need to be modified to preserve positivity. For

—

the mesh ratio

example, if the van Albeda limiter used by Spekreijse and Venkatakrishnan
and Barth [18] and defined by

R+ R?
o = 2
B = (20
is used and R = —0.5 then ®(—0.5) = —1/5 and a mesh-ratio value of
hﬁ_i1 = 10 will result in the positivity condition being violated.

3.1 Systems of Equations

The present proof extends to systems of equations without difficulty provid-
ing flux vector splitting is used to decompose the flux function into positive
and negative fluxes, see Roe [13]. The extension to using the Roe and Osher
type approximate Riemann solvers is beyond the scope of this paper.
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4 Time Integration

The above spatial discretization scheme results in a system of differential
equations, each of which is of the form of equation (4). This system of
equations can be written as the initial value problem:

Q = EN (tv Q(t) ) ’ Q(O) givenv (21)
where the N dimensional vector, U(t), is defined by
Q(t) = [U(xlvt) ’ U(x%t)v "'7U(xN7t) ]T

The point ; is the center of the ¢ th cell and U;(t) is a numerical approxima-
tion to u(x;,t) . Although Section 3 showed that the discretization scheme is
positive when used with the forward Euler method it is necessary to extend
this analysis to the method of time integration used by Berzins and Ware
[6] and Berzins [2] . Numerical integration of equation (21) provides the ap-
proximation, V (1), to the vector of exact p.d.e. solution values at the mesh
points, u(t) .

V() = [V(xy, 1), V(ea,t),...Vien,t) ]

The Theta method code of Berzins and Furzeland [4] used here selects func-
tional iteration automatically for the non-stiff o.d.e.s resulting from convec-
tion dominated problems. The numerical solution at ¢,,41 = t,, + k, where k
is the time step size, as denoted by V(t,41), is defined by

Vitur) = V() + (1= 0k V(1) +0 k F(tugn, V(tas)

in which V(t,) and K(tn) are the numerical solution and its time derivative
at the previous time ¢, and the default value of 4 is 0.55. This system of
equations is solved using functional iteration, see [2] ,

where m = 0,1, ... ,generally less than 3 and using a second-order predictor
or with a predictor based on the forward Euler method:

VO@p) = V(ta) + k Ex(te, V(1) (22)
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In order to show that the coupling of this scheme with a spatial discretization
method is positive, the precise form of the o.d.e. system must be stated i.e.

Fy (6, V(1)) = —ai Vi(la) + Sﬁv(K(tn))-
where Sy (V. = > c;Vi(
JF

and where from equation (15) the coefficients ¢; ; are zero except for
Ciit1 = A?+1/27 Ciu—1 = an—l/2 and a; = Az—l—l/? + BZ 1/2 (23)

thus making S%(V(¢,)) a positive function for positive values of V(¢,).
Applying the predictor to the ¢th equation gives

VOOUlp) = (1 — ka;) Viltn) + k SL(V (1)

Substituting this value in the corrector gives
VI (tugr) = Vilt) — aik [(1 — & a;) Vi(t,) + kS(V(1,)]
k0 Sy (VO (L)) + k(L= 0)[=a; Vilta) + Sy(L(La))]
which may be written as
VI (twgn) = Vilta) [1 = b ai+0 K a?] +
FIL=0(+ ka)] Sy(V(1) + k0 Sy(VO(t4)).
The next corrector iteration gives, after some manipulation,
VI (lg1) = Viltn) [1 = ka; + 0k*a?(1 — Oka,) |
+ k[(1—0)(1 — 0ka;) + 0°a?k?] Sy (V(t,))
= Cak? SV (L) + k0 Sy (VD (L)) (24)
Assuming that the final two terms in this equation may be combined to give
SN (tgr) = k00 VO (t41)) = Sy (LD (L) = kasSi (VO (L))
Substituting for yu )(tn_H) and K(O)(tm_l) from equations (22) in this expres-
sion enables equation (24) to be rewritten as
V(L) = Vilta) [1 = ka; + 0k*a(1 — Oka;) ] +
E[(1—0)(1 — 0ka;) + (1 — a;k)0a; k*)SN(V(1,))
+ k0 Sy([(1 = ka;)(1 — a;8) + 0k*a?)Vi(l,) +
k1 —2ka;0 — k*0%a;)S5(V(1,)) + k2055 (S5 (V(1.))).
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From equation (4) the predictor will preserve positivity if

