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Abstract

Since the introduction of texture synthesis using a reaction-
diffusion model in the early 1990s their use has not been
widespread. This is likely due to both the difficulty in selecting pa-
rameters that result in stable, useful patterns as well as, the compu-
tational costs of producing these patterns. In this paper we present
techniques that help overcome the difficult parameter selection pro-
cess that controls the pattern development. In addition, we expand
the basic diffusion model to allow for shaped patterns. Finally, we
show that is possible to create multiple and oscillating patterns by
coupling two reaction-diffusion systems together. These techniques
have been implemented using both explicit and semi-implicit solu-
tions on a CPU and GPU. We provide sample source code of both
implementations online.

1 Introduction

In the early 1990s Turk [19], Witkin and Kass [20], and Fowler
et. al. [4] introduced texture synthesis using a reaction-diffusion
model to computer graphics. Since then, their use has not been wide
spread, with few references in the computer graphics literature. At
the same time, there have been a significant number of references
for the use of reaction-diffusion models in other applications, in-
cluding mathematical biology [13] and chemical dynamics [2]. In
addition, since the original papers on reaction-diffusion texture syn-
thesis, there have been computational and theoretical advances in
applying reaction-diffusion methods to a variety of applications [9].

The lack of wide spread use of reaction-diffusion techniques
within computer graphics is likely due to both the difficulty in se-
lecting reaction-diffusion parameters that result in stable, useful
patterns, as well as the computational costs of producing these pat-
terns using numerical reaction-diffusion techniques. Indeed, be-
cause the equations governing reaction-diffusion models are non-
linear and require a sometimes computationally costly iterative pro-
cess to reach a dynamic equilibrium, creating a useful texture can
be very challenging.

In this paper we present techniques that help overcome the dif-
ficult parameter selection and computational costs associated with
reaction-diffusion texture synthesis. Specifically, we have devel-
oped a GPU implementation [17] of an extended reaction-diffusion
model that allows one to quickly form useful patterns while at the
same time exploring the parameter space. Our source code is avail-
able online at the website listed at the end of this paper.

2 Reaction-Diffusion Basics

In 1952, Turing published his now classic paper describing the
chemical process between signaling molecules that spread away
from their source to form a concentration gradient (morphogens)
within a series of cells [18]. Due to instabilities in the system, the
morphogens both react and diffuse, which changes their concen-
tration within each cell. Turing suggested that morphogens could

react with each other and diffuse through cells forming patterns
through the reaction-diffusion process. The resulting “Turing pat-
terns” from various reaction specifications have been shown to pro-
duce a wide array of patterns, including regular patterns reminis-
cent of those found on many animals (zebra stripes, leopard spots,
etc.) [13]. Since Turing’s 1952 paper, others have proposed alter-
native reaction-diffusion models, including the popular Gray and
Scott model [7, 8]. A historical overview can be found in [2].

We now describe some of the basic reaction-diffusion models
and some of their characteristics beginning with Turing’s model,
where he describes a two morphogen model in the form a set of
nonlinear partial differential equations:

∂a

∂t
= F (a, b) + da∇

2a (1)

∂b

∂t
= G(a, b) + db∇

2b (2)

wherea andb are the morphogens concentration;F andG are the
functions controlling the production rate ofa andb; da anddb are
the diffusion rates, and∇2a and∇2b are the Laplacians ofa andb
representing isotropic diffusion. Turing [18] further definesF and
G for his particular application of interest as:

F (a, b) = s(ab − a − α) (3)

G(a, b) = s(β − ab) (4)

wherea andb again are the morphogen concentration,α andβ can
be thought of as being a decay and growth rate ofa andb respec-
tively, ands is the reaction rate.

Pearson [14] describes the reaction model due to Gray and Scott
[7, 8] that has the form:

F (a, b) = s(a2b − (F + k)a) (5)

G(a, b) = s(−a2b + F (1 − b)) (6)

whereF andk are the feed and degrading rates, respectively.
These two reactions are considered to be activator-substrate

models or depletion models. As the morphogena activates, the
morphogenb is depleted and visa-versa. This leads to patterns that
are inverses of one another as shown in Figure (1). Another well
known depletion model is the Brusselator model [15] that has the
form:

F (a, b) = s(α − (1 + β)a + a2b) (7)

G(a, b) = s(βa − a2b). (8)

This model, as will be discussed later, is particularly interesting
because it can be used in a coupled system to produce double spot
patterns.



