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a b s t r a c t

Edge detection has traditionally been associated with detecting physical space jump dis-
continuities in one dimension, e.g. seismic signals, and two dimensions, e.g. digital images.
Hence most of the research on edge detection algorithms is restricted to these contexts.
High dimension edge detection can be of significant importance, however. For instance,
stochastic variants of classical differential equations not only have variables in space/time
dimensions, but additional dimensions are often introduced to the problem by the nature
of the random inputs. The stochastic solutions to such problems sometimes contain discon-
tinuities in the corresponding random space and a prior knowledge of jump locations can
be very helpful in increasing the accuracy of the final solution. Traditional edge detection
methods typically require uniform grid point distribution. They also often involve the com-
putation of gradients and/or Laplacians, which can become very complicated to compute as
the number of dimensions increases. The polynomial annihilation edge detection method,
on the other hand, is more flexible in terms of its geometric specifications and is further-
more relatively easy to apply. This paper discusses the numerical implementation of the
polynomial annihilation edge detection method to high dimensional functions that arise
when solving stochastic partial differential equations.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

There has been recent growing interest in developing numerical methods for stochastic computations. The purpose is to
effectively conduct uncertainty quantification (UQ) for practical problems. Uncertainty is ubiquitous in engineering prob-
lems and can present itself in mathematical models via ‘‘data”, e.g. parameters, initial and boundary conditions, material
properties, and the like. Due to our inability to conduct accurate measurements, such data can never be known precisely.
The associated uncertainty in the data will inevitably affect our prediction of the true physics. In order to conduct reliable
computation, it is therefore important to incorporate the uncertainty in the problem from the beginning of the simulation, as
well as to understand and quantify the impacts of the uncertainty on the solution.

The most widely adopted approach for UQ is stochastic modeling. To this end, the uncertainty in data is modeled as ran-
dom variables and random processes. Subsequently, the original deterministic model, for example a system of partial differ-
ential equations (PDEs), become a stochastic model, such as a system of stochastic partial differential equations (SPDEs). One
of the most important features of the stochastic model is that the corresponding SPDEs now reside in a higher dimensional
space which includes the original space/time dimensions and additional random dimensions determined by the nature of the
random inputs. It becomes imperative to develop efficient multi-dimensional methods so that solving the problem does not
. All rights reserved.
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become computationally prohibitive. One of the most widely used methods is based on generalized polynomial chaos (gPC)
[23], which is an extension of the classical polynomial chaos (PC) method pioneered by Ghanem in [10]. In gPC, stochastic
quantities are expressed as convergent orthogonal polynomial series in terms of the input random variables. This closely
resembles spectral methods [11,6,13], where fast convergence can be achieved when the solutions are sufficiently smooth.
Since its first systematical introduction, gPC has been successfully applied to a large variety of stochastic problems, see, for
example [3,9,10,14–16,19,20,22,23]. In many problems the stochastic solutions are smooth in random space and conse-
quently gPC offers highly accurate results. However, when a stochastic solution contains a discontinuity in its corresponding
random space, Gibbs oscillations can occur [12,14], causing the accuracy of the gPC solution to suffer. To circumvent this
difficulty, it is necessary to discretize the random space and employ piecewise continuous polynomials, similar to what is
done in classical deterministic numerical analysis. The piecewise continuous gPC approach has been proposed and analyzed
in [3,14,19]. Although the discretization is straightforward conceptually, it is numerically challenging because when the
computational domain, i.e., the random space, is discretized into elements, there is little choice but to use the tensor product
rule to construct the elements. Hence the total number of elements grows exponentially fast as the dimensionality of the
random space increases. In practical stochastic computations it is imperative to split the random space into as few elements
as possible unless the random dimensionality is low (e.g. less than five). It is therefore extremely useful to identify the loca-
tion of discontinuities so that one knows exactly where to split the domain into elements. To the best of our knowledge,
there have thus far been no attempts to address the issue of detecting discontinuities in stochastic simulations, or on
how to decompose the random space in the event that discontinuities exist. Such is the focus of this paper.

Based on an extension of the polynomial annihilation edge detection method previously used for deterministic applica-
tions [1], this paper proposes and analyzes a global polynomial basis numerical procedure for determining jump discontinu-
ities in a gPC multivariate stochastic solution of a given stochastic simulation. The method further allows the complete
domain classification into smooth sub-regions. Consequently, the random space can be split into elements that avoid the
inclusion of a jump discontinuity, and in turn will generate a much more efficient piecewise gPC computation. Other tradi-
tional edge detection methods, e.g. [5,17], most often require (i) uniform grid points and (ii) the construction of gradients
and Laplacians. As such they are less flexible and more costly when applied to higher dimensional problems. Furthermore,
as is demonstrated in the current investigation and is relevant to the gPC solution, the polynomial annihilation edge detec-
tion method can be reformulated in terms of the coefficients of any (orthogonal) polynomial expansion. Finally we note that
the polynomial annihilation edge detection method is high order, making it easier to detect jump discontinuities in highly
variable functions using fewer grid point values.

This paper is organized as follows: In Section 2 we establish the general framework of the gPC procedure for solving the
stochastic partial differential equations. Section 2.2 reviews the polynomial annihilation edge detection method, which is
extended in Section 3 so that it can be applied to stochastic simulation results in the form of gPC expansions. In Section 4
we propose an adaptive algorithm to completely classify the domain based on the regions of smoothness of the function.
Section 5 demonstrates our techniques on some numerical experiments, and we conclude with ideas for future investiga-
tions in Section 6. The terms ‘edge’ and ‘jump discontinuity’ are used interchangeably throughout.

