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Figure 1: A comparison of the original image (a) (© JohnWiley and Sons. Reprinted, with permission, from Schott et al. [2011]),

spectral sharpened (b), and distance-based contrast enhanced [Zhou andWeiskopf 2018] (c) on a volume rendering of a combus-

tion simulation with depth-of-field effect. As shown in the zoom-ins, depth relationships of features can be better estimated

with our method than the original, and our result is more natural-looking than the method of Zhou and Weiskopf [2018].

Note that figures are best viewed on a monitor as color reproduction of printers is not perfect.

ABSTRACT

In this paper, we propose a perceptually-guided visualization sharp-

ening technique. We analyze the spectral behavior of an established

comprehensive perceptual model to arrive at our approximated

model based on an adapted weighting of the bandpass images from

a Gaussian pyramid. The main benefit of this approximated model

is its controllability and predictability for sharpening color-mapped

visualizations. Our method can be integrated into any visualization

tool as it adopts generic image-based post-processing, and it is

intuitive and easy to use as viewing distance is the only parame-

ter. Using highly diverse datasets, we show the usefulness of our

method across a wide range of typical visualizations.
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1 INTRODUCTION

To faithfully convey information through visualizations, the per-

ception by the human recipient is equally important as the visual

mapping pipeline that precedes it. Contrast is essential in visual per-

ception of color-coded visualizationsÐsufficient contrast is needed

for showing boundaries of features. In this paper, we perform spec-

tral analysis of visualization perception under various viewing dis-

tances. We propose a perceptually-guided multiscale method that

sharpens visualizations by virtual viewing distance compensation.

Color mapping allows us to display data on a fine-grained level

all the way down to per-pixel resolution, and it can convey both

chromatic and achromatic information at the same time. It has

been concluded that spatial frequency and contrast play important

roles in the perception of chromatic and achromatic information of

color-encoded visualizations [Bergman et al. 1995; Ware 1988].



SAP ’19, September 19–20, 2019, Barcelona, Spain Zhou, Netzel, Weiskopf, and Johnson

Contrast sensitivity functions (CSFs) are an important tool to

understand spatial vision. Researchers have measured CSFs in phys-

iological and psychophysical experiments [Campbell and Robson

1968; Mullen 1985; Nes and Bouman 1967; Wilson 1991], and com-

putational models of CSFs have been proposed [Barten 1999; Daly

1992; Movshon and Kiorpes 1988]. Multiscale models [Pattanaik

et al. 1998; Watson and Solomon 1997; Wilson 1991] can appropri-

ately model spatial vision as the human visual system is believed

to contain band-pass-fashioned visual pathways. There is evidence

that color CSFs behave differently from the luminance CSF, notably,

color CSFs have peak values at lower spatial frequencies than the

luminance CSF [Mullen 1985], indicating that colors are more ef-

fective for encoding low-frequency features than luminance. CSFs

have been used in visualization methods [Isenberg et al. 2013; Zhou

and Weiskopf 2018] to enhance features of different scales.

Human visual perception is a complicated process, and CSFs are

only concerned with threshold spatial vision, which predicts the vis-

ibility of an object under different viewing conditions. To predict the

appearances of objects that are visible, suprathreshold vision and

spatial vision models have been studied [Georgeson and Sullivan

1975; Watson and Solomon 1997]. Pattanaik et al. [1998] propose

a computational approach that realizes a comprehensive model

that simulates perceptual phenomena in threshold/suprathreshold

vision and apparent contrast under different illumination condi-

tions. This model serves as a basis for our new spectral sharpening

method.

Our contribution is an image-based perceptually-inspired visual-

ization sharpening technique. We adopt the model of Pattanaik et

al. [1998], and study the frequency domain of this model under vari-

ous viewing distances and compensate for the power loss at a given

viewing distance. Specifically, the compensation is achieved by

adapting the weights of band images of white noise data. Therefore,

our method implicitly accounts for perceptual effects beyond those

described by CSFs. An example can be seen in Figure 1, where depth-

of-fielding volume renderings [Schott et al. 2011] are shown. In the

original rendering, depth relationships of out-of-focus features are

difficult to judge (zoom-ins can be seen in insets). Using our method

(Figure 1(b)), features in front are enhancedÐone can conclude that

they are closer to the focus than parts that are behind the focus. In

comparison, the CSF-based approach [Zhou and Weiskopf 2018]

(Figure 1(c)) over-emphasizes high-frequency regions and causes

ringing artifacts.

Our method decomposes an image into chromatic channels and a

luminance channel comprised of multiscale bandpass images of the

input image. Chromatic channels are used to encode the main trend

of the data that changes smoothly and has low spatial frequency,

while luminance contrast is utilized for encoding small-scale value

difference that exhibits high-frequency structures. The effectiveness

of our method is demonstrated by a wide range of visualization

examples in the paper and the supplemental material.