The other common type of reaction is an activator - inhibitor
model [6]. The most well known is the Gierer-Meinhardt model,
which has the form:

F (a, b) = s(γ + a2/b − αa) (9)

G(a, b) = s(a2 − βb). (10)

Within the reaction-diffusion research literature, one can find
many other reaction models that produce patterns, such as the Oreg-
onator model of the Belousov-Zhabotinsky reaction [3], as well as
models that contain more than two morphogens. For the purposes
of this paper, we have focused on models that contain two mor-
phogens for producing stable patterns or three morphogens for os-
cillatory models. Further details regarding reaction-diffusion mod-
els and their solution can be found in, for example, [2], [9], and
[13].

Figure 1: (a) Activator-Depletion Reaction-Diffusion model show-
ing the activator morphogena and (b) the depletion morphogenb
for a spot pattern using Turing’s model. Parameters for generating
the patterns can be found in the appendix.

3 Controlling a Reaction-Diffusion Sys-
tem

We now examine each part of the reaction-diffusion model and how
each can be controlled to form a particular pattern. We look at each
part individually so that its affect can be seen. In most cases this is
the best way to build a particular pattern. Start with one basic part
and then add to it until the desired pattern is formed.

3.1 System Instabilities

The initial concentration for each of the morphogens is set such
that they are uniform and they form a steady state solution. In order
for the system to react and diffuse and hence form a pattern, there
must be some instability or asymmetry that drives it from this initial
steady state. Which variables, and how much they are perturbed,
greatly affects the resulting pattern.

For instance, in Turing’s original implementation the initial mor-
phogen concentrations were spatially perturbed from their initial
uniform values. We have found that instead, spatially perturbing
the decay and growth rates from their uniform values using a Gaus-
sian deviate drives the pattern formation harder. That is, there is a
greater gradient within the reaction that causes the pattern to form
more quickly. The perturbing of the decay and growth rates can be
thought of as the natural variation within each cell.

For example, the irregular spatiotemporal spot pattern shown in
Figure (1) uses Turing’s model with spatially perturbed decay and
growth rates,α andβ. More specifically, they were set to be 12.0
±0.1% and 16.0±0.1%, respectively. The reaction rate and dif-
fusion rates,s, da, anddb were fixed to be 1/128, 1/16, and 1/4

respectively. Finally morphogens,a andb, were each initially set
to 4.00.

For other models, such as the Gray-Scott model, it is necessary
to perturb the morphogens in a particular manner, for example, uni-
formly perturbing the center portion of one morphogen [14].

3.2 Parameter Mapping in Reaction-Diffusion Ki-
netics

In order to use a reaction-diffusion model for texture synthesis it is
necessary to understand how each variable, whether fixed or per-
turbed, affects the pattern being formed. In addition, a stable pat-
tern will not always form unless the parameters fall within a narrow
band of values. Trying to predict whether a pattern will form, along
with its corresponding shape, is a difficult process. In Figure (2)
we show a phase diagram for the reaction kinetics of the decay and
growth rates over a 512 by 512 grid for one morphogen,a, of Tur-
ing’s model. This diagram is formed by using the same parameters
in Figure (1) except that the decay and growth are a function of the
cell index,α = f(i) = [8, 20] andβ = g(j) = [8, 20], respec-
tively.

When decay rate dominates, an unstable oscillating pattern is
formed (lower right corner of Figure (2)). When the growth rate
dominates, no pattern is formed (upper left corner of Figure (2)).
Only when the ratio of decay and growth rates is near 0.75 does a
stable pattern of lines and spots form.

Given this phase diagram, one might expect a particular pattern
to be formed if the decay and growth rates are set within this stable
region. While in general this is true, it is not of great help because
only two types of patterns are formed - irregular stripe patterns or
symmetrical spots - and as will be shown only the latter can be
manipulated. As such, the values of the decay and growth factors
do not matter as long they are within the stable region that forms
spots.

Figure 2:The pattern formed using a variable decay rate,α versus
a variable growth rate,β. In each case the range is 8 to 20.

However, it is just not the decay and growth rates that determine
the type of pattern formed. The ratio of the diffusion rates also has
a dominate role. For example, in Figure (1) the ratio of the dif-
fusion rates,da anddb is 1:4, which forms a spot pattern. If the
diffusion rates are changed but maintain a ratio of 1:4 the spot pat-
tern will again be formed with only the size changing. This is fully



demonstrated in the next section. However, if the ratio is changed to
1:16, i.e.da anddb are set to 1/16 and 1, respectively, an irregular
spatiotemporal stripe pattern is formed as shown in Figure (3).

Figure 3: (a) Activator-Depletion Reaction-Diffusion model show-
ing the activator morphogen a and (b) the depletion morphogen b
for a stripe pattern using a diffusion ratio of 1:16,da = 1/16 and
db = 1.

