
Positive Cell-Centered Finite VolumeDiscretization Methods for HyperbolicEquations on Irregular MeshesM.Berzins and J.M.Ware �July 25, 1994AbstractThe conditions su�cient to ensure positivity and linearity preser-vation for a cell centered �nite volume scheme for time-dependenthyperbolic equations using irregular one-dimensional and triangulartwo-dimensional meshes are derived. The conditions require standard
ux limiters to be modi�ed and also involve possible constraints onthe meshes. The accuracy of this �nite volume scheme is consideredand is illustrated by two simple numerical examples.1 IntroductionAn important trend in numerical methods for the spatial discretization ofpartial di�erential equations is the move towards using �nite element and �-nite volume methods on unstructured triangular or tetrahedral meshes. Thereasoning undelying this trend is that such methods o�er one way of solvingproblems adaptively on general geometries. The �nite volume methods usedmay be split into cell-vertex methods (in which the solution values are po-sitioned at mesh points) and cell- centered methods (in which the solutionvariables are positioned at the centroids of triangles). Cell-vertex methodshave a clear advantage over cell-centered methods in that there are fewer�School of Computer Studies, University of Leeds, Leeds LS2 9JT, U.K.1



2unknowns for a given mesh, but a possible disadvantage that the area (orvolume ) of each cell is larger. While both methods have their advocateswhat is clear is that both classes of methods need to be well-understood.In this respect more work has been done on the analysis and derivation ofcell-vertex schemes e.g. see Barth [1] , Struis et. al. [16] and van Leer [17]and the references therein. One of the early papers to make an importantadvance in this area was that of Cockburn et.al [7] which proves a maximumprinciple for a discontinuous Galerkin method of order k+1 which may beinterpreted as a �nite volume type scheme.In the area of cell-centered schemes on triangles perhaps the �rst exten-sion of successful one-dimensional schemes to triangles was that of Venkatakr-ishnan and Barth [18]. Subsequent modi�cations, e.g. [10] and rediscoveriesBerzins et. al. [3, 19, 6] occurred almost simultaneously. These schemesall attempt to transfer successful regular one-dimensional and quadrilateralmesh two dimensional schemes e.g. [15], to unstructured triangular meshes.The scheme of Durlofsky et. al. [8] has similarities with these methods, ex-cept that the limited upwind interpolants used are di�erent. More recentlyLiu [11] showed that a modi�ed form of this method satis�es a maximumprinciple.The intention in this paper is to show that the schemes of Ware and Berzins[19] and Venkatakrishnan and Barth [18] satisfy the properties of linearitypreservation and positivity. These properties have been proposed by Stru-ijs et. al. [16] as being of importance for multi-space dimensional schemes.should possess linearity preservation and positivity. The positivity analysisof such methods has often been con�ned to regular mesh cases e.g. Spekrei-jse [15]. The intention in this paper is to extend Spekreijse's analysis to theone dimensional irregular mesh case and then to the unstructured triangularmesh algorithm of Ware and Berzins [19]. This paper will show that thenew scheme has these properties under certain restrictions on the limiterfunction, the mesh and on the interpolating functions used in the discretiza-tion method. The analysis is extended to time integration using the Thetamethod in a method of lines approach, [2].An outline of this paper is as follows. Section 2 describes the spatial dis-cretization method analyzed by Spekreijse. The extension of this methodto irregular meshes is considered in Section 3. The issue of positive timeintegration is considered in Section 4. Section 5 extends the approach tounstructured triangular meshes and considers accuracy issues. Section 6 con-



3siders the linearity preservation and positivity of the scheme while Section 7illustrates these results using two simple numerical examples.2 Spekreijse's Discretization Method.Spekreijse, [15], considers regular square meshes in two space dimensions bysplitting the computation dimensionally. This makes it possible to considerthe extension to irregular meshes by looking at the scalar partial di�erentialequation in one space dimension given by:ut + [f (u)]x = 0 (1)where f(u) is the advective 
ux function which describes wave movementsin the solution. Spekreijse, [15] , assumes that this can be split into positiveand negative parts: f (u) = fl (u) + fr (u) (2)where dfl (u)du � 0 and dfr (u)du � 0 : (3)In this paper a slightly di�erent set of conditions due to Lin et.al., [10] ,which restrict only the numerical 
ux function will be used, see below. Theanalysis undertaken will apply equally to both cases, however.A spatial mesh, with constant spacing h, is de�ned byxi+1 = xi + h ; i = 1:::n; x1 = aand the mid-points by xi+ 12 = xi + h=2 :Denote by Ui(t) the solution value U(xi; t) at the meshpoint xi at time t.Throughout the paper it will be assumed that all solution values, derivativesand 
uxes depend on the time t. The semi-discrete form of equation (1) is@Ui@t + fi+1=2 � fi�1=2h = 0 ; (4)where fi+1=2 and fi�1=2 are the 
uxes at the mid-points xi+ 12 and xi� 12 re-spectively. Spekreijse's method [15] makes use of an approximate Riemann