2. Problem background and formulation

This section provides brief reviews of the generalized polynomial chaos method for stochastic simulations [23], and the
polynomial annihilation method for edge detection [1]. We then formulate the problem under investigation in this paper.

2.1. Generalized polynomial chaos for stochastic equations

Generalized polynomial chaos (gPC) has become one of the most widely used methods for solutions of stochastic prob-
lems, particularly in the context of uncertainty quantification. Here we review the basic ideas behind gPC.

Let D � R‘; ‘ ¼ 1;2;3, be a physical domain with boundary @D and coordinates x ¼ ðxð1Þ; . . . ; xð‘ÞÞ and let T > 0 be a real
number. We consider the following general (scalar) stochastic partial differential equation
utðx; t; yÞ ¼ LðuÞ; D� ð0; T� � Rd;

BðuÞ ¼ 0; @D� ½0; T� � Rd;

u ¼ u0; D� ft ¼ 0g � Rd;

8><
>: ð1Þ
where L is a (nonlinear) differential operator, B is the boundary condition operator, u0 is the initial condition, and
y ¼ ðyð1Þ; . . . ; yðdÞÞ 2 Rd; d P 1, are a set of independent random variables characterizing the random inputs to the governing
equation from various sources, e.g. boundary condition, system parameters, etc.

The solution is therefore a stochastic quantity,
uðx; t; ZÞ : D� ½0; T� � Rd ! R: ð2Þ
Let us assume for all i ¼ 1; . . . ; d, the random variables yðiÞ are continuous with probability density functions (PDF)
qðiÞ : CðiÞ ! Rþ, where CðiÞ , yðiÞðXÞ is the image of yðiÞ. Then the random vector y ¼ ðyð1Þ; . . . ; yðdÞÞ has a joint PDF
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qðyÞ ¼
Yd

i¼1

qðiÞðyðiÞÞ: ð3Þ
In the following we will adopt the multi-index notation: Let i ¼ ði1; . . . ; idÞ 2 Nd
0 be a multi-index, with jij ¼

Pd
k¼1ik, and

i ¼ j iff. ik ¼ jk; 8k ¼ 1; . . . ; d. We also define an index set
J N , fi 2 Nd
0 : jij 6 Ng ð4Þ
for a given integer N P 0.
An Nth-order generalized polynomial chaos (gPC) expansion to the solution of (1) takes the form
uNðt; x; yÞ ¼
X
i2J N

ûiðt; xÞUiðyÞ; ð5Þ
where
ûiðt; xÞ ¼
Z

uðt; x; yÞUiðyÞqðyÞdy ¼ E½uðx; yÞUiðyÞ�; 8i 2 J N; ð6Þ
are the expansion coefficients, E is the expectation operator, and
UiðyÞ ¼
Yd

k¼1

/ik
ðyðkÞÞ
are the polynomial basis functions, defined as products of univariate orthogonal polynomials in the yðkÞ dimension,
k ¼ 1; . . . ; d, satisfying
Z

/mðyðkÞÞ/nðyðkÞÞqðkÞðyðkÞÞdyðkÞ ¼ dmn; 0 6 m;n 6 N: ð7Þ
Here dmn is the Kronecker delta function and the polynomials are normalized.
Therefore fUiðyÞgi2J N

are d-variate orthogonal polynomials of total degree up to N satisfying
E½UiðyÞUjðyÞ� ¼
Z

UiðyÞUjðyÞqðyÞdy ¼ dij; 8i; j 2 J N; ð8Þ
where dij ¼
Qd

k¼1dik jk . From (8), the distribution of Zk will determine the polynomial type. For example, Hermite polynomials
are associated with the Gaussian distribution, Jacobi polynomials with the beta distribution, Laguerre polynomials with the
gamma distribution, etc. For a detailed discussion of these correspondences and their resulting computational efficiency, see
[23].

Following classical approximation theory, the gPC expansion (5) converges when u is square integrable with respect to
qðyÞ, that is, for any fixed ðt; xÞ 2 ½0; T� � D,
u� uNk k2
L2
q
,

Z
ðu� uNÞ2qðyÞdy! 0; N !1: ð9Þ
In practice, however, the expansion coefficients defined in (6) are not available, as the equation requires knowledge of the
(unknown) solution u. Numerical strategies are needed to approximate the coefficients from (6). Two popular approaches
are stochastic Galerkin (SG) method and stochastic collocation (SC) method. In SG, the coefficients in (5) are obtained by sat-
isfying the governing Eq. (1) in a weak form in the random space; whereas in SC, (1) is satisfied in a strong form at a set of
prescribed nodes in the random space. For detailed discussions on various aspects of gPC based SG and SC methods, see [21].

When the stochastic solution u is relatively smooth with respect to y, the convergence rate of the gPC expansion (5) can
be large. This implies that a relatively low-degree expansion can achieve high accuracy and is advantageous in practical sto-
chastic simulations.

However, when the stochastic solution contains discontinuities in the random space, the convergence of gPC methods
deteriorates [12,14]. To circumvent this difficulty, it is important to use a set of piecewise smooth gPC basis functions,
(cf. [14,19]), so that the undesirable effects caused by the discontinuities are locally confined.