3.3 Reaction Kinetics

The reaction kinetics as written in Equation (1) have three free pa-
rameters, the decay and growth rates and the diffusion rate. Typi-
cally the decay and growth factors are fixed around a mean value
so that a spot pattern will form. But this need not be the case as
our phase diagram in Figure (2) shows. Lacalli, et. al. [11] showed
that by using a gradient growth or decay rate, they could form a
stripe pattern. However, picking values that will produce a pattern
beyond uniform stripes that can be controlled based upon a natural
parameter can be difficult. In Figure (4) we show one successful ex-
ample where a pattern that goes from spots to stripes was produced.
This was done by setting the decay rate,α to be 12.0 and using a
gradient for the growth rate,β between 15.85 and 16.35 along the
y axis. The gradient breaks the symmetry, as such the spots are
squeezed or distorted resulting in stripes. Such a pattern selection
is classically described by coupled amplitude equations in weakly
nonlinear theory.

Figure 4:The stripe to spot pattern formed using a constant decay
rate,α of 12.0 and a gradient growth rate,β of 15.85 to 16.35.

The other free parameter in the reaction kinetics is the reaction
rate,s. Because it appears in bothF andG of Equations (3 - 4),
respectively it rescales the time and space. As such, it can be used
to control the pattern size. For instance, as the reaction rate,s is
increased by a quarter and half the original pattern Figure (1a) be-
comes smaller, Figure (5a) and Figure (5b), respectively. Turk pre-
viously noted this and used the surface curvature to vary the spot
size [19].

Figure 5: (a) Turing spots with an increased reaction rate of 25%
(s = 1/96) and (b) 50% (s = 1/64).

In a similar fashion it is possible to control the pattern size using
the diffusion rates. For instance, if the diffusion ratesda anddb

of Equations (1 - 2), respectively are increased while the ratio of
da/db remains constant the pattern size will also increase. This
shows that it is not the individual rates themselves that control the
size, but rather the ratio of the rates. For simplicity and clarity, we
vary only the reaction rate for each cell.

3.4 Diffusion Kinetics

3.4.1 Orientation

The diffusion kinetics as written in Equation (1) has just one free
parameter, the diffusion rate. This is the case for isotropic diffu-
sion. If we relax this condition and use inhomogeneous, anisotropic
diffusion, we are able to create a broader range of patterns. The dif-
fusion equation becomes:

∂u

∂t
= H(u, v) + (∇ · σu∇)u, (11)

whereσu is a spatially varying symmetric, positive definite diffu-
sion tensor, which we can use to encode the rotation and shaping of
a vector field.

Assume that we are working on a finite domain[a1, b1] ×
[a2, b2] ∈ R2, and that we are given a regularly-spaced com-
putational grid of sizeNx × Ny. At each point(xi, yj), i =
1, . . . , Nx, j = 1, . . . , Ny suppose that we are given an angle
θij ∈ [0, 2π]. We can now define a rotation matrix and its inverse
based upon the angle above:

Rij =

(

cos θij sin θij

− sin θij cos θij

)

(12)

R
−1

ij = R
T
ij =

(

cos θij − sin θij

sin θij cos θij

)

. (13)

We now define a principal diffusivity matrixΛ, which is a di-
agonal matrix and gives the diffusivity coefficients along the two
principal axes of diffusion:

Λij =

(

(λ1)ij 0
0 (λ2)ij

)

(14)

where(λ1)ij is the diffusivity in the first principal direction and
(λ2)ij is the diffusivity in the second principal direction.

With the definitions above we can define a diffusivity tensorσij

based on the angle at each grid location as

σij = R
T
ijΛijRij . (15)

σij =

(

(σ11)ij (σ12)ij

(σ21)ij (σ22)ij

)

. (16)



By manipulating the diffusion matrix coefficients it is possible to
create an oriented pattern. We now extend the basic Laplacian by
approximating the continuous differential operator as:

(∇ · σ(~x)∇)~U =
∂

∂x
σ11(~x)

∂~U

∂x
+

∂

∂x
σ12(~x)

∂~U

∂y
+

∂

∂y
σ21(~x)

∂~U

∂x
+

∂

∂y
σ22(~x)

∂~U

∂y
(17)

where~U = (a(~x), b(~x))T is a vector of morphogen concentrations
andσ is a diffusivity tensor as defined above. The above equation
is then discretized using second order finite differences that takes
into account not only the anisotropy but also the inhomogeneity
due to the tensor gradients. Witkin and Kass [20] took a similar
approach for creating their 2D texture patterns. However, their dis-
cretization of the Laplacian was first order and did not take into
account the tensor gradients present when using inhomogeneous
anisotropic diffusion and as will be demonstrated below, this can
affect the quality of the pattern.