4solver such as the well-known Roe or Osher solvers to calculate these 
uxes.The 
ux calculated by this approximate Riemann solver will be de�ned asfRm �U li+ 12 ; U ri+ 12� (5)and following Lin et.al. [10] , is assumed to satisfy:� fRm(u; u) = f(u) ;� fRm(u; v) is nondecreasing in u and nonincreasing in v;� fRm(�; �) is Lipschitz;� fRm(u; v) = �fRm(v; u).In order to use this approach it is necessary to construct left, U li+ 12 , and right,U ri+ 12 , solution values at the midpoints xi+1=2. A standard �rst-order schemeuses Ui(t) as the left value and Ui+1(t) as the right value. In Spekreijse'ssecond order scheme the limited left and right solution values at the cellinterface xi+ 12 are de�ned byU li+ 12 = Ui + 12 (Ui � Ui�1)�(ri) (6)U ri+ 12 = Ui+1 � 12 (Ui+2 � Ui+1)�( 1ri+1 ) (7)where U li+ 12 and U ri+ 12 are the limited upwind solutions on the left and rightrespectively. The ratio of gradients, ri , and the limiter function, �(:) , arede�ned as ri = Ui+1 � UiUi � Ui�1 ; �(R) = R+ jRj1 + jRj ; (8)where �(:) is van Leer's harmonic limiter, [15].The semi-discrete form of equation (1) now becomes@Ui@t = 1h h�fRm �U li+ 12 ; U ri+ 12�+ fRm �U li� 12 ; U ri� 12�i ;where fRm(U l; U r) denotes the 
ux value calculated by solving the approxi-mate Riemann problem with left and right states U l and U r respectively.



5Spekreijse splits the 
ux function, f , into its positive and negative parts asin equation (2) and uses the forward Euler method with time step k to getthe equations:Ui(tn+1) = Ui(tn) + kh hfr(U li� 12 )� fr(U li+ 12 )� fl(U ri� 12 ) + fl(U ri+ 12 )i ;where i = 1; :::; n and tn+1 = tn + k .3 1-d Variable Mesh FormulationThere are two alternative formulations that allow the one-dimensional 
uxlimiter scheme described above to be used on non-uniform meshes. One isa cell-vertex approach, as used in the software of Pennington and Berzins,[12] and the other is a cell-centered approach. The cell-centered approach iscloser to the two-dimensional case of interest and so will be considered �rst.In this case the point xi is assumed to be at the center of a cell of width hi,and so the spatial mesh is de�ned byxi+1 = xi + (hi + hi+1)=2 ; i = 1; :::; n; x1 = a ;and the mid-points by xi+ 12 = xi + hi=2 = xi+1 � hi+1=2:Three new terms are introduced to cater for the irregular mesh. The �rsttwo are the linearly extrapolated upwind values on the left and right of thecell interface: ULi+ 12 and URi+ 12 . The third is the linearly interpolated centeredvalue, UCi+ 12 . These terms are de�ned as follows:ULi+ 12 = Ui + hi (Ui � Ui�1)hi�1 + hi ; (9)URi+ 12 = Ui+1 � hi+1 (Ui+2 � Ui+1)hi+1 + hi+2 ; (10)UCi+ 12 = Ui + hi (Ui+1 � Ui)hi + hi+1 (11)= Ui+1 � hi+1 (Ui+1 � Ui)hi+1 + hi (12)



6where dependence of the solution values on the time t has been omitted butis understood.The limited upwind value on the left of the cell interface is given by a modi�edform of equation (6) i.e.U li+ 12 = Ui + hi (Ui � Ui�1)hi + hi�1 �(rli+ 12 );where the limiter function �(:) may be de�ned as in equation(8), and theratio of gradients with left upwind bias is rli+ 12 , rather than ri, and will bede�ned below. This equation can be rewritten using equation (9) asU li+ 12 = Ui + �(rli+ 12 )(ULi+ 12 � Ui): (13)A similar process gives the limited upwind value on the right,U ri+ 12 = Ui+1 + �(rri+ 12 )(URi+ 12 � Ui+1): (14)The irregular mesh equivalent of the ratio of the regular mesh gradients rias de�ned in equation (8) isrli+ 12 = " Ui+1 � Ui(hi + hi+1)=2# � " Ui � Ui�1(hi + hi�1)=2#�1 ;which may be rewritten using equations (9) to (12) asrli+ 12 = hUCi+ 12 � Uii� hULi+ 12 � Uii�1 :Using a similar process on the right, the ratios of gradients isrri+ 12 = "� Ui+1 � Ui(hi + hi+1)=2#� "� Ui+2 � Ui+1(hi+1 + hi+2)=2#�1 ;which may be again rewritten using equations (9) to (12) asrri+ 12 = hUCi+ 12 � Ui+1i� hURi+ 12 � Ui+1i�1 :The limiter function �(:) is assumed to be unchanged for the moment.