While the idea of using piecewise basis functions is simple, as it is a straightforward extension of the classical numerical
methods such as the finite element method, a significant difficulty arises in practice for high dimensional random spaces.
Whenever the random space is decomposed, the usual approach is to split each direction into elements and construct the
elements via tensor product [3,14,19]. This will incur a prohibitively large number of elements for high dimensional random
space. Furthermore, since the unknown gPC expansion coefficients must be solved inside each element, the ensuing compu-
tational burden can be tremendously high.

If, however, the location of the jump discontinuities (if there are any) can be identified from a given gPC simulation result,
then the entire random space can be decomposed into as few as possible elements.

The following sections are devoted to a strategy based on an extension of the deterministic polynomial annihilation edge
detection methodology to enable such a decomposition.
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2.2. Deterministic polynomial annihilation edge detection

Let us first consider a piecewise continuous function f ðyÞ : ½�1;1� ! R in one dimensional (random) space known only on
the set of discrete points1
1 The
quadrat
S ¼ fy1; y2; . . . ; yQ ð1Þ g � ½�1;1�: ð10Þ
Assume that f has well defined one sided limits, f ðy�Þ, at any point y in the domain. We denote by J the set of the points of
discontinuity of f, that is, J ¼ fn : �1 < n < 1g; where n is a jump discontinuity point in f. The local jump function is defined as
½f �ðyÞ ¼ f ðyþÞ � f ðy�Þ ¼
0; if y – n;

½f �ðnÞ; if y ¼ n:

�
ð11Þ
Hence if f is continuous at y, the jump function ½f �ðyÞ ¼ 0; if y is a point of discontinuity of f, then ½f �ðyÞ is equal to the jump
value there.

The polynomial annihilation edge detection method, introduced in [1], seeks an approximation to ½f �ðyÞ that converges
rapidly to zero away from the jump discontinuities. It can be described as follows: Assume y is a point inside the domain,
i.e., y 2 ð�1;1Þ: For a given positive integer m < Q ð1Þ � 1, we choose a local stencil
Sy ¼ fyjjyj 2 Sg ¼ fy0; . . . ; ymg ð12Þ
of the nearest mþ 1 grid points around y. Let fpig
m
i¼0 be a basis for P1

m, the univariate polynomial space of degree up to m. The
polynomial annihilation edge detection method is given by
Lmf ðyÞ ¼ 1
qmðyÞ

X
yj2Sy

cjðyÞf ðyjÞ; ð13Þ
where the coefficients cjðyÞ are chosen to annihilate polynomials of degree up to m� 1 and are determined by solving the
linear system
X

yj2Sy

cjðyÞpiðyjÞ ¼ pðmÞi ðyÞ; 8i ¼ 0; . . . ;m: ð14Þ
Here pðmÞi ðyÞ denotes the mth derivative of piðyÞ: Notice that the solution to (14) exists and is unique. Next we define
Sþy ¼ fyj 2 Syjyj P yg and S�y ¼ Sy n Sþy : ð15Þ
The normalization factor in (13), given by
qmðyÞ ¼
X
yj2Sþy

cjðyÞ; ð16Þ
ensures that Lmf ðyÞ has correct value at the jump discontinuities. Note that (16) is non-zero by design. In [1] it was shown
that if the maximum separation hðyÞ is defined as
hðyÞ ¼maxfjyi � yi�1j : yi�1; yi 2 Syg; ð17Þ
then (13) satisfies the following property:
Lmf ðyÞ ¼
½f �ðnÞ þ OðhðyÞÞ; if yj�1 6 n; y 6 yj;

Oðhminðm;kÞðyÞÞ; if f 2 CkðIyÞ; k > 0:

(
ð18Þ
Here Iy is the smallest closed interval such that Sy � Iy. Hence the polynomial annihilation edge detection method converges
to ½f �ðyÞ with a rate depending on m and the local smoothness of f.

We pause to note two important distinctions between the polynomial annihilation edge detection method (13), and more
traditional edge detection methods [5,17]. The polynomial annihilation edge detection method is a high order reconstruction
of the jump function, ½f �ðyÞ, defined in (11). Other techniques more commonly used in image processing are edge detectors.
Specifically, they attempt to identify the set of edges J with regard to certain thresholds that are usually determined from
some underlying assumptions about the particular image (typically digital) and outside influences (e.g. noise). The high or-
der design of (13) is well suited when the underlying structure of the piecewise smooth function has some variability, which
is often the case in the gPC solution. Also, fewer points are needed in each direction to resolve the corresponding jump func-
tion, which can dramatically reduce computational costs. The second critical advantage of the polynomial annihilation edge
detection method over traditional techniques is that it does not require uniform point distribution. This is particularly useful
when combined with the gPC collocation method, since using uniformly distributed points is almost never attempted.
re are Q ð1Þ reconstruction points in one dimension. We note, however, that in higher dimensions, Q ðdÞ may not be related to the total number of
ure points in the stochastic collocation method.
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Furthermore, as is highlighted in this investigation, the polynomial annihilation edge detection method can be applied di-
rectly to orthogonal polynomial expansion coefficients.

The order m in (13) affects the resolution of the jump function both close to and away from any discontinuities. Small m
might cause a steep gradient to be misidentified as an edge (due to low resolution). On the other hand, the inherent nature of
high order polynomial approximation causes oscillations to occur in the vicinity of the discontinuities when m is large. These
oscillations may also be misinterpreted as edges. To prevent inaccuracies due to either reason, the minmod function, which is
typically utilized in flux limiting methods to reduce oscillations when solving numerical conservation laws, was used in [1]
to enhance the performance of the polynomial annihilation method.2 Specifically, we apply
2 The
MMðLmf ðyÞÞ ¼

min
m2M

Lmf ðyÞ; if Lmf ðyÞ > 0; 8m 2M;

max
m2M

Lmf ðyÞ; if Lmf ðyÞ < 0; 8m 2M;

0; otherwise;

8>><
>>: ð19Þ
whereM� N of positive integers. The minmod function controls the oscillations while still maintaining high order of con-
vergence away from the jump discontinuities. It furthermore reduces the need for outside thresholding. Examples of its
effectiveness can be found in [1].