In Figure (6) we demonstrate the use of inhomogeneous
anisotropic diffusion to create a saddle pattern of spots. This was
done by setting(λ1)ij = 1.5 and (λ2)ij = 0.5 and θij =

arctan(v, u), whereu = x/
√

(x2 +y2) andv = y/
√

(x2 +y2).
To more fully demonstrate how a first order versus a second order
approximation to the Laplacian affects the resulting pattern when
using inhomogeneous anisotropic diffusion we use the same param-
eters for(λ1)ij and(λ2)ij as before but setθij = arctan(v,−u)
to create circular spot patterns, Figure (7). The figure on the left
uses a first order approximation, while the figure on the right uses
a second order approximation, which results in spots that are con-
sistently more uniform irregardless of the orientation of the pattern
with respect to the grid. We more fully demonstrate the use of in-
homogeneous anisotropic diffusion in [16] and in Section 5.

Figure 6:Turing spots using inhomogeneous anisotropic diffusion
to create a pattern with a saddle where(λ1)ij = 1.5 and(λ2)ij =
0.5 andθij = arctan(v, u).

3.4.2 Shape

We can further control the shape of the pattern formed by moving
away from standard linear inhomogeneous anisotropic diffusion to
a diffusion tensor that varies as a function of the local gradient.
For instance, it is possible to form tear dropped shaped spots by
stretching and squishing the pattern based on the dot product of the
local morphogen gradient and a vector. As the morphogen concen-
tration changes the gradient and subsequently the shape will also
change. This control is accomplished by encoding a change in
the principal diffusivity. As before, at each point(xi, yj) we are

Figure 7: Turing spots using inhomogeneous anisotropic diffusion
to create a circular pattern using first order (left) and second order
(right) approximation to the Laplacian where(λ1)ij = 1.5 and
(λ2)ij = 0.5 andθij = arctan(v,−u).

given an angleθij ∈ [0, 2π], which we represent in vector form as:
~vi,j = (cosθij , sinθij) and∇uij . We now define the following
operator:

dλij(t) = I(
∇uij(t)

|∇uij(t)|
·

~vij

|~vij |
) (18)

whereI is a scaling constant formed by an incomplete gamma func-
tion [1]. Inserting this into the principal diffusivity matrix yields:

Λij(t) =

(

(λ1)ij + dλij(t) 0
0 (λ2)ij − dλij(t)

)

. (19)

Although not readily apparent due to the signs in equations (18)
and (19), the net effect is that if the local gradient is in the oppo-
site direction as the local vector the diffusion is decreased along
the principal direction and increased in the secondary direction and
visa-versa and shown in Figure (8). In Figure (9) we demonstrate
this affect to create a tear drop shaped pattern of spots.

Figure 8:Calculation of the dot product of the local gradient and
vector.

Garcke, et. al. [5] took a similar approach but introduced an ad-
ditional term in their diffusion model rather than encode it directly
into the principal diffusivity. By encoding it directly into the princi-
pal diffusivity there are fewer terms to deal with, which is important
when solving a series of reaction-diffusion equations.

3.5 Mixing Kinetics

In the previous discussion we limited ourselves to a simple two
morphogen model. This need not be the case. For example, Turk



Figure 9: Turing tear dropped shaped spots using the dot product
of the local gradient and vector to modify the principal diffusivity.

[19] showed how multiple patterns could be formed by using a se-
quential three step process - form a stable pattern, freeze those cells
above a particular concentration level, and then use either the same
model with different parameters or use a different model altogether
to form a pattern on the unfrozen cells. This technique is able to
produce spot on stripe patterns and small spots next to large spots.

Instead of using just one models in a sequential manner, we have
explored using two models simultaneously and allowing them to
diffuse [21]. Physically, this can be thought of as two layers that
are linearly coupled together. Each layer has the same reaction and
diffusion kinetics but with different parameters governing their dif-
fusion rates. This system can be describe as:

∂ai

∂t
= F (ai, bi) + µ(aj − ai) + dai

∇2ai (20)

∂bi

∂t
= G(ai, bi) + ν(bj − bi) + dbi

∇2bi (21)

where everything is the same as in Equations (1 and 2) with each
layer distinguished byi, j = 1,2 andi 6= j, and the diffusion be-
tween layers described by the two coupling termsµ andν. Typ-
ically µ = ν. In Figure (10) we demonstrate this effect using the
Brusselator model to create a spot on spot pattern by allowing the
diffusion rates in second layer to be approximately three times that
in the first layer, that isda1

≈ 3da2
anddb1 ≈ 3db2 .