7Using the values ULi+ 12 , URi+ 12 and UCi+ 12 , the scheme devised by Spekreijse canbe extended to the irregular mesh case. Substituting the values de�ned byequations (13) and (14) into equation (4) enables the scheme to be writtenas @Ui@t = 1hi h�fRm �U li+ 12 ; U ri+ 12�+ fRm �U li� 12 ; U ri� 12�i :Addition and subtraction of the term fRm �U li� 12 ; U ri+ 12� giveshi@Ui@t = � hfRm �U li+ 12 ; U ri+ 12 �� fRm �U li� 12 ; U ri+ 12�i+ hfRm �U li� 12 ; U ri� 12�� fRm �U li� 12 ; U ri+ 12 �i :At a particular time tn this can now be written as@Ui@t = Ani+1=2(Ui+1(tn)� Ui(tn)) +Bni�1=2(Ui(tn)� Ui�1(tn)) (15)whereAni+1=2 = � 1hi fRm(U li� 12 ; U ri+ 12 )� fRm(U li� 12 ; U ri� 12 )U ri+ 12 � U ri� 12 U ri+ 12 � U ri� 12Ui+1(tn)� Ui(tn)Bni�1=2 = � 1hi fRm(U li+ 12 ; U ri+ 12 )� fRm(U li� 12 ; U ri+ 12 )U li+ 12 � U li� 12 U li+ 12 � U li� 12Ui(tn)� Ui�1(tn) :Spekreijse's 
ux splitting approach leads to very similar coe�cients.Ani+1=2 = � 1hi fl(U ri+ 12 )� fl(U ri� 12 )U ri+ 12 � U ri� 12 U ri+ 12 � U ri� 12Ui+1(tn)� Ui(tn)Bni�1=2 = � 1hi fr(U li+ 12 )� fr(U li� 12 )U li+ 12 � U li� 12 U li+ 12 � U li� 12Ui(tn)� Ui�1(tn) :Applying the forward Euler method with time step k gives:Ui(tn+1) = Ui(tn) + kAni+1=2(Ui+1(tn)� Ui(tn))� kBni�1=2(Ui(tn)� Ui�1(tn)):



8The de�nition of positivity, [16], requires that every new value Ui(tn+1) canbe written as a convex combination of old values:Ui(tn+1) = nXj=1 cjUj(tn) with 8cj � 0 ; (16)while P cj = 1 for consistency. This guarantees, [16], a maximum principlefor the discrete steady state solution thus prohibiting the occurrence of newextrema and imposing stability on the explicit scheme. From this de�nitionthe requirement on the coe�cients Ani+1=2 and Bni�1=2 is thatAni+1=2 � 0 ; Bni�1=2 � 0 and 1 � k Ani+1=2 � k Bni�1=2 � 0 :Application of the mean value theorem to the de�nitions of the coe�cientsAni+1=2 and Bni�1=2 and use of either Spekreijse's 
ux function splitting prop-erties de�ned in equation (2) or the Riemann solver properties de�ned inequation (5) show that this requires thatU ri+ 12 � U ri� 12Ui+1(tn)� Ui(tn) � 0 and U li+ 12 � U li� 12Ui(tn) � Ui�1(tn) � 0 :Consider the right-hand term for example. Substituting from equations (13)and (9) givesU li+ 12 � U li� 12Ui(tn)� Ui�1(tn) = 1 + hihi + hi�1�(rli+1=2) � hi�1hi + hi�1 �(rli�1=2)rli�1=2 :Following Spekreijse, this is positive if1 + hihi + hi�1�(R) � hi�1hi + hi�1 1S �(S) � 0 8 R; S: (17)From this equation and equation (2.13) in Spekreijse it follows that� � 2hihi + hi�1�(R) �M; �M � 2hi�1hi + hi�1 �(R)R � 2 + �;where ��[�2; 0] and M is a positive constant. In other words the standardlimiter �(R) in Spekreijse's equation (2.13) is replaced by the limiter �(R)multiplied by 2hi�1hi+hi�1 . A slight rearrangement of equation (17) gives:hihi + hi�1 (1 + �(R)) + hi�1hi + hi�1  1� �(S)S ! � 0 8 R; S:



9Consideration of extreme mesh ratios in this equation shows that the limitermust satisfy� 1 � �(R) � M and �M � 1S�(S) � 1 8 R; S: (18)This shows that standard limiters may need to be modi�ed for the irregularmesh case. For example the van Leer limiter as de�ned in equation (9) maybe replaced by one which satis�es equation (18) with M = 2 i.e.�(R) = R + jRj1 +max(1; jRj) (19)Remark In the case when the mesh cells and midpoints are de�ned byxi+1 = xi + hi ; i = 1; :::; n; x1 = aand the mid-points by xi+ 12 = xi + hi=2 , as in the software of Penningtonand Berzins, [12], a similar analysis to that above leads to an equivalentequation to (17) given by2 + hihi�1�(R) � 1S �(S) � 0 8 R; S:From this it follows that the van Leer limiter may be used without modi�ca-tion in a cell-vertex scheme but other limiters that allow negative values whenthe mesh ratio hihi�1 is large will need to be modi�ed to preserve positivity. Forexample, if the van Albeda limiter used by Spekreijse and Venkatakrishnanand Barth [18] and de�ned by�(R) = R +R21 +R2 (20)is used and R = �0:5 then �(�0:5) = �1=5 and a mesh-ratio value ofhihi�1 = 10 will result in the positivity condition being violated.3.1 Systems of EquationsThe present proof extends to systems of equations without di�culty provid-ing 
ux vector splitting is used to decompose the 
ux function into positiveand negative 
uxes, see Roe [13]. The extension to using the Roe and Oshertype approximate Riemann solvers is beyond the scope of this paper.