Finally, we would like to point out the the polynomial annihilation edge detection method was originally developed to
determine multi-dimensional jump discontinuities from randomly distributed grid points. However, the gPC collocation
method uses structured grids in each dimension (typically Gaussian). Hence to simplify programming and increase compu-
tational efficiency, we choose to use a dimension by dimension approach. As an additional advantage, the method easily
lends itself to parallel processing.

2.3. Problem formulation

The objective of this paper is to discuss an efficient methodology for discontinuity detection for stochastic solutions in
term of the gPC expansion. More precisely, let
fNðyÞ ¼
X
i2J N

f̂ iUiðyÞ; y 2 Rd; d P 1; ð20Þ
be the N-th degree gPC approximation to an unknown stochastic solution f ðyÞ, where the expansion coefficients ff̂g are ob-
tained via either a stochastic Galerkin or a stochastic collocation method. Assuming fN is an approximation to f with sufficient
accuracy, our goal is to determine numerically, given ff̂ ig: (i) if discontinuities exist in the random space; and (ii) if discon-
tinuities do exist, what are their locations and how can the random space be decomposed into piecewise continuous
subdomains.

For the method to work effectively on the gPC expansion, we require that: (i) it should employ the coefficients fhatfig,
which are obtained by potentially costly stochastic simulations, as the only inputs and not incur more computations of
the original stochastic governing equations; and (ii) it should scale well in high dimension random spaces where d� 1.

In the following section we present a discontinuity detection method based on applying the polynomial annihilation
method to the gPC expansion of the stochastic solution. The key difference, compared to the standard deterministic polyno-
mial annihilation, is that the new method is applied to the gPC expansion coefficients directly to achieve the important
requirements listed above.

3. Discontinuity detection for gpc stochastic solution

Hereafter we restrict our discussions to bounded random space, and with proper scaling, consider random space of a
hypercube, i.e., y 2 ½�1;1�d; d P 1. We first discuss the method in one-dimensional random space with d ¼ 1, and then ex-
tend it to multi-dimensional space d > 1.

3.1. Formulation in one dimension

For one dimensional random space, the multi-index i becomes a single index and the gPC expansion (20) can be written
as
fNðyÞ ¼
XN

k¼0

f̂ k/kðyÞ; ð21Þ
where f/kg
N
k¼0 is a univariate gPC basis satisfying (7). The jump function ½f �ðyÞ can be approximated by ½fN�ðyÞ as
Lmf ðyÞ � LmfNðyÞ ¼
1

qmðyÞ
X
yj2Sy

cjðyÞfNðyjÞ ¼
1

qmðyÞ
X
yj2Sy

cjðyÞ
XN

k¼0

f̂k/kðyjÞ; ð22Þ
minmod technique was introduced in the context of edge detection in bauer [4,8].
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where the coefficients cjðyÞ can be determined from (14) and Sy is the stencil defined in (12) with m < N � 1. For simplicity,
we assume in one dimension that the number of reconstruction points is the same as the degree of the polynomial expan-
sion, that is, Q ð1Þ ¼ N in (10).

Here we approximate the jump function by directly using the gPC expansion coefficients.
To this end, we first note that the system that determines the annihilation coefficients (14), must hold for any polynomi-

als of degree up to m. By making the annihilation polynomials the same as the gPC basis polynomials, piðyÞ ¼ /iðyÞ, (14)
becomes
X

yj2Sy

cjðyÞ/iðyjÞ ¼ /ðmÞi ðyÞ; i ¼ 0; . . . ;m; ð23Þ
where again /ðmÞi ðyÞ denotes the mth derivative of /iðyÞ. Maintaining such consistency between the basis corresponding to
the given coefficients and the basis to be annihilated helps in avoiding Gibbs oscillations inherent upon function reconstruc-
tion, (21). We now rearrange (22) so that
LmfNðyÞ ¼
1

qmðyÞ
XN

k¼0

f̂k

X
yj2Sy

cjðyÞ/kðyjÞ: ð24Þ
Further, since the first m� 1 polynomials are annihilated by (23), (24) reduces to
LmfNðyÞ ¼
1

qmðyÞ
XN

k¼m

f̂k

X
yj2Sy

cjðyÞ/kðyjÞ: ð25Þ
In this way, an actual reconstruction of the function is completely avoided, yielding both a savings in computational costs as
well as a potential improvement in accuracy since no interpolatory error is introduced. Note that (25) is quite intuitive as the
smoothness of a function is determined by its high end coefficients in a spectral partial sum.