Figure 10:A spot on spot pattern formed using a coupled Brusse-
lator Reaction-Diffusion system withda1

= 16.7, db1 = 36.4 and
da2

= 49.5, anddb2 = 117.6.

Another option is to extend the model to include a third mor-
phogen, which is then used to couple the reactions together in a
three layer system [22]. In this case the top layer is described by:

∂a

∂t
= F (a, b) −

1

δ
(a − c) + da∇

2a (22)

∂b

∂t
= G(a, b) + db∇

2b, (23)

the middle layer by:

∂c

∂t
=

1

δ
(a − c) +

1

δ̄
(d − c) + dc∇

2c, (24)

the bottom layer by:

∂d

∂t
= F̄ (d, e) −

1

δ̄
(d − c) + dd∇

2d (25)

∂e

∂t
= Ḡ(d, e) + de∇

2e, (26)

where the functionF andG are from the Oregonator model [3]

F (a, b) =
1

ǫ
(a − a2 − fb

a − q

a + q
) (27)

G(a, b) = a − b (28)

andǫ, f , andq the kinetics parameters. In addition,F is identical
to F̄ with the exception of the kinetic parametersǭ, f̄ , andq̄.

In this case the morphogenc, which is part of the middle cou-
pling layer, interacts with the top layer containinga andb and the
bottom layer containingd ande. This type of reaction-diffusion
system is able to produce a stable oscillatory pattern. In Figure (11)
we show six frames from an spiral oscillatory pattern.

Figure 11:A stable spiral oscillatory pattern formed using a cou-
pled Oregonator Reaction-Diffusion system. Parameters for gener-
ating the pattern can be found [22].

4 Solving Reaction-Diffusion Equations

To solve the reaction-diffusion equations we have used second order
finite differences in space coupled with either a fully explicit first-
order in time forward-Euler integration scheme or a second-order
in time semi-implicit Crank-Nicholson scheme that utilizes either
Jacobi or Red-Black Gauss-Sidel relaxation for the diffusion terms
with forward-Euler for the reactions terms [10].

Because of the sometimes high computational costs associated
with solving reaction-diffusion equations, we created a native GPU
(GP-CPU) implementation, as well as a CPU implementation for
comparison [17].



The GPU implementation is unique in that it is able to do ei-
ther an explicit or semi-implicit solution. Further, in the case of
the semi-implicit solution we have implemented a GPU based con-
vergence test. This allows for all of the operations to take place
on the GPU thus the only necessary communication with the CPU
is done at start up or when one wishes to view an intermediate re-
sult such as when an oscillating pattern is present. To facilitate our
implementation we have used the recently developed Framebuffer
objects for off screen rendering and Cg [12] for implementing the
fragment shaders.

When compared to the CPU implementation, the GPU imple-
mentation is approximately 9 and 3 times faster for the explicit and
semi-implicit solutions respectively. For example, the 256x256 tex-
ture, such as the one shown in Figure (1), which required 50,000 in-
tegration steps, can be created in less than 100 seconds on an Intel
Xeon P4 running at 3.4Ghz with 2Gb of RAM and 2Gb swap and a
nVidia GeForce 6800 Ultra graphics card. Although still computa-
tionally expensive these textures only need to be created once and
then can be reused. In the case of the oscillating patterns we can
get real time frame rates, over 100 fps.

For both integration schemes the largest time step possible that
assured stability was used. For the explicit solution, the time step
was bounded by the diffusion stability, whereas with the semi-
implicit solution, the time step was bounded by the reaction stabil-
ity. When discretizing the grids we assume a non-dimensional unit
spacing which is typical for many reaction models. The one excep-
tion is Gray-Scotts’ model, which uses a non-dimensional spacing
of approximately 0.01. If the diffusion coefficients are adjusted ac-
cordingly one can assume unit spacing. We have created patterns
using both an explicit and semi-implicit scheme on grids ranging in
size from 64 by 64 to 1024 by 1024 with time steps ranging from
0.01 to 12.5 with no qualitative difference in the patterns.

5 Examples

Given the reactions in the previous section we now show some ex-
amples of how each part of the kinetics can be used to match those
in found in nature. For each of the examples shown we give all the
variable values used to produced the figures in the Appendix.

The examples that are perhaps the most difficult are those that
use a gradient decay or growth rate with Turing’s model. In this
case we fix the decay rate and use a gradient growth rate that varies
radially from the center,β = f(r) ± 0.1%. At the same we also
use a radially increasing reaction rate to increase the pattern size,
s = g(r). This results in a circular stripe-spot pattern, Figure (12)
that, when colored, is similar to the pattern found around the eye
of the White Spotted Puffer Fish, Figure (13) and the Blue Spotted
Puffer Fish, Figure (14).