1—kai Z 0

b
while for the first corrector iteration to preserve positivity

1 —60(1 4 ka;) > 0or ka; < 10%07

and for the second corrector iteration to preserve positivity,

1

1 —20ka; — 0°k*a;) > ka;, < ————
( ¢ ai) 2 Oorka < GEToE

Combining the last three equations and substituting from equation (23) gives

a CFL-like condition

1—0 L
0 02+ 0k)

k (A?+1/2 + an—l/2) < Min(l, (25)
Remark In the case when § = 0.5 and only one corrector iteration is per-

formed the method is the second order positivity-preserving Runge-Kutta

method used by Shu and Osher [14] .

5 Triangular Mesh Discretization Method

Although the two-dimensional method considered below was developed for
systems of equations, for ease of exposition, consider the class of scalar p.d.e.s:

—+ =+ = =0 (26)

where f = f(x,y,u) and ¢ = ¢g(x,y,u) are the flux functions in = and y
respectively and with appropriate boundary and initial conditions.

The cell-centered finite volume scheme described here uses triangular ele-
ments as the control volumes over which the divergence theorem is applied.
The finite volume representation of a solution is formally piecewise constant
within each control volume and is not associated with any particular posi-
tion. To allow the construction of high order schemes however the centroid
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of the triangle is defined as the nodal position and the solution value is asso-
ciated with that point. In Figure 1 for example, the solution at the centroid
of triangle ¢ is U; , the solutions at the centroids of the triangles surrounding
triangle ¢ are U;, U; and Uy, and the next level of centroid values used by the
discretization method on the ith triangle are: U,,,U,,U,,U,, U, and U,. The
mesh point at which a solution value, say U, is defined is denoted by (s, ys)

Integration of equation (26) on the ith triangle gives:

Ju B af 0dg
Aiadﬂ_—/Ai(aeray)dQ, (27)

where A; is the area of triangle ¢ and (2 is the integration variable defined on
A; . The area integral on the left hand side of equation (27) is approximated
by a one point quadrature rule. The quadrature point is the centroid of
triangle ;. By using the divergence theorem, the area integral on the right
hand side is replaced by a line integral around the triangular element:

ouU;

ASh
at C,

where (; is the circumference of triangle : and S is the integration variable
along that circumference. The line integral along each edge is approximated
by using the midpoint quadrature rule. The numerical flux is evaluated at
the midpoint of the edge:

ou 1
y = —Z(fikAyoJ — girAxo1+ fi;Ay1 2

—9iiAx1 5+ fulys0 — gulayp),

where Awx;; =2, —a; , Ay, ; =y; —y; and f;; and g;; are the fluxes in the
and y directions respectively evaluated at the midpoint of the triangle edge
separating the triangles associated with U; and U .

The fluxes f;; and g;; are evaluated by using approximate Riemann solvers
frm and ggr.,, respectively. At the midpoint of each edge one-dimensional
Riemann problems are solved in the cartesian directions with the left solution
value being defined as that internal to triangle ¢ and the right solution value
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being defined as that external to triangle ::

ou

1
E - A'( me( k)A?ml - ng(U Uk)Al’Ol T (28)
' me( 2]7 )AyIQ - ng(UZIJ,U )A{L’lz —|—
me( ol Zl)AyQO - ng(Uthzl)Ax?,O )7

where Ul»lj is the internal solution, with respect to triangle z, at the midpoint
of the edge between U; and U; and U; is the external solution, with respect to
triangle ¢, on edge j. Note that U, = Ul as a consequence of this notation.
The approximate Riemann solver satlsﬁes that same conditions as in the one-
dimensional case, see equation (5), except that the first condition is replaced
by the conditions

gRTrL(uvu) = g(u) ) me(uvu) = f(u) : (29)
Consider for example the two-dimensional advection equation:

Ou 0u 30 _y

ot dr | Ay ’
where @ and b are positive constants for example. The discrete form, see
equation (28) is

an 1
ot A[ me( ik zk)Ay()l - ng(UzlmUk)AxOl + (30)
! me(UzlijT )Ayl,Q - ng(UlevU )AxIZ +
me(Uzh Uz )Aylo - ng(Uzh Uz )Al’zp ]

A standard first-order scheme uses the piecewise constant solution on either
side of the edge as the upwind values, e.g.

l T

Although this scheme results in numerical solutions with no undershoots or
overshoots the amount of numerical diffusion introduced is often not accept-

able.