104 Time IntegrationThe above spatial discretization scheme results in a system of di�erentialequations, each of which is of the form of equation (4). This system ofequations can be written as the initial value problem:_U = FN ( t; U (t) ) ; U(0) given ; (21)where the N dimensional vector, U(t), is de�ned byU(t) = [U(x1; t) ; U(x2; t); :::; U(xN; t) ]T :The point xi is the center of the i th cell and Ui(t) is a numerical approxima-tion to u(xi; t) . Although Section 3 showed that the discretization scheme ispositive when used with the forward Euler method it is necessary to extendthis analysis to the method of time integration used by Berzins and Ware[6] and Berzins [2] . Numerical integration of equation (21) provides the ap-proximation, V (t), to the vector of exact p.d.e. solution values at the meshpoints, u(t) . V (t) = [V (x1; t) ; V (x2; t); :::; V (xN ; t) ]T :The Theta method code of Berzins and Furzeland [4] used here selects func-tional iteration automatically for the non-sti� o.d.e.s resulting from convec-tion dominated problems. The numerical solution at tn+1 = tn + k, where kis the time step size, as denoted by V (tn+1), is de�ned byV (tn+1) = V (tn) + (1� �)k _V (tn) + � k FN(tn+1; V (tn+1)) ;in which V (tn) and _V (tn) are the numerical solution and its time derivativeat the previous time tn and the default value of � is 0.55. This system ofequations is solved using functional iteration, see [2] ,V (m+1)(tn+1) = V (tn) + (1 � �)k _V (tn) + � k FN (tn+1; V (m)(tn+1));where m = 0; 1; ::: ,generally less than 3 and using a second-order predictoror with a predictor based on the forward Euler method:V (0)(tn+1) = V (tn) + k FN (tn; V (tn)): (22)



11In order to show that the coupling of this scheme with a spatial discretizationmethod is positive, the precise form of the o.d.e. system must be stated i.e.Fi (tn; V (tn)) = �ai Vi(tn) + SiN(V (tn)):where SiN (V (tn)) = Xj 6=i cijVj(tn) :and where from equation (15) the coe�cients ci;j are zero except forci;i+1 = Ani+1=2; ci;i�1 = Bni�1=2 and ai = Ani+1=2 +Bni�1=2 (23)thus making SiN (V (tn)) a positive function for positive values of V (tn).Applying the predictor to the ith equation givesV (0)i (tn+1) = (1 � k ai) Vi(tn) + k SiN (V (tn)):Substituting this value in the corrector givesV (1)i (tn+1) = Vi(tn)� aik� h(1 � k ai) Vi(tn) + kSiN (V (tn))i+k� SiN (V (0)(tn+1)) + k(1� �)[�ai Vi(tn) + SiN(V (tn))]which may be written asV (1)i (tn+1) = Vi(tn) [1 � k ai + � k2 a2i ] +k [1� �(1 + k ai)] SiN (V (tn)) + k � SiN(V (0)(tn+1)):The next corrector iteration gives, after some manipulation,V (2)i (tn+1) = Vi(tn) [1� kai + �k2a2i (1 � �kai) ]+ k [(1� �)(1 � �kai) + �2a2i k3] SiN (V (tn))� �2aik2SiN (V (0)(tn+1) + k � SiN (V (1)(tn+1)): (24)Assuming that the �nal two terms in this equation may be combined to giveSiN(V (1)(tn+1)� k�aiV (0)(tn+1)) = SiN(V (1)(tn+1))� k�aiSiN (V (0)(tn+1)):Substituting for V (1)(tn+1) and V (0)(tn+1) from equations (22) in this expres-sion enables equation (24) to be rewritten asV (2)i (tn+1) = Vi(tn) [1� kai + �k2a2i (1 � �kai) ] +k[(1� �)(1� �kai) + (1� aik)�2aik2]SiN(V (tn))+ k � SiN([(1� kai)(1� ai�) + �k2a2i ]Vi(tn) +k [1� 2kai� � k2�2ai]SiN(V (tn)) + k2�SiN (SiN (V (tn)))):



12From equation (4) the predictor will preserve positivity if1� kai � 0 ;while for the �rst corrector iteration to preserve positivity1 � �(1 + kai) � 0 or kai � 1� �� ;and for the second corrector iteration to preserve positivity,(1� 2�kai � �2k2ai) � 0 or kai � 1�(2 + �k) ;Combining the last three equations and substituting from equation (23) givesa CFL-like conditionk (Ani+1=2 +Bni�1=2) � Min(1; 1 � �� ; 1�(2 + �k) ); (25)Remark In the case when � = 0:5 and only one corrector iteration is per-formed the method is the second order positivity-preserving Runge-Kuttamethod used by Shu and Osher [14] .5 Triangular Mesh Discretization MethodAlthough the two-dimensional method considered below was developed forsystems of equations, for ease of exposition, consider the class of scalar p.d.e.s:@u@t + @f@x + @g@y = 0 (26)where f = f(x; y; u) and g = g(x; y; u) are the 
ux functions in x and yrespectively and with appropriate boundary and initial conditions.The cell-centered �nite volume scheme described here uses triangular ele-ments as the control volumes over which the divergence theorem is applied.The �nite volume representation of a solution is formally piecewise constantwithin each control volume and is not associated with any particular posi-tion. To allow the construction of high order schemes however the centroid