Another example of using a gradient growth factor is shown in
Figure (15). In this case the growth factor is a function of the angle
around the center,s = h(θ). This results in a radial stripe-spot
pattern that, when colored, is similar to the pattern found around
the eye of the Papua Toby Puffer Fish, Figure (16) and the Map
Toby Puffer Fish, Figure (17).

The next example is from a coupled Brusselator system where
the ratio of the diffusion rates between the two systems are approx-
imately 1:3, that isda1

≈ 3da2
anddb1 ≈ 3db2 . This creates a dou-

ble spot pattern where the diameter of the inner spot is 1/3 the diam-
eter of the outer spot, Figure (18), that, when colored, is similar to
the pattern found on the body of the Jewel Moray Eel, Figure (19).
To obtain the oblonged spots uniform anisotropic diffusion with a
principal diffusivity tensor of(λ1)ij = 1.25 and (λ2)ij = 0.75
was used.

We show another example also using a coupled Brusselator sys-
tem. However, in this case we show how the mixing parameter can
be used to obtain patterns for the sub-adult and adult phases of the

Painted Sweetlips Fish. We first show each of the systems uncou-
pled. For the first system, we have fixed the morphogen values of
the first and middle rows to 0 and 5 whereas the other rows are ran-
dom with a mean value of 3. Fixing the two rows causes a stripe
pattern to form as shown in Figure (20a). The other system also
has the same random values but without the two fixed rows and
forms a random spot pattern as shown in Figure (20b). To create
asymmetrical spots and stripes which give a more natural pattern
we have perturbed the reaction constants. When these two systems
are coupled and allowed to mix,m = 0.25 an aligned spot pattern
is formed, Figure (21) that, when colored, is similar to the pattern
found on the body of the sub-adult Painted Sweetlips Fish, Figure
(22). To obtain the adult phase the mixing rate is set to zero which
decouples the system as shown in Figure (20b) and forms a random
pattern that is similar to the pattern found on the body of the adult
Painted Sweetlips Fish, Figure (23).

The final example shows how the anisotropic diffusion, variable
reaction rate, and shape can be used to create a visualization of a
vector field [16]. By mapping the vector magnitude to the reaction
rate, the vector orientation to the diffusivity, and the vector direction
to the shape we can produce a visualization such as shown in Figure
(24) of an electrostatic field.

6 Discussion

When creating the patterns we have typically started with one ba-
sic part and then built upon the basic pattern. For instance, when
creating the spot stripe patterns in Figure (15) we started first with
understanding how to create horizontal stripes. Once we could con-
trol the size and density we then wrapped them radially. From there,
we added the transition from stripes to spots. Finally, we would ad-
just the variance to give a more natural look. This approach was
taken for almost all of the examples shown above.

Perhaps the most interesting patterns are those that oscillate. Al-
though currently we have not found a similar pattern in nature we
believe that future work will lead to other oscillating patterns that
can be used.

A future project is to relate the reaction variables to some phys-
ical property in an automated fashion. For instance, although we
were able to duplicate the patterns around the Puffer Fish eyes, set-
ting the necessary gradients was done by trial and error. It would
be interesting if the gradients could be tied to the surface curvature
or some other physical property. This would allow for a variety of
Puffer Fish patterns to be created each with its own unique pattern
without having to fully relying on the random variance typically
used.

The other area of future work is to choose parameters based on a
physiological property. For instance, for the Painted Sweetlips Fish
shown in Figures (22-23), we were able to transition between the
sub-adult and adult phases solely using the mixing rate. The next
step would be to obtain a pattern using a coupled system for the
juvenile Sweetlips Fish, which begins it’s life with stripes that tran-
sition into spots, Figure (25). If possible, then the mixing rate could
then be a function of age. This would be of interest for animators
who often need to age characters.
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8 Appendix

One of the difficulties in using a reaction-diffusion model to form
patterns is selecting the necessary parameters. As such, in Table(1)
we provide the parameters used in to create Figures(1-24).

Our source code is available online at
http://www.acm.org/jgt/papers/SandersonEtAl06 and can be
run on Linux, OS X, and other PC platforms. The code requires the
following OpenGL libraries: Glew, Glui, and Glut for the CPU and
GPU versions and also nVidia’s Cg libraries for the GPU version.
You will need to supply some code from Numerical Recipies that
can not be distributed due to copyright restrictions.

References
[1] William H. Press amd Saul A. Teukolsky, William T. Vetterling, and Brian P.

Flannery. Numerical Recipes in C. Cambridge University Press, Cambridge,
UK, 1992.