To demonstrate use of (25), we consider the following example:

Example 3.1. Let f ðyÞ : ½�1;1� ! R be defined as
f ðyÞ ¼
cos 3py; y < 0;

2
1þ3e�5ð2y�1Þ � 1 y P 0:

(
ð26Þ
Example 3.1 has a jump discontinuity at y ¼ 0: Fig. 1(a) depicts the function (3.1) and the gPC expansion (20) using Legendre
polynomial basis functions with N ¼ 32. Fig. 1(b)–(e) illustrate the results using (25) for orders m ¼ 2 through m ¼ 5. Fig. 1(f)
displays the jump function approximation after the minmod algorithm (19), is applied for M¼ f1;2;3;4;5g.
3.2. Extension to higher dimensions

Suppose now that f ðyÞ : ½�1;1�d ! R; d > 1, is a piecewise smooth function with corresponding Nth-order gPC approxima-
tion (20). It is now important to apply the polynomial annihilation edge detection method directly on the coefficients in each
dimension. This allows us to avoid interpolatory errors while also improving the overall computational efficiency.

Let b ¼ ðbð1Þ; . . . ; bðdÞÞ be a fixed coordinate in ½�1;1�d and
y½‘�ðbÞ ¼ ðbð1Þ; . . . ; bð‘�1Þ
; yð‘Þ; bð‘þ1Þ

; . . . ; bðdÞÞ ð27Þ
be a one dimensional coordinate in ½�1;1�d where all but the ‘th-dimension are fixed by the given coordinate b. Then (5)
becomes
fNðy½‘�ðbÞÞ ¼
X
i2J N

f̂ iUiðy½‘�ðbÞÞ: ð28Þ
The polynomial annihilation edge detection method, (13), in the yð‘Þ direction is then
LmfNðyð‘ÞÞ ¼
1

qmðyð‘ÞÞ
X

y½‘�
j
ðbÞ2S½‘� ðbÞ

cjðyð‘ÞÞfNðy½‘�j ðbÞÞ ¼
1

qmðyð‘ÞÞ
X

y½‘�
j
ðbÞ2S½‘� ðbÞ

cjðyð‘ÞÞ
X
i2J N

f̂ iUiðy½‘�j ðbÞÞ ð29Þ
where S½‘�ðbÞ consists of the closest mþ 1 points in the yð‘Þ direction around y½‘�ðbÞ,
S½‘�ðbÞ ¼ fy½‘�0 ðbÞ; . . . ; y½‘�m ðbÞg: ð30Þ
The coefficients cjðyð‘ÞÞ are obtained by annihilating one dimensional polynomials of degree up to m� 1 in the ‘th direc-
tion, specifically, by solving the linear system
X

y½‘�
j
ðbÞ2S½‘�ðbÞ

cjðyð‘ÞÞ/k‘ ðy
½‘Þ�
j ðbÞÞ ¼ /ðmÞk‘

ðyðlÞÞ; k‘ ¼ 0; . . . ;m; ð31Þ
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Fig. 1. Example 3.1. (a) underlying function on N ¼ 32 Legendre Gauss points; (b)-(e) Jump function approximation using various orders m; (f) Minmod
results (19), for M¼ f1;2;3;4;5g.
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where /ðmÞk‘
ðyðlÞÞ denotes the mth derivative of the polynomial /k‘ ðyðlÞÞ. Rearranging (29) therefore yields
LmfNðyð‘ÞÞ ¼
1

qmðyð‘ÞÞ
X

i2J ð‘Þm

f̂ i

X
yð‘Þ

j
2S½‘� ðbÞ

cjðyð‘ÞÞUiðy½‘�j ðbÞÞ; ð32Þ
where
J ð‘Þm ¼ fi 2 Nd
0 : i 2 J N and i‘ P mg ð33Þ
is an index set obtained by removing the ‘th multi-index components less than m from the index set J N .

3.3. Remarks

The key ingredient of the proposed discontinuity detection method is the direct annihilation of the gPC basis poly-
nomials. Hence the only inputs required are the gPC expansion coefficients. Note that all of the function evaluations
of (32) are in fact simple polynomial evaluations of the gPC expansion (20) at the given points in the point set S½‘�.
Therefore they do not involve solutions of the original stochastic equations which can be time consuming. Compared
to the computational cost of solving large-scale stochastic problems in high dimensional random spaces, the cost of
the discontinuity detection algorithm can be negligible and regarded as a ‘‘post-processing” procedure. If a discontinuity
is detected by the proposed method, then the gPC computation using a global polynomial basis needs to be refined be-
cause of the accuracy lost due to the discontinuity. The most natural way of refinement is to employ piecewise contin-
uous gPC bases. To this end, it is highly desirable to decompose the computational domain into as few subdomains as
possible, with interfaces preferably being the discontinuity. In the following section we discuss a domain classification
strategy to address this.

4. Domain classification

Here we demonstrate how the polynomial annihilation edge detection method can be used to completely classify the
computational domain in terms of its continuous sub-domains. As explained in the introduction, this will enable more com-
putational efficiency in any subsequent simulation.



Fig. 2. A jump function running through a two dimensional domain.
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4.1. General domain classification

For ease of presentation, we explain our domain classification algorithm on a two dimensional domain that has only two
smooth sub-domains. The algorithm can be extended to multiple sub-domains and is limited only by the resolution of the
grid. Fig. 2 shows a jump function on part of a bounded two dimensional domain, ½�1;1� � ½�1;1�. The jump function approx-
imation, (32), is followed by the minmod algorithm (19), and is reconstructed on Q ð1Þ � Q ð2Þ points. For simplicity, and with-
out loss of generality, we will from now on assume that Q ð1Þ ¼ Q ð2Þ ¼ 	 	 	 ¼ Q ðdÞ ¼ Q represent both the number of
reconstruction points and the number of quadrature points in each dimension. The jump function in Fig. 2 runs across
the domain, dividing it into two mutually exclusive regions, which we identify as belonging to either Class 1 or Class 2. Each
point in the domain is tagged with its respective class value, 1 or 2. Our objective is to build an algorithm that automates this
domain classification. We note that since the edge detection method is applied dimension by dimension, the jump discon-
tinuity values themselves are of correspondingly different signs and magnitudes. This bears no consequence on the domain
classification, however.