5.1 Limited Interpolants in Two Dimensions

The approach of using limited linear upwind values to create left and right
values for the Riemann solver will now be used on unstructured meshes.
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In this approach the internal and external values at cell interface of two
triangular elements, Ul»lj and U[; in equation (28) are replaced with the limited
linearly interpolated values defined by

U = Uit (U5 =), (31)
Ur o= U+ o0 (U =) (32)

ij
where UZ% is the internal linear upwind value, Ufj is the external linear upwind
value, rgj
upwind bias ratio of gradients. The internal and external ratio of linear
gradients are defined in a similar manner to that in Section 3 by

is the internal upwind bias ratio of gradients and rf; is the external

Uc — v,
Pl il

- US — U
VT UE—T;

and TZJ == UZ]]% — U]7 (33)

where Ug is the linear centered value at the cell interface. The choice of
limiter function is left open at this point. Equations (31), (32) and (33)
describe the unstructured flux limiter scheme but in terms of new, and as
yet undefined, interpolated and extrapolated values: UZ»?, UZJ; and Ug.

In a similar way to Spekreijse, UZ»? and UZJ; are defined using linear extrapola-
tion but on the unstructured mesh. The value UZ% is constructed by forming
a linear interpolant using the solution values U;, Uy and U; at the three
centroids. An alternative interpretation is that linear extrapolation is being
used based on the solution value U; and an intermediate solution value (it-
self calculated by linear interpolation) U which lies on the line joining the

centroids at which U; and Uy are defined (see Figure 1) i.e.

Ui — Uy
dig

where the generic term d,; denotes the positive distance between points «

UZ»? =U, + dij,i (34)

and b, so for example d;;; denotes the positive distance between points ¢
and ¢, see Figure 1, as defined by

diiy = /(o — 25 + (i — yiy)? (35)

where (x;;,y;;) are the co-ordinates of U;; . The value Ufj 1s defined in a
similar way using the centroid values U;, Us; and U, . This also may be viewed



® centroid solution values

O interpolated solution values
< midpoints of edges

Figure 1: Construction of Interpolants
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as linear extrapolation based on the solution value U; and an intermediate
solution value (itself calculated by linear interpolation) U, which lies on the
line joining the centroids at which U, and U, are defined, see Figure 1, i.e.

U] - Urs

Ui = Uj + dij, 7
JTSs

(36)
For certain meshes the three centroid points may be collinear in which case
it is not possible to define a linear interpolant. In this case the immediate
upwind centroid value will be used: internally U; or externally Uj.

The centered value, Ug, is constructed from the six values: U;, U;, Uy, Uy,
Us; and U, by a series of one-dimensional linear interpolations. Three linear
interpolations onto the edge being considered are performed using opposing
pairs of centroid values, see Figure 1. U, U;; and Uy, are found using the
pairs U; and U,, U; and U; and Uy and U, respectively. If the midpoint
of the edge lies between Uy, and U;; then the centered value is found by
linear interpolation using these two values. Otherwise the values Uj, and
U; are used to compute the centered value at the midpoint by using linear
interpolation.

5.2 Interpolation Errors.

Assuming that all the centroid values are exact then the interpolation er-
rors associated with the linear interpolants defined by equations (34) and
(36) above may be determined by lengthy but straightforward Taylor’s series
analysis. Denote the interpolation error EZ]; by
L L L
By =i — U, (37)
where ufj is the left exact value (allowing for possible discontinuities in the ex-
act solution) at the mid-point of the edge and it is assumed that the centroid
values used to form UZ% are exact. Standard results for linear interpolation
then give:
p_ 1 diij
B =5 | diji dijan(tinm )i + T i g (v e
where 7 is a local co-ordinate along the line through points [k, ¢, and ¢5 and
( is a local co-ordinate defined along the line through points [, [k and k .
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Hence (uss);; is the second derivative of u with respect to s evaluated at the
point 27 . In the same way, denote the interpolation error Eg by

R_ R R
Eij = Uy — Uijv

(38)
where ug is the right exact value at the mid-point of the edge and it is
assumed that the centroid values used to form Ufj are exact. Standard results
for linear interpolation then give:

1 d;

Ezlj = 5 dzy,] dij,Ts(uMu)ij + " d7«77«5d5757«(u1,y)lk

dins
where p is a local co-ordinate along the line through points rs, j, and ¢5 and
v is a local co-ordinate defined along the line through points r,rs and s .
Thus from equation (35) both interpolation errors are second order in the
mesh spacing distances d.. .