[2] I.R. Epstein and J.A. Pojman.An Introduction to Nonlinear Chemical Dynamics.
Oxford University Press, New York, 1998.

[3] R.J. Field and R.M. Noyes. Oscillations in chemical systems.Journal of Chem-
ical Physics, 60(4):1877–1884, 1974.

[4] Deborah R. Fowler, Hans Meinhardt, and Przemyslaw Prusinkiewicz. Modeling
seashells. InComputer Graphics (SIGGRAPH), pages 379–387, New York, NY,
USA, 1992. ACM Press.

[5] H. Garke, T. Preusser, M. Rumpf, A.C. Telea, U. Weokard, and J.J. van Wijk. A
phase field model for continous clustering on vector fields.IEEE Transactions
on Visualization and Computer Graphics, 7(3):230–242, 2001.

[6] Alfred Gierer and Hans Meinhardt. A theory of biological pattern formation.
Kybernetik, 12(1):30–39, 1972.

[7] P. Gray and S.K. Scott. Sustained oscillations and other exotic patternsof be-
haviour in isothermal reactions.Journal of Physical Chemistry, 89(1):22–32,
1985.

[8] P. Gray and S.K. Scott.Chemical Oscillations and Inestability: Non-linear
Chemical Kinetics. Oxford University Press, 1990.

[9] Willen Hundsdorfer and Jan Verwer.Numerical Solutions of Time-Dependent
Advection-Diffudion-Reaction Equations. Springer-Verlag, Berlin, Germany,
2003.

[10] G.E. Karniadakis and R. M. Kirby II.Parallel Scientific Computing in C++ and
MPI. Cambridge University Press, New York, 2003.

[11] T.C. Lacalli, D.A. Wilkinson, and L.G. Harrison. Theoretical aspects of stripe
formation in relation to drosophila segmentation.Development, 104(1):105–13,
September 1988.

[12] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard. Cg: A
system for programming graphics hardware in a c-like language.ACM Transac-
tions on Graphics, 22(3):896–907, 2003.

[13] J.D. Murray.Mathematical Biology. Springer-Verlag, New York, 1989.

[14] J.E. Pearson. Complex patterns in a simple system.Science, 261:189–192, 1993.

[15] I. Perigogine and R. Lever. Symmetry breaking instabilities in dissipative sys-
tems.Journal of Chemical Physics, 48(4):1695–1700, February 1968.

[16] Allen R. Sanderson, Chris R. Johnson, and Robert M. Kirby. Display ofvector
fields using a reaction-diffusion model. InVIS ’04: Proceedings of the confer-
ence on Visualization ’04, pages 115–122, Washington, DC, USA, 2004. IEEE
Computer Society.

[17] A.R. Sanderson, M. Meyers, C.R. Johnson, and R.M. Kirby. A framework for
exploring advection-reaction-diffusion models.Computing and Visualization in
Science, page Submitted for publication, 2006.

[18] A.M. Turing. The chemical basis of morphogenesis.Phil. Trans. Roy. Soc. Lond.,
B237:37–72, 1952.

[19] Greg Turk. Generating textures on arbitrary surfaces using reaction-diffusion. In
Computer Graphics (SIGGRAPH), pages 289–298, New York, NY, USA, 1991.
ACM Press.

[20] Andrew Witkin and Michael Kass. Reaction-diffusion textures. InComputer
Graphics (SIGGRAPH), pages 299–308, New York,, NY, USA, 1991. ACM
Press.

[21] Lingfa Yang, Milos Dolnik, Anatol M. Zhabotinsky, and Irving R.Epstein. Spa-
tial resonances and superposition patterns in a reaction-diffusion model with in-
teracting turing modes.Physical Review Letters, 88(20):208303–1–4, May 2002.

[22] Lingfa Yang and Irving R. Epstein. Oscillatory turing patterns in reaction-
diffusion systems with two coupled layers. Physical Review Letters,
90(17):178303–1–4, May 2003.



Figure 12:Using radially gradient growth factor,β = f(r)±0.1%
and reaction rate,s = g(r) to form a circular stripe-spot pattern.

Figure 13:White Spotted Puffer Fish found in the Indo-Pacific re-
gion. Image courtesy of Robert Delfs/tabula-international.com.

Figure 14:Blue Spotted Puffer Fish (Arothron caeruleopunctatus)
found in the Indo-Pacific region. Image courtesy of Jeffrey Jef-
fords/divegallery.com.

Figure 15:Using radially gradient growth factor,β = h(θ)±0.1%
and reaction rate,s = g(r) to form a radial stripe-spot pattern.