We assume that the problem is well resolved so that the jump discontinuity lies in the interior of the grid and each region
is well connected. Initially, all the points in the domain are listed as unclassified with a class value equal to zero. Broadly
speaking, as we move on with the algorithm, each point gets identified as belonging to either Class 1 with a class value
of 1, or Class 2 with a class value of 2. Let us begin with the situation where no point has been classified: We pick a first
point from the list of all unclassified points, say the point A in Fig. 2, and assign it a class value 1. We consider all the points
to the right of A, i.e., the points along the straight line Ap4, consisting of the group of points fp1; p2; p3; p4g. Clearly there are no
edges anywhere along this line. Hence all of the points are classified as Class 1 points, and each point is assigned a class value
of 1. Next we consider the group of points along the straight line Aq4, i.e., the group fq1; q2; q3; q4g. Once again every point this
group gets classified as Class 1 points. Nine of a total of twenty five points have been classified thus far. The algorithm pro-
ceeds by acting on each one of these new eight points in a similar manner as for the point A. For instance, considering the
vertical direction of the point p1 would determine that points ðA; p2; p3; p4; r1Þ all belong to the first class. Naturally there will
be points that are classified more than once, but they will be classified to the same class. Therefore this algorithm needs only
be concerned with the first classification.

The process continues until all the points in Class 1 have been covered; this is marked by the fact our search stops yielding
new points that have not already been classified. At this juncture, we start looking for the next connected region - Class 2.
The first point in the set of yet unclassified points (class value 0) is marked as belonging to Class 2 by assigning class value 2
to it. The same search procedure is followed as for Class 1 and all the points belonging to Class 2 are collected. After Class 2
has also been exhausted, we check to see if there are any more unclassified points. If there are, we define Class 3 with class
value 3 and continue the same procedure. If there no points left with class value 0 (as will be for the case exhibited in Fig. 2),
it means all the grid points in the domain have been classified and our domain classification is complete.

The domain classification described here and the adaptive domain classification described in the next section are both by
design favorable to parallel processing. High performance computing would therefore allow large scale problems to be ana-
lyzed efficiently.

4.2. Adaptive domain classification

Refining the entire multi-dimensional random space for more accurate edge detection and improved domain classifica-
tion is unrealistic. However, any cell found to contain a jump discontinuity can be further refined to subsequently produce a
new set of cells from which we can again determine jump discontinuities and classify the (sub-)domain into smooth re-
gions.3 If each refinement increases the resolution by Q d, it is possible to build an adaptive procedure that obtains very high
3 We recall that the polynomial annihilation edge detection method locates jump discontinuities to within a single cell.



Fig. 3. (a) Initial set-up for a two dimensional problem using Q ¼ 4 uniform quadrature points in each direction. The jump discontinuity splits the domain
into two parts. (b) Initial domain classification results.

2684 R. Archibald et al. / Journal of Computational Physics 228 (2009) 2676–2689
accuracy both in locating the jump discontinuities and in classifying the domain after only a few iterations. The following algo-
rithm describes how the gPC and polynomial annihilation methods can be used to characterize the solution space of the gov-
erning equations up to domain accuracy, as determined by the maximum separation distance given in (17), at each level up to
an arbitrary number of iterations, l 2 N. In some sense, our adaptive domain classification can be viewed as an h� p adaptive
scheme, where h is the maximum separation and p represents the order of the polynomial annihilation edge detection method.
All p refinements are pre-determined by the underlying resolution.

Algorithm 4.1. (Adaptive Domain Classification) Consider the initial domain, the hyper-cube ½�1;1�d. Specify the maximum
number of iterations, l, the number of reconstruction (quadrature) points in each direction for the stochastic collocation gPC
method, Q , and the maximum order of the polynomial edge detection method, m, where m < Q � 1.

initialize the only identified hyper-cube as the whole domain, ½�1;1�d.

for i ¼ 1; . . . ;l
4 The
notatio

5 Thi
for each identified hyper-cube

1. Apply the stochastic collocation gPC method with Q quadrature (reconstruction) points in each direction.
2. Determine the cells, each comprised of 2d points, containing jump discontinuities using the polynomial annihila-

tion edge detection (33), combined with the minmod algorithm, (19), on the gPC approximation, (28).
3. Classify the domain as described in Section 4.1.
4. Element cells needing further refinement are identified as those in which not all of the 2d points have the same

class value. After these cells are refined using Qd points, Steps 1 through 3 are repeated. Note that the classification
of the 2d points making up the (coarser) cell is passed to any subsequent domain classification.
end
end

Figs. 3 and 4 provide a schematic for Algorithm 4.1 for a simple two dimensional example. Fig. 3(a) displays the initial set-
up where there are Q ¼ 4 uniform quadrature points in each direction. In this example, the initial one dimensional maxi-
mum separation distance in (17) is (constant) h1ðyÞ ¼ h1 ¼ 2

Q�1
, and each subsequent level of refinement is hi ¼ 2

ðQ�1Þi
,

i ¼ 1; . . . ;l.4 Suppose that the gPC solution and subsequent processing by the edge detection method produces a line discon-
tinuity as shown in Fig. 3(a) (Steps 1 and 2 in Algorithm 4.1.) The initial domain classification (Step 3) is illustrated in
Fig. 3(b), where it is apparent that when a cell contains a discontinuity, not all of its 2d ¼ 4 points will have the same class
value. Such cells are identified as needing further refinement (Step 4) and are depicted in Fig. 4(a).