13of the triangle is de�ned as the nodal position and the solution value is asso-ciated with that point. In Figure 1 for example, the solution at the centroidof triangle i is Ui , the solutions at the centroids of the triangles surroundingtriangle i are Ul, Uj and Uk and the next level of centroid values used by thediscretization method on the ith triangle are: Um; Un; Up; Uq; Ur and Us. Themesh point at which a solution value, say Us, is de�ned is denoted by (xs; ys).Integration of equation (26) on the ith triangle gives:ZAi @u@t d
 = � ZAi  @f@x + @g@y! d
; (27)where Ai is the area of triangle i and 
 is the integration variable de�ned onAi . The area integral on the left hand side of equation (27) is approximatedby a one point quadrature rule. The quadrature point is the centroid oftriangle i. By using the divergence theorem, the area integral on the righthand side is replaced by a line integral around the triangular element:Ai@Ui@t = � ICi(f:nx + g:ny)dS;where Ci is the circumference of triangle i and S is the integration variablealong that circumference. The line integral along each edge is approximatedby using the midpoint quadrature rule. The numerical 
ux is evaluated atthe midpoint of the edge:@u@t = � 1Ai (fik�y0;1 � gik�x0;1+ fij�y1;2�gij�x1;2 + fil�y2;0 � gil�x2;0);where �xi;j = xj � xi , �yi;j = yj � yi and fij and gij are the 
uxes in the xand y directions respectively evaluated at the midpoint of the triangle edgeseparating the triangles associated with Ui and Uj .The 
uxes fij and gij are evaluated by using approximate Riemann solversfRm and gRm respectively. At the midpoint of each edge one-dimensionalRiemann problems are solved in the cartesian directions with the left solutionvalue being de�ned as that internal to triangle i and the right solution value



14being de�ned as that external to triangle i:@u@t = � 1Ai ( fRm(U lik; U rik)�y0;1 � gRm(U lik; U rik)�x0;1 +fRm(U lij; U rij)�y1;2 � gRm(U lij ; U rij)�x1;2 +fRm(U lil; U ril)�y2;0 � gRm(U lil; U ril)�x2;0 ); (28)where U lij is the internal solution, with respect to triangle i, at the midpointof the edge between Ui and Uj and U rij is the external solution, with respect totriangle i, on edge j. Note that U ri;j = U lj;i as a consequence of this notation.The approximate Riemann solver satis�es that same conditions as in the one-dimensional case, see equation (5), except that the �rst condition is replacedby the conditions gRm(u; u) = g(u) ; fRm(u; u) = f(u) : (29)Consider for example the two-dimensional advection equation:@u@t + a@u@x + b@u@y = 0;where a and b are positive constants for example. The discrete form, seeequation (28) is@Ui@t = � 1Ai [ fRm(U lik; U rik)�y0;1 � gRm(U lik; U rik)�x0;1 +fRm(U lij; U rij)�y1;2 � gRm(U lij ; U rij)�x1;2 +fRm(U lil; U ril)�y2;0 � gRm(U lil; U ril)�x2;0 ]: (30)A standard �rst-order scheme uses the piecewise constant solution on eitherside of the edge as the upwind values, e.g.U lij = Ui; U rij = Uj :Although this scheme results in numerical solutions with no undershoots orovershoots the amount of numerical di�usion introduced is often not accept-able.5.1 Limited Interpolants in Two DimensionsThe approach of using limited linear upwind values to create left and rightvalues for the Riemann solver will now be used on unstructured meshes.