Figure 16:Papua Toby Puffer Fish (Canthigaster papua) found in
the Western Pacific region. Image courtesy of Massimo Boyer/edge-
of-reef.com.

Figure 17: Map Toby Puffer Fish (Arothron mappa) found in the
Indo-West Pacific region. Image courtesy of Massimo Boyer/edge-
of-reef.com.



Figure 18: Using a coupled Brusselator system to form a double
spot pattern.

Figure 19: Jewel Moray Eel (Muraena lentiginosa) found in the
Baja-Pacific region. Image courtesy of Ken Bondy/kenbondy.com.

Figure 20:Using a Brusselator system with fixed first and middle
rows and random morphogen values to form a stripe (left) and ran-
dom morphogen values to form a spot pattern (right), respectively.

Figure 21: Coupling the Brusselator system from Figure (20) to
form an aligned spot pattern.

Figure 22: Sub-Adult Painted Sweetlips Fish (Diagramma pictum
pictum) found in the Indo-Pacific region. Image courtesy of Rudie
Kuiter/Aquatic Photographics.

Figure 23:Adult Painted Sweetlips Fish (Diagramma pictum pic-
tum) Found in the Indo-Pacific region. Image courtesy of Rudie
Kuiter/Aquatic Photographics.



Figure 24:A vector field visualization of an electrostatic field.

Figure 25: Juvenile Painted Sweetlips Fish (Diagramma pictum
pictum) found in the Indo-Pacific region. Image courtesy of Rudie
Kuiter/Aquatic Photographics.



Table 1: Parameters for forming the patterns in each Figure.

Figure Reaction ainitial binitial αij βij s da db Time Step Mixing
1 Turing 4.0 4.0 12.0±0.1% 16.0±0.1% 1/128 1/16 1/4 0.5 NA
2 Turing 4.0 4.0 [8, 20] [8, 20] 1/128 1/16 1/4 0.5 NA
3 Turing 4.0 4.0 12.0±0.1% 16.0±0.1% 1/128 1/16 1 0.5 NA
4 Turing 4.0 4.0 12.0 15.85 + 0.5j 1/128 1/16 1/4 0.5 NA
5a Turing 4.0 4.0 12.0±0.1% 16.0±0.1% 1/96 1/16 1/4 0.5 NA
5b Turing 4.0 4.0 12.0±0.1% 16.0±0.1% 1/64 1/16 1/4 0.5 NA
6 Turing 4.0 4.0 12.0±0.1% 16.0±0.1% 1/128 1/16 1/4 0.5 NA
7 Turing 4.0 4.0 12.0±0.1% 16.0±0.1% 1/128 1/16 1/4 0.5 NA
9 Turing 4.0 4.0 12.0±0.1% 16.0±0.1% 1/128 1/16 1/4 0.5 NA
10 Brusselator 3.0±1.0% 3.0±1.0% 3.0 9.0 1 16.7/49.4 36.4/117.6 0.0025 0.1
12 Turing 4.0 4.0 12.0 see note a [0.0028, 0.01] 1/16 1/4 0.5 NA
15 Turing 4.0 4.0 12.0 see note b [0.0028, 0.01] 1/16 1/4 0.5 NA
18 Brusselator 3.0±1.0% 3.0±1.0% 3.0±0.25% 9.0±0.25% 1 16.7/49.4 36.4/117.6 0.0025 0.1
20 Brusselator 3.0±1.0% 3.0±1.0% 3.0±1.0% 9.0±1.0% [.5, 2] 12.6/47.5 27.5/141.5 0.0015 NA
21 Brusselator 3.0±1.0% 3.0±1.0% 3.0±1.0% 9.0±1.0% [.5, 2] 12.6/47.5 27.5/141.5 0.0015 0.25
24 Turing 4.0 4.0 12.0±0.1% 16.0±0.1% 1/128 1/16 1/4 0.5 NA

Note a: Values used forβij in Figure (12)
r ∈ [0, 0.25] : βij = 16 − .5 ∗ r/.25

r ∈ [0.25, 0.50] : βij = 16 − .5 ∗ (1 − r/.25)

r ∈ [0.50, lim inf] : βij = 16 ± 0.1%

Note b: Values used forβij in Figure (15)
r ∈ [0, 0.125] : βij = 16 − .5 ∗ r/.25

r ∈ [0.125, 0.25] : βij = 16 − .5 ∗ (1 − r/.25)

r ∈ [0.25, 1.0] : βij = 16 − sin2(8θ)

R ∈ [1.0, lim inf] : βij = 16 ± 0.1%

Note c: For Figures (6, 7, 9, 18, and 24) inhomogeneous anisotropic diffusion was used.