Remark Consider the case of a degenerate triangle in which the three points,
say, i, k,l are almost collinear. The distances dy g and d;;, may be (in the
worst case) a factor of 10 larger than d; ;. Suppose further that d;; ;. ~ 2d;;,
. The expression for EZ]; given above then reads.

EE =2 ()i + 50(uee )] -

In experiments we do not appear to have observed a loss of accuracy due
to this source of error. Venkatakrishnan and Barth [18] have suggested a
modification to the method stencil that overcomes this difficulty.

5.3 Spatial Truncation Error

The above results on interpolation errors may be combined with standard
results for the effect of quadrature errors, see [9], to show that the underlying
method is second order accurate when the limiter is not used. Consider
equation (28) and note that the spatial truncation error in the flux derivative
approximations for the :th triangle, as denoted by TFE; is, after ignoring
the second order quadrature error, a combination of the interpolation errors
defined in Section 5.1 i.e.

1
TEZ = —X[ (CLEZ'Lk)AyOJ — (bEZ]z)AxO,l —|—
¢ (CLEZ%)AyLQ — (bEZL])Al’LQ —|—
(GE;?)A?}ZO — (bEﬁ)Al’Qp ]
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where the individual errors are defined as equations (37) and (38 ) and where
it is assumed that the limiter is set to one. From the results in Section 5.1 it
is possible to extract a constant second order factor, say d2,. . depending on
the minimum of the distances , dy, as defined in equation (35), from each of
the errors in this equation. Assuming that the individual errors all have the
form
Esz = dyi ei
the expression for the truncation error may be rewritten as:

d? .
TE;, = —M[ (aef)Ayor — (bel})Azor +
: (ae{})Aym — (befj)A:Jcl 5 +
(aef)Ayso — (beh)Azao .

It is now possible to define two linear functions on the ith triangle E¢(x,y)
and F,(x,y) such that E¢(x,y) has values efk,efj and e at the midpoints
ik,i7 and ¢l and F,(x,y) has values eﬁg,e{} and el at the midpoints ik, 7j
and ¢/ . From the linearity of these functions and the divergence theorem it

follows that

E 1

o=~ Avon + ef Ay + el Aya]
and Y 1

ayg = Z[eiAon + ez'L]‘Ale + €5A$270].

Hence the truncation error (ignoring the quadrature error due to the use of
the mid-point rule) may be written as

oF oF
2 ! g
TE, =d;, |a 9 +b 7y ].

The error due to the use of the quadrature rule is derived by Jeng and

Chen [9]. The extension to handle the case when the limiters are used is
as described by Spekreijse [15] and results in observed convergence rates of
between one and two, see Section 7 and Durlofsky et. al. [8] .

6 Analysis of Discretization Method

This section will consider whether or not the new scheme has the properties
of linearity preservation and positivity, as proposed in recent work by Struijs
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et. al. [16].

6.1 Linearity Preserving Methods

A linearity-preserving spatial discretization method is defined by [16], as
one which preserves the exact steady state solution whenever this is a linear
function of the space coordinates x and y, for any arbitrary triangulation of
the domain. This is equivalent to second order accuracy on regular meshes,
see [16]. The simplest way to prove a spatial discretization scheme is linearity
preserving is to show that the residual truncation error will be zero when an
arbitrary linear solution is substituted.

The following is an outline proof that the unstructured flux limiter scheme is
linearity preserving for a general nonlinear scalar partial differential equation.
Consider the discrete form given by equation (28) with the internal and
external values defined by equations (31), (32) and (33). Consider the first
timestep. The centroid values will be point samples of the initial linear
profile. Since Uk

177 2
extrapolation the]y Wﬂ]l be exact also and rgj = ri; = 1. Define the limiter
function ®(.) to have the standard property ®(1) = 1, see [15] . The upwind
values used in the Riemann solver Ul»lj and U], are now UZ% and Ufj since
equations (31) and (32) simplify. Since UZ»? and UZJ; are exact they must be
the same value, U;;. The discrete equation is now

UZ and Ug are all created by linear interpolation or

AL =
ot

— [ Uik, Ui) Ayor +  grm (Usk, Uik) Ao
— frm (Ui, Ui Ayr2 + grm (Ui, Uij) Ay o
— frn (Ui, Un)Ayao 4+ grm (Ui, Ui) Az .