Our approach has several advantages. One benefit is its generalityÐ

it works for visualizations with global illumination to 2D GIS

examples. The method is an independent image processing ap-

proach that can be subsequently applied to any visualization sys-

tem. Our method is interactive, and overcompensation, which en-

hances features in visualizations, is achieved with easy-to-use user

interactionÐin the form of a single parameter of viewing distance.
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Figure 2: Simulation results (cśf) from our implementation

of the computational perception pipeline by Pattanaik et

al. [1998].

2 RELATEDWORK

Color mapping is an important visualization and perception re-

search topic. A survey on color mapping can be found elsewhere

[Zhou and Hansen 2016]. Among others, contrast, luminance, and

spatial frequency are in particular related to our work. Luminance

is found to be more effective for revealing high-spatial-frequency

structures than chromatic channels [Rogowitz et al. 1996; Ware

1988], which is in line with findings of psychophysical experi-

ments [Mullen 1985]. The combination of proper luminance and

spatial frequency so that sufficient contrast can be perceived is

important for successful color map design [Bergman et al. 1995;

Kovesi 2015]. User studies [Padilla et al. 2017] have shown that

user task performance tends to be better with visualizations with

discretized luminance than smooth luminance, implying that suffi-

cient contrast is vital for effective visualization. Evidence of implicit

discretization is found with chromatic channels as the result of an

exploratory study of spectral color maps [Quinan et al. 2019].

Contrast is also important in image processing and computer

graphics as it is critical to improving image details. Tone mapping

operators [Fattal et al. 2002; Mai et al. 2011; Reinhard et al. 2002]

are concerned with the compression of luminance range while

preserving perceived contrast. A perception-based tone mapping



Spectral Visualization Sharpening SAP ’19, September 19–20, 2019, Barcelona, Spain

operator can simulate contrast reduction caused by glares in night

driving [Meyer et al. 2016]. Unlike our proposed method, these

image processing methods aim to reproduce the perceived image

of high dynamic range input on low dynamic range displays, and

cannot be tuned with a simple parameter.

An all-around andwell-accepted computational perceptionmodel

is by Pattanaik et al. [1998], which targets photorealistic image syn-

thesis in computer graphics andÐdue to its broad coverage of per-

ceptual phenomena such as threshold visibility, visual acuity, color

discrimination, and suprathreshold brightness and colorfulnessÐis

useful for our visualization purposes; it unifies several important

models from studies of the human visual perception.

We convert the resolution in this model from cycles per degree

(cpd) to viewing distance, pixel count, and size. Then, we perform

Fourier domain analysis on simulated images at various viewing

distances and approximate the inverse of the model to enhance

contrast by compensating for power loss. Our aim is to enhance

visualizations rather than simulating perceptual effects for accurate

computer graphics rendering, and our approximated inversion leads

to an efficient implementation of an interactive application that

facilitates intuitive and easy-controllable user interactions.

Perceptual methods based on viewing distances and CSFs have

been proposed in visualization. Isenberg et al. [2013] describe a mul-

tiscale visualization method for display walls by studying the visi-

bility of features of different spatial frequencies at different viewing

distances using CSFs and introduce a hybrid-image method for in-

formation visualization on a display wall by manually combining an

image of high-frequency information and another of low-frequency

information. Multiscale band-limited images are also used in our

method, however, we utilize them for contrast enhancement and

combine them automatically with adapted weights; unlike their

power-wall setting, we focus on a typical working space setting

with a fixed physical viewing distance from a regular monitor. Zhou

and Weiskopf [2018] propose calculating multiscale contrast for

a given virtual viewing distance and test it against the threshold

contrast curvesÐthe inverse of CSFsÐto enhance image bands that

fall below the threshold contrast. We also leverage the virtual view-

ing distance for intuitive and easy-controllable user interaction,

but our model implicitly takes more perceptual effects into account

as band weights are set based on the power spectral analysis of

the computational perceptual simulation [Pattanaik et al. 1998]. As

a result, a more balanced weight combination is achieved in our

methodÐyielding more natural-looking results than the previous

method [Zhou and Weiskopf 2018], which potentially amplifies

high frequencies too much when lower frequencies are not ampli-

fied at all. Furthermore, our spectral contrast model can take the

non-colormapped original data as input, which provides additional

luminance details in the enhanced results as shown in Figures 1, 5,

and 7.

Distance perception is critical in virtual reality environments

and has been extensively studied [Interrante et al. 2006; Vaziri et al.

2017]. Although we focus on the use of virtual viewing distance

as leverage for contrast enhancement, it is possible to extend our

work to virtual and augmented reality settings.

Figure 3: The spectral perceptual model (Section 3.3) is illus-

trated on the left, and the compensation pipeline (Section 4)

is shown to the right.

3 SPECTRAL VISUALIZATION SHARPENING

We propose a spectral image sharpening method based on Fourier

domain analysis of the computational perceptual simulation model

by Pattanaik et al. [1998] that generates convincing perceptual

images. Intuitively, the goal of compensation for contrast loss due to

viewing distance is tomake an image appear identical to the original

image at this viewing distance. Therefore, we need to approximate

the inverse of the perceptual simulation. Given the evidence that

the human visual system behaves as spatial-frequency filters, it is

appropriate to investigate the effect of the perceptual pipeline by

analyzing in the Fourier domain. In this way, we build a simplified

model to achieve the compensation based on the power spectrum

of an image as shown in Figure 3 (left).