15In this approach the internal and external values at cell interface of twotriangular elements, U lij and U rij in equation (28) are replaced with the limitedlinearly interpolated values de�ned byU lij = Ui + �(rlij) �ULij � Ui� ; (31)U rij = Uj + �(rrij) �URij � Uj� ; (32)where ULij is the internal linear upwind value, URij is the external linear upwindvalue, rlij is the internal upwind bias ratio of gradients and rrij is the externalupwind bias ratio of gradients. The internal and external ratio of lineargradients are de�ned in a similar manner to that in Section 3 byrlij = UCij � UiULij � Ui and rrij = UCij � UjURij � Uj ; (33)where UCij is the linear centered value at the cell interface. The choice oflimiter function is left open at this point. Equations (31), (32) and (33)describe the unstructured 
ux limiter scheme but in terms of new, and asyet unde�ned, interpolated and extrapolated values: ULij , URij and UCij .In a similar way to Spekreijse, ULij and URij are de�ned using linear extrapola-tion but on the unstructured mesh. The value ULij is constructed by forminga linear interpolant using the solution values Ui; Uk and Ul at the threecentroids. An alternative interpretation is that linear extrapolation is beingused based on the solution value Ui and an intermediate solution value (it-self calculated by linear interpolation) Ulk which lies on the line joining thecentroids at which Ul and Uk are de�ned (see Figure 1) i.e.ULij = Ui + dij;i Ui � Ulkdi;lk ; (34)where the generic term da;b denotes the positive distance between points aand b, so for example dij;i denotes the positive distance between points ijand i, see Figure 1, as de�ned bydi;ij = q(xi � xij)2 + (yi � yij)2 ; (35)where (xij; yij) are the co-ordinates of Uij . The value URij is de�ned in asimilar way using the centroid values Uj, Us and Ur . This also may be viewed
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17as linear extrapolation based on the solution value Uj and an intermediatesolution value (itself calculated by linear interpolation) Urs which lies on theline joining the centroids at which Ur and Us are de�ned, see Figure 1, i.e.URij = Uj + dij;j Uj � Ursdj;rs : (36)For certain meshes the three centroid points may be collinear in which caseit is not possible to de�ne a linear interpolant. In this case the immediateupwind centroid value will be used: internally Ui or externally Uj.The centered value, UCij , is constructed from the six values: Ui, Uj, Uk, Ul,Us and Ur by a series of one-dimensional linear interpolations. Three linearinterpolations onto the edge being considered are performed using opposingpairs of centroid values, see Figure 1. Ulr, Uij and Uks are found using thepairs Ul and Ur, Ui and Uj and Uk and Us respectively. If the midpointof the edge lies between Uks and Uij then the centered value is found bylinear interpolation using these two values. Otherwise the values Ulr andUij are used to compute the centered value at the midpoint by using linearinterpolation.5.2 Interpolation Errors.Assuming that all the centroid values are exact then the interpolation er-rors associated with the linear interpolants de�ned by equations (34) and(36) above may be determined by lengthy but straightforward Taylor's seriesanalysis. Denote the interpolation error ELij byELij = uLij � ULij ; (37)where uLij is the left exact value (allowing for possible discontinuities in the ex-act solution) at the mid-point of the edge and it is assumed that the centroidvalues used to form ULij are exact. Standard results for linear interpolationthen give: ELij = 12 "dij;i dij;lk(u��)ij + di;ijdi;lk dk;lkdl;lk(u��)lk#where � is a local co-ordinate along the line through points lk; i; and ij and� is a local co-ordinate de�ned along the line through points l; lk and k .



18Hence (uss)ij is the second derivative of u with respect to s evaluated at thepoint ij . In the same way, denote the interpolation error ERij byERij = uRij � URij ; (38)where uRij is the right exact value at the mid-point of the edge and it isassumed that the centroid values used to form URij are exact. Standard resultsfor linear interpolation then give:ERij = 12 "dij;j dij;rs(u��)ij + dj;ijdj;rs dr;rsds;sr(u��)lk#where � is a local co-ordinate along the line through points rs; j; and ij and� is a local co-ordinate de�ned along the line through points r; rs and s .Thus from equation (35) both interpolation errors are second order in themesh spacing distances d�� .Remark Consider the case of a degenerate triangle in which the three points,say, i; k; l are almost collinear. The distances dk;lk and dl;lk may be (in theworst case) a factor of 10 larger than di;lk. Suppose further that dij;lk � 2dij;i. The expression for ELij given above then reads.ELij = d2ij;i [(u��)ij + 50(u��)lk] :In experiments we do not appear to have observed a loss of accuracy dueto this source of error. Venkatakrishnan and Barth [18] have suggested amodi�cation to the method stencil that overcomes this di�culty.5.3 Spatial Truncation ErrorThe above results on interpolation errors may be combined with standardresults for the e�ect of quadrature errors, see [9], to show that the underlyingmethod is second order accurate when the limiter is not used. Considerequation (28) and note that the spatial truncation error in the 
ux derivativeapproximations for the ith triangle, as denoted by TEi is, after ignoringthe second order quadrature error, a combination of the interpolation errorsde�ned in Section 5.1 i.e.TEi = � 1Ai [ (aELik)�y0;1 � (bERik)�x0;1 +(aELij)�y1;2 � (bELij)�x1;2 +(aERil )�y2;0 � (bELil )�x2;0 ]:



19where the individual errors are de�ned as equations (37) and (38 ) and whereit is assumed that the limiter is set to one. From the results in Section 5.1 itis possible to extract a constant second order factor, say d2min, depending onthe minimum of the distances , dab, as de�ned in equation (35), from each ofthe errors in this equation. Assuming that the individual errors all have theform ELik = d2min eLikthe expression for the truncation error may be rewritten as:TEi = �d2minAi [ (aeLik)�y0;1 � (beRik)�x0;1 +(aeLij)�y1;2 � (beLij)�x1;2 +(aeRil)�y2;0 � (beLil)�x2;0 ]:It is now possible to de�ne two linear functions on the ith triangle Ef (x; y)and Eg(x; y) such that Ef(x; y) has values eLik; eLij and eRil at the midpointsik; ij and il and Eg(x; y) has values eRik; eLij and eLil at the midpoints ik; ijand il . From the linearity of these functions and the divergence theorem itfollows that @Ef@x = � 1Ai [eLik�y0;1 + eLij�y1;2 + eRil�y2;0]and @Eg@y = 1Ai [eRik�x0;1+ eLij�x1;2 + eLil�x2;0]:Hence the truncation error (ignoring the quadrature error due to the use ofthe mid-point rule) may be written asTEi = d2min[a @Ef@x + b @Eg@y ]:The error due to the use of the quadrature rule is derived by Jeng andChen [9]. The extension to handle the case when the limiters are used isas described by Spekreijse [15] and results in observed convergence rates ofbetween one and two, see Section 7 and Durlofsky et. al. [8] .6 Analysis of Discretization MethodThis section will consider whether or not the new scheme has the propertiesof linearity preservation and positivity, as proposed in recent work by Struijs