Using the property of the Riemann solver defined by equation (29) and noting
that the midpoint quadrature rule used along the edges is exact for linear
data ensures that the discrete approximation for the line integral is exact.
The above equation then simplifies to

ouU;

At = _7{@ (U)o, + g(U)m,] dS.

The one-point area quadrature rule used on the left hand side is exact for
linear data provided the quadrature point is at the centroid. Converting
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the line integral around the circumference C; into an area integral using the
divergence theorem gives

oU; B 0 0
[ Grda=— [ St 5,909
and therefore ou p p
G 50+ et =0,

which is equivalent to the original differential equation (26). The initial linear
solution will thus be preserved providing that sufficient accuracy is used in
the time integration method.

6.2 Positivity

The definition of positivity, [16], requires that every new value can be written
as a convex combination of old values, see equation (16). The approach of
Spekreijse, already used in Section 3, uses linearization and the mean value
theorem via the definition of the coefficients A and B as in equation (15), to
reduce the nonlinear case to what is effectively a linear advection equation.
The same approach is implicitly used here in restricting attention to the
linear advection equation as defined by equation (5)and its discrete form,
equation (30). Assuming that the triangle is aligned to the characteristic
directions as in Figure 1 and given that the solution to the Riemann problem
is the product of the upwind value and either a or b, the discrete form then
simplifies to
O (A — (A, + (39)
: (aUle)Ang — (bUle)A:L'LQ +
(aUh)Ayz0 — (DU})Azz0 .

Note the Ax; ; and Ay; ; go anticlockwise around the triangular element so
Azor + Az o+ Azog = Ayoq + Ay12 + Ayao = 0.

This enables equation (39) to be rewritten as

oU;
_AZW = a(Uil - Z'TI)AyO,l - b(Uzll - Uirk)AxZO +
a(Uzl] - Z'TI)AyL? - b(Ul - Z'Tk)AxL?

)
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From equations (31) and (32) it can be seen that these internal and external
values at the cell interface are a combination of the centroid values and
linear upwind values. Without loss of generality, and by using the approach
of Section 3 and Spekreijse [15], consider the term a(U}, — U})Ayo, . For
positivity it is sufficient, see Section 3, to prove that

for positive multipliers v;, v, 7v;, v, and v, . Using the notation of equations
(34, 36) the left side of this may be written as

Uit s T () — vy e .
After noting that,
U= Upn (U =) (U}f —~ U;)
i diry Ug —u
this may be rewritten as
Uy = Up+ by (Ui — Uyy) ®(R) — (U] = U)) @ (41)

where

U%—Ui U»?—U; dip.;
= il R
" &%—@)75 &W—m O T

The centered value U is formed by linear interpolation i.e.
US = Balagl; + (1 — a)U;) + (1 = Ba) (U + (1 — anp)Up)

for
0 < oy, o, B < 1.

Similarly

It is worth noting that the need to have positive multipliers in these two
linear interpolants effectively restricts the mesh that can be used. A similar
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restriction is also used by Lin et. al. [10] . Using these last two equations to
substitute in equation (41) gives

o(5)
U; (1 + 61, (R) — —521 Om))

—Uj Sir i ®(R)(1 — i) — Uy (1= Ba) (1 — amp) @T
= (1 + ik P(R) + @( - ﬁuau)) — U,(1 = Ba)a @ (43)

which is of the form specified by equation (40).
Inspection of this equation shows that the Positivity Condition is that
the limiter ®(.) must be positive and must satisfy ®(5)/5 <1 as in equation

(18)).

6.3 An Alternative Schemes and Limiters.

The schemes of Venkatakrishnan and Barth [18] and Lin et. al. [10] both use
the same upwind interpolants as that considered above but different limiters
- which may now be assessed in the light of the above results.

In many situations it is reasonable to expect that the edge midpoint value
lies almost halfway between the centroids on either side of the edge and
consequently that 3; ~ 1 and a; = % In this case the positivity condition
may be relaxed to ®(5)/5 < 1.2, as is satisfied by the van Albeda limiter
and defined by equation 20 used by Venkatakrishnan and Barth [18] . The
proof above also applies to the case in which Uj; is replaced by a positive
combination of two other centroid values and d;;; is modified appropriately.
Thus the method devised by Venkatakrishnan and Barth [18] for dealing with
degenerate upwind triangles also fits into the same framework.