At this stage the first iteration of Algorithm 4.1 is completed. The convergence of the polynomial annihilation edge detec-
tion method (18), suggests that any cell not identified as needing further refinement has a jump function value of order
Oðhm

1 Þ.
5 In general, the accuracy of Algorithm 4.1 in classifying smooth regions at each level of refinement depends upon the

maximum separation distance of the particular quadrature scheme chosen, the specified order of the polynomial annihilation
edge detection method, m, and the maximum number of iterations allowed, l.
uniform points are for ease of presentation only. Typically the gPC solution would use a Gaussian type distribution. We also adopt the one dimensional
n for the maximum separation distance hðyÞ ¼ hðy½‘�ðbÞÞ in (27) since all points are uniformly distributed.
s will be worse as the jump discontinuity is approached [1,2]. The approximation also assumes that f 2 CmðXÞ in smooth regions.



Fig. 4. (a) The dotted circles contain cells that require further refinement (Step 4 of Algorithm 4.1). (b) Cell refinement using Q ¼ 4 uniform quadrature
points in each direction. Note that the coarse grid point classification is passed on to the refined grid.
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As demonstrated in Fig. 4(b), the algorithm may begin again by refining the five cells containing discontinuities. All pre-
vious coarse grid point domain classifications are passed on to the finer grid. Repeating Steps 1 through 3 will further isolate
the jump discontinuity line to cells that have dimensional length h2 ¼ 2

ðQ�1Þ2
. Algorithm 4.1 is iterated until either no new

cells needing refinement are identified or the maximum number of allowable iterations, l, has expired. The algorithm pro-
duces various cells which are hyper-cube elements with dimensional lengths of hi ¼ 2

ðQ�1Þi
, i ¼ 1; . . . ;l. Each of these hyper-

cubes will either have an accurate gPC expansion, or will be identified as having a non-smooth domain. Any hyper-cube that
has a non-smooth domain will have a (general) dimensional length hlðyÞ. In this sense we can say that the domain can be
resolved by this algorithm up to an arbitrary accuracy, hlðyÞ.

4.3. Remarks on the use of tensor grids

The proposed domain classification algorithm relies on examinations of the function values on tensor grids. This facili-
tates the classification procedure by allowing dimension-by-dimension operations. One obvious drawback of using tensor
grids is the rapid growth of the total number of points in high dimensional space, which prevents its use for simulations
in dimension more than 
 5. Our domain classification procedure reduces the severity of this problem, however. Because
the function evaluations are conducted for the gPC approximation fN (20), they do not involve simulations of the original
system and only require polynomial evaluations at the grid. Therefore even though the total number points may become
very large in high dimensions, their function evaluations can still be conducted relatively fast.

For further refinement of the subdomain interface, as illustrated in Fig. 4, we need function values on a fine set of nodes in
regions close to the discontinuity. In this case, using fN from the coarser grid to determine the jump locations (and subse-
quent domain decomposition) may not be satisfactory because of the Gibbs phenomenon. It is thus desirable to use the ‘‘true
function values of f” at the finer nodes, or in our case, a more refined approximation of the original stochastic problem on the
tensor grids. This would require additional computations, but only at the nodes close to the discontinuity and not in the en-
tire domain. Therefore the computational cost will not be as prohibitive as performing stochastic simulations on tensor grids
in the entire domain.

In summary, the use of tensor grids for domain classification suffers much less from the curse-of-dimensionality than it
usually does. However, it is still desirable to develop a domain classification method utilizing non-tensor type grids. This will
be pursued in future study.

5. Numerical examples

5.1. Domain decomposition

The following example demonstrates use of the adaptive domain classification, Algorithm 4.1:

Example 5.1. Let f ðyð1Þ; yð2ÞÞ : X! R;X ¼ ½�1;1� � ½�1;1� be defined as
f ðyÞ ¼ �1; if yð1Þ < yð2Þ;

1; else:

(
ð34Þ
Example 5.1 is continuous everywhere in the domain except along the line yð1Þ þ yð2Þ ¼ 0: Fig. 5 shows the results after apply-
ing Algorithm 4.1. In this example we used Q ¼ 5 Legendre Gauss Lobatto collocation points, defined as fðyð1Þ; yð2ÞÞ :
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Fig. 5. Algorithm 4.1 applied to Example 5.1 on the Legendre Gauss Lobatto grid.
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yð1Þ; yð2Þ ¼ �1;� 1
2 ;0g. We also chose m ¼ 2 and l ¼ 3. Note that the density of elements increases near the jump discontinuity

line to provide increased accuracy where needed, while maintaining a sparse representation in smooth regions. The smallest
elements have length governed by the maximum separation distance of the Legendre Gauss Lobatto quadrature points.
5.2. Multidimensional application

We now consider a stochastic differential-algebraic system of equations
Fig. 6.
the gPC
color in
du
dt
¼ a1

1þ vb
� u;

dv
dt
¼ a2

1þwc � v ;

w ¼ u
1þ ½IPTG�=Kð Þg

;