20et. al. [16].6.1 Linearity Preserving MethodsA linearity-preserving spatial discretization method is de�ned by [16], asone which preserves the exact steady state solution whenever this is a linearfunction of the space coordinates x and y, for any arbitrary triangulation ofthe domain. This is equivalent to second order accuracy on regular meshes,see [16]. The simplest way to prove a spatial discretization scheme is linearitypreserving is to show that the residual truncation error will be zero when anarbitrary linear solution is substituted.The following is an outline proof that the unstructured 
ux limiter scheme islinearity preserving for a general nonlinear scalar partial di�erential equation.Consider the discrete form given by equation (28) with the internal andexternal values de�ned by equations (31), (32) and (33). Consider the �rsttimestep. The centroid values will be point samples of the initial linearpro�le. Since ULij , URij and UCij are all created by linear interpolation orextrapolation they will be exact also and rlij = rrij = 1. De�ne the limiterfunction �(:) to have the standard property �(1) = 1 , see [15] . The upwindvalues used in the Riemann solver U lij and U rij are now ULij and URij sinceequations (31) and (32) simplify. Since ULij and URij are exact they must bethe same value, Uij. The discrete equation is nowAi@Ui@t = � fRm(Uik; Uik)�y0;1 + gRm(Uik; Uik)�x0;1� fRm(Uij; Uij)�y1;2 + gRm(Uij; Uij)�x1;2� fRm(Uil; Uil)�y2;0 + gRm(Uil; Uil)�x2;0:Using the property of the Riemann solver de�ned by equation (29) and notingthat the midpoint quadrature rule used along the edges is exact for lineardata ensures that the discrete approximation for the line integral is exact.The above equation then simpli�es toAi@Ui@t = � ICi hf(U):nx + g(U):nyi :dS:The one-point area quadrature rule used on the left hand side is exact forlinear data provided the quadrature point is at the centroid. Converting



21the line integral around the circumference Ci into an area integral using thedivergence theorem givesZAi @Ui@t d
 = � ZAi @@xf(U) + @@yg(U)d
;and therefore @Ui@t + @@xf(U) + @@yg(U) = 0;which is equivalent to the original di�erential equation (26). The initial linearsolution will thus be preserved providing that su�cient accuracy is used inthe time integration method.6.2 PositivityThe de�nition of positivity, [16], requires that every new value can be writtenas a convex combination of old values, see equation (16). The approach ofSpekreijse, already used in Section 3, uses linearization and the mean valuetheorem via the de�nition of the coe�cients A and B as in equation (15), toreduce the nonlinear case to what is e�ectively a linear advection equation.The same approach is implicitly used here in restricting attention to thelinear advection equation as de�ned by equation (5)and its discrete form,equation (30). Assuming that the triangle is aligned to the characteristicdirections as in Figure 1 and given that the solution to the Riemann problemis the product of the upwind value and either a or b, the discrete form thensimpli�es to @Ui@t = � 1Ai [ (aU lik)�y0;1 � (bU rik)�x0;1 +(aU lij)�y1;2 � (bU lij)�x1;2 +(aU ril)�y2;0 � (bU lil)�x2;0 ]: (39)Note the �xi;j and �yi;j go anticlockwise around the triangular element so�x0;1 +�x1;2+�x2;0 = �y0;1 +�y1;2 +�y2;0 = 0:This enables equation (39) to be rewritten as�Ai@Ui@t = a(U lik � U ril)�y0;1 � b(U lil � U rik)�x2;0 +a(U lij � U ril)�y1;2 � b(U lij � U rik)�x1;2 :



22From equations (31) and (32) it can be seen that these internal and externalvalues at the cell interface are a combination of the centroid values andlinear upwind values. Without loss of generality, and by using the approachof Section 3 and Spekreijse [15], consider the term a(U lik � U ril)�y0;1 . Forpositivity it is su�cient, see Section 3, to prove thatU lik � U ril = 
iUi � 
lUl � 
jUj � 
nUn � 
kUk; (40)for positive multipliers 
i; 
l; 
j; 
n and 
k . Using the notation of equations(34, 36) the left side of this may be written asUi + dik;i Ui � Uljdi;lj �(UCik � UiULik � Ui )� Ul � dil;l Ul � Umndl;mn �(UCil � UlURil � Ul ) :After noting that, Ul � Umndl;mn = (UCil � Ul)dil;l  URil � UlUCil � Ul!this may be rewritten asUi � Ul + �ik;lj (Ui � Ulj) �(R) � (UCil � Ul) �(S)S (41)where R =  ULik � UiUCik � Ui! ; S =  URil � UlUCil � Ul! and �ik;lj = dik;idi;lj :The centered value UCil is formed by linear interpolation i.e.UCil = �il(�ilUl + (1� �il)Ui) + (1 � �il)(�nkUn + (1 � �nk)Uk)for 0 � �il; �nk; �il � 1 :Similarly Ulj = �ljUl + (1� �lj)Uj ; for 0 � �il � 1 : (42)It is worth noting that the need to have positive multipliers in these twolinear interpolants e�ectively restricts the mesh that can be used. A similar