The limiter used by Lin et.al.[10] differs from the Ware and Berzins scheme
in that the limited upwind values Ul»lj and U] are defined by
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Figure 2: Demonstration of non-linearity preserving nature.

where k is some arbitrary constant & > 0.5, the function minmod is defined
by
min(|al, |b]). sign(a) ifsign(a) = sign(b)

0 otherwise ’

minmod(a, b) = {

and U; and U; are defined as in Section 5. This definition of the limiter
function leads to a loss of linearity preservation. Consider the situation in
Figure 2 where the current solution is some linear function of y only, say
u(x,y) = y. Although the solution is smooth the limiter will not allow the
full upwind value to be used at the midpoint of the edge ab as the term
k. (U; — U;) will be zero. In an attempt to overcome this deficiency other
similar limiters are defined by Lin et al for different triangulation cases in [10].
Lin et. al. also proved their scheme satisfies the local maximum principle for
certain triangulations.

7 Numerical Examples.

The following Burgers’ equation will be used to illustrate the theoretical
results obtained above

du | 0 (), 0 () _ (P o
at  Odx \ 2 dy \ 2 — P\ 922 dy?
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Mesh A Mesh B

Figure 3: Meshes used in numerical experiments.

with an exact solution of

u(z,y,t) = (1 +exp((z +y —1)/p))-1.

The value of p is chosen to be 0.0001 so that the partial differential equation
is convection-dominated. The domain is

(,y,1) € [0,1] x [0,1] x (0,1.25]

with boundary conditions and an initial condition given by the exact solution.
From the exact solution it can be seen that the computed solution should lie
in the range [0,1]. At every timestep the computed solution is examined tri-
angle by triangle and the maximum absolute overshoot or undershoot outside
the range [0,1] is noted.
The solution was first computed using Mesh A shown in Figure 7 but reg-
ularly subdivided to contain 2048 triangular elements. The Riemann solver
used was the Engquist-Osher solver for Burgers’ equation. Using the stan-
dard van Leer limiter the maximum under/overshoot recorded was 0.0. So
although the unmodified scheme can be used to provide oscillation free solu-
tions in certain circumstances.
The computation was repeated but now using Mesh B shown in Figure 7
regularly subdivided to contain 2816 triangular elements. The maximum
under/overshoot is now 7.3369e-3 with the van Leer limiter. No overshoot
was observed with the new limiter or the van Albeda limiter on either mesh.
The next issue is how the new limiter affects the accuracy of the scheme.
Consider the solution of the linear conservation law

U+ ugy +uy, =0, (x,y,1) €10,1] x [0,1] x (0, 7] (44)
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L1 Error against mesh spacing for different limiters

01 | modifiedv.l. +
[ /A van albeda

van leer

L1 Error

001 |

0.001 L
0.001 0.01
mesh spacing, |

Figure 4: Log-log graph of error versus mesh spacing.

with exact solution
u(x,y,t) =sin(2ra — t) sin(2ry — 1), (45)

which is used to specify the initial and boundary conditions. This equation
was solved on Mesh A in Figure 7 using the first order scheme, original
scheme and modified scheme. The L1 error, weighted by element areas, was
evaluated at times 0.1 to 1.0 in steps of 0.1 and these then averaged. The
smallest mesh used contained 200 elements with a 0.1 mesh spacing and the
largest mesh used contained 18200 elements with a 0.0125 mesh spacing. The
results of these experiments are plotted in a log-log graph shown in Figure 7
The results show that the scheme with the original limiter has a convergence
rate of 1.80 and that with the new limiter has a convergence rate of 1.75.
The convergence rate with the van Albeda limiter is ?

8 Summary

This paper has shown that standard flux limiter schemes may need to be
modified when used with cell-centered finite volume schemes on irregular
one-dimensional meshes and unstructured triangular meshes in two space
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dimensions. A new modified form of the van Leer limiter was introduced
together with additional but straightforward conditions on the interpolants
in the case of triangular meshes. This combination was shown to ensure both
theoretically and experimentally that the new modified scheme of Ware and
Berzins [6, 19] for unstructured meshes is positive and linearity preserving
for a model problem.
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