ð35Þ
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Stochastic steady-state solution of v in (35). The light (red) error bars centered around the open circles display the numerical results determined by
. The dark (blue) error bars centered around the dots depict the corresponding experimental measurements. (For interpretation of the references in
this figure legend, the reader is referred to the web version of this article.)
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where a1; a2; b; c; g, and K are parameters and [IPTG] is the system input. This model is for a genetic toggle switch in Esch-
erichia coli [7]. The parameters p ¼ ðp1; . . . ; p6Þ ¼ ða1;a2; b; c;g;KÞ are modeled as random variables in the form of
Fig. 7. Visualization of the adaptive domain classification for the stochastic differential-algebraic system (35) for the fixed parameters
b ¼ 2:5; c ¼ 1; r ¼ 0:1, and ½IPTG� ¼ 4:0� 10�5. The gPC solution has two identifiable domain classes, visualized here by fixing the dimension for the
parameter K and displaying the remaining three parameters for (a) K ¼ 2:9618� 10�5 � r, (c) K ¼ 2:9618� 10�5, and (e) K ¼ 2:9618� 10�5 þ r: The gray
portion of the cube represents the ‘‘on” intensity domain and the void portion of the cube represents the ‘‘off”. The figures in (b), (d), and (f) display the two
classes when the boundary between the two domains is approximated by a hyperplane.
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p ¼ hpið1þ ryÞ, where hpi ¼ ð156:25;15:6;2:5;1;2:0015;2:9618� 10�5Þ are the mean values and y ¼ ðyð1Þ; . . . ; yð6ÞÞ are ran-
dom variables uniformly distributed in ½�1;1�6.

The system will reach steady state, which exhibits a switch property, i.e., ‘‘on” and ‘‘off”, depending on the intensity of the
input [IPTG]. Stochastic simulation of the system was carried out in [20] by the stochastic collocation method. The solution v
in (35), termed as the ‘‘Normalized GFP expression” of simulation and experimental measurement, is displayed as error bars
in Fig. 6. We observe good agreement with the experimental measurements. (Details of the computation can be found in
[20].)

The switch behavior suggests that the solution, e.g. v, depends on the parameters in a non-smooth manner. However, it is
not clear either from the physics or the mathematical point of view which parameters are associated with the jump behavior.
Since it is known that variations in the parameters b and c do not effect the switching property we carry out the multi-
dimensional edge detection method for vðyÞ; y 2 ½�1;1�4, in d ¼ 4 dimensional space to determine the location of the jump.

The results of the adaptive domain classification for the gPC solution for the stochastic differential-algebraic system (35),
is shown in Fig. 7(a), (c), and (e) for the entire range of a1;a2;g, where K ¼ 2:9618� 10�5 þ f�r;0;rg. Upon inspection, the
adaptive domain classification indicates that the edge between the two classes can be approximated by a hyperplane. Sup-
port Vector Machines (SVM) provide powerful classification paradigms developed over the last decade in machine learning
theory that operate by classifying the binary data that separate the hyperplane, or decision surface, which maximizes the
margin between the two classes in the training data [18]. Using the results of the adaptive domain classification as the train-
ing data for a linear SVM, the hyper-plane which maximizes the margin between the two identified classes is
f ða1;a2;g;KÞ ¼ �0:1188a1 þ 1:5849a2 þ 18:5336g� 8:7464� 105K � 18:49: ð36Þ
This hyperplane, although not a complete characterization of the multi-dimensional edge, provides a simple rule to deter-
mine the state of the genetic toggle switch model given in (35). Specifically, if a given set of parameters satisfy
f ða1;a2;g;KÞ > 0, then these parameters lie in the domain where the steady-state solution is ‘‘on”. Conversely, if a given
set of parameters yield f ða1;a2;g;KÞ < 0; then these parameters lie in the domain where the steady-state solution is ‘‘off”.
We note that (36) is a crude approximation of the edge that yields a relatively accurate characterization of (35). In fact, com-
parison of the classification given by (36) with the steady state solution of (35) for a thousand randomly generated realiza-
tion of the parameters a1;a2, g and K produces an agreement rate of 99:1%. Our experiments generated steady state
solutions :2786 < v steady < 12:7095. Hence we chose v steady > 6:4941 to classify the system as being in the ‘‘on” domain.
Otherwise it was considered ‘‘off”. While the hyperplane test provides high ‘‘on” and ‘‘off” agreement, Fig. 7 demonstrates
that the adaptive domain classification represents a more comprehensive description of the system. More sophisticated
approximations can be generated using nonlinear kernels in the SVM. However, for this particular example, the hyperplane
in (36) provides a simple intuitive representation without compromising accuracy.

6. Conclusion

In this paper we proposed a numerical strategy for detecting jump discontinuities from stochastic simulation results ob-
tained in the form of global polynomial expansions in multi-dimensional random spaces. The strategy is an extension of the
deterministic polynomial annihilation edge detection method [1], and works particularly well with the high order stochastic
Galerkin or stochastic collocation methods based on generalized polynomial chaos (gPC). The algorithms and implementa-
tion were presented, with an emphasis on their applicability in high dimensional spaces. Upon correct identification of the
discontinuities (if they exist), we are able to classify the problem domain in terms of its regions of smoothness. We further
derived an adaptive procedure that refines the locations of the discontinuities and subsequently improves the domain clas-
sification for a reasonable computational cost. Hence we can decompose the entire random space into as few smooth sub-
domains as possible and thus facilitate more accurate stochastic simulations using a multi-element approach.

We emphasize that the proposed strategy represents only one of the first attempts to identify the existence and location
of discontinuities in stochastic simulations. Here we focus on the applicability and potential of the method and leave many
more issues, for example, more efficient algorithms for very high dimensional random space, to further study.
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