23restriction is also used by Lin et. al. [10] . Using these last two equations tosubstitute in equation (41) givesUi  1 + �ik;lj�(R) � �(S)S �il(1 � �il)!�Uj �ik;lj�(R)(1 � �il) � Uk (1� �il)(1� �nk) �(S)S�Ul  1 + �ik;lj�lj�(R) + �(S)S (1 � �il�il)! � Un(1� �il)�nk �(S)S (43)which is of the form speci�ed by equation (40).Inspection of this equation shows that the Positivity Condition is thatthe limiter �(:) must be positive and must satisfy �(S)=S � 1 as in equation(18)).6.3 An Alternative Schemes and Limiters.The schemes of Venkatakrishnan and Barth [18] and Lin et. al. [10] both usethe same upwind interpolants as that considered above but di�erent limiters- which may now be assessed in the light of the above results.In many situations it is reasonable to expect that the edge midpoint valuelies almost halfway between the centroids on either side of the edge andconsequently that �il � 1 and �il � 12. In this case the positivity conditionmay be relaxed to �(S)=S � 1:2, as is satis�ed by the van Albeda limiterand de�ned by equation 20 used by Venkatakrishnan and Barth [18] . Theproof above also applies to the case in which Ulj is replaced by a positivecombination of two other centroid values and dlj;i is modi�ed appropriately.Thus the method devised by Venkatakrishnan and Barth [18] for dealing withdegenerate upwind triangles also �ts into the same framework.The limiter used by Lin et.al.[10] di�ers from the Ware and Berzins schemein that the limited upwind values U lij and U rij are de�ned byU lij = Ui +minmod�ULij � Ui; k: (Uj � Ui)�U rij = Uj +minmod�URij � Uj ; k: (Ui � Uj)�



24
a

b

u = y

1

2

U ji
u = yUFigure 2: Demonstration of non-linearity preserving nature.where k is some arbitrary constant k � 0:5, the function minmod is de�nedby minmod(a; b) = ( min(jaj; jbj): sign(a) if sign(a) = sign(b)0 otherwise ;and Ui and Uj are de�ned as in Section 5. This de�nition of the limiterfunction leads to a loss of linearity preservation. Consider the situation inFigure 2 where the current solution is some linear function of y only, sayu(x; y) = y. Although the solution is smooth the limiter will not allow thefull upwind value to be used at the midpoint of the edge ab as the termk:(Uj � Ui) will be zero. In an attempt to overcome this de�ciency othersimilar limiters are de�ned by Lin et al for di�erent triangulation cases in [10].Lin et. al. also proved their scheme satis�es the local maximum principle forcertain triangulations.7 Numerical Examples.The following Burgers' equation will be used to illustrate the theoreticalresults obtained above@u@t + @@x  u22 !+ @@y  u22 ! = p @2u@x2 + @2u@y2!
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Mesh BMesh A

Figure 3: Meshes used in numerical experiments.with an exact solution ofu(x; y; t) = (1 + exp((x+ y � t)=p))�1:The value of p is chosen to be 0:0001 so that the partial di�erential equationis convection-dominated. The domain is(x; y; t) 2 [0; 1]� [0; 1]� (0; 1:25]with boundary conditions and an initial condition given by the exact solution.From the exact solution it can be seen that the computed solution should liein the range [0,1]. At every timestep the computed solution is examined tri-angle by triangle and the maximumabsolute overshoot or undershoot outsidethe range [0,1] is noted.The solution was �rst computed using Mesh A shown in Figure ? but reg-ularly subdivided to contain 2048 triangular elements. The Riemann solverused was the Engquist-Osher solver for Burgers' equation. Using the stan-dard van Leer limiter the maximum under/overshoot recorded was 0.0. Soalthough the unmodi�ed scheme can be used to provide oscillation free solu-tions in certain circumstances.The computation was repeated but now using Mesh B shown in Figure ?regularly subdivided to contain 2816 triangular elements. The maximumunder/overshoot is now 7.3369e-3 with the van Leer limiter. No overshootwas observed with the new limiter or the van Albeda limiter on either mesh.The next issue is how the new limiter a�ects the accuracy of the scheme.Consider the solution of the linear conservation lawut + ux + uy = 0 ; (x; y; t) 2 [0; 1]� [0; 1]� (0; ?] (44)
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Figure 4: Log-log graph of error versus mesh spacing.with exact solution u(x; y; t) = sin(2�x� t) sin(2�y � t); (45)which is used to specify the initial and boundary conditions. This equationwas solved on Mesh A in Figure ? using the �rst order scheme, originalscheme and modi�ed scheme. The L1 error, weighted by element areas, wasevaluated at times 0.1 to 1.0 in steps of 0.1 and these then averaged. Thesmallest mesh used contained 200 elements with a 0.1 mesh spacing and thelargest mesh used contained 18200 elements with a 0.0125 mesh spacing. Theresults of these experiments are plotted in a log-log graph shown in Figure ?The results show that the scheme with the original limiter has a convergencerate of 1.80 and that with the new limiter has a convergence rate of 1.75.The convergence rate with the van Albeda limiter is ?8 SummaryThis paper has shown that standard 
ux limiter schemes may need to bemodi�ed when used with cell-centered �nite volume schemes on irregularone-dimensional meshes and unstructured triangular meshes in two space
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