This model allows us to find the inversion of the simulation, i.e.,

to compensate for contrast loss, by controlling weights of band-

limited images (Figure 3 (right)). The compensation is formulated

as an optimization problem (Section 4). Furthermore, the model

enables us to reduce computational complexity and achieve an inter-

active method that can be added into any interactive visualization

system.

3.1 Simulated Impact of Viewing Distance

We study the impact of viewing distance as a perceptual parameter

in the model of Pattanaik et al. [1998] by converting its resolution

measurement from cpd to viewing distance d and pixel measure-

ments [Isenberg et al. 2013]. Since our method preserves chromatic

channels and sharpens the luminance channel, the input to the

pipeline is a grayscale version of the original imageÐwe calculate

the luminance Y in XYZ color space from the linear RGB input.
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Results from our implementation are shown in Figure 2 with

test images: Snellen eye chart (a test image also used in the origi-

nal publication of the pipeline [Pattanaik et al. 1998]) and a slice

through an MRI brain scan (as a typical example from scientific

and medical visualization). The physical sizes for the images are

6.9 cm × 8.9 cm, 4.1 cm × 2.5 cm, and 12.3 cm × 7.6 cm, respectively,

on a 28-inch monitor with a resolution of 3840 × 2160 pixels.

Several qualitative characteristics should be noted in the simula-

tion results. Compared to the input images (Figures 2aś2b), results

with d = 100 cm are much more blurry and fine details are lost, e.g.,

the small numbers in the Snellen chart (Figure 2c) and the details

of the cortex structure (Figure 2d). Comparing results with short

viewing distance (Figures 2e and 2f) to long viewing distance, the

adaptation becomes more local with a shorter viewing distance, e.g.,

the halo effects in the Snellen chart with d = 10 cm make the image

much crisper compared to the d = 100 cm version, the boundaries

are enhanced, and the contrast of images is increased.

Overall, the perceptual simulation tends to blur the original

images for medium to large viewing distances. Therefore, we do

not perceive visual patterns at small length scales as well as they

are in the original data.

3.2 Fourier Analysis of Perception Simulations

To understand the frequency behavior of the perceptual pipeline on

visualizations, we conduct Fourier analysisÐusing the radial power

spectrum operator Pr [·](v), where v is the radial frequencyÐon

simulated perceptual images (full details of the analysis and images

of visualizations are documented in the supplemental material). We

analyze 50 visualizations obtained through Google image searchÐ

these images cover typical classes of visualizations, including vi-

sualizations of volume, flow, DTI, GIS data, and slices of medical

scans. Each image is simulated with viewing distances from 10 cm

to 100 cm with a stride of 10 cm, and we calculate the logarithmic

power spectrum of each original image and its simulations. Per-

ceived changes over spatial frequency of stimuli behave roughly

logarithmically according to the Weber-Fechner law. We are inter-

ested in the relative relationship between the power spectrum of

the original image and simulated images.

Therefore, we derive the relative amplitude by dividing the power

spectra of simulations by the spectrum of the original image, and

aggregate all datasets and calculate the mean relative amplitude of

each viewing distance. The result is shown in Figure 4(a), where

the spatial frequency is limited to roughly 60% of the averaged

highest frequency of all images as the very high frequency is not

reliable against artifacts. From these power spectra, we can observe:

the perceptual pipeline mostly behaves like a bandpass filter, and

the filter response works in a controlled way, i.e., without rapid

changes; the power spectrum of an image simulated with a greater

viewing distance decays more quickly compared to an image with a

shorter viewing distance; power spectra of long viewing distances

are higher than the original in low-middle frequencies and lower

than the original in high frequencies, and those of short viewing

distance behave the opposite.

To model the spectral response of the perceptual pipeline in a

data-independent way (we refer to data in the visualization im-

ages), we study the frequency behavior of the pipeline for gradually
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(a) Averaged Relative Power Spectra of 50 Visualizations
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(b) Relative Power Spectra of White Noise

Figure 4: Logarithmic relative amplitude of power spectra

of simulated perceptual images of 50 visualizations (a), and

white noise (b). Here, we use the normalized spatial fre-

quency.

Table 1: Slopes from linear regression of relative power spec-

tra of visualization images (vis) and white noise (wn) simu-

lations of d =10 cm to 100 cm.

d vis (Figure 4(a)) wn (Figure 4(b))

10 -0.31 -0.44

20 -0.82 -1.02

30 -1.40 -1.59

40 -1.99 -2.20

50 -2.51 -2.80

60 -2.94 -3.37

70 -3.28 -3.88

80 -3.59 -4.36

90 -3.87 -4.78

100 -4.16 -5.14

increasing viewing distances using a white noise image, where sam-

ples are randomly drawn from a Gaussian probability distribution.

The power spectrum of a white noise image is constant across all

frequencies in the Fourier domainÐup to small variations from the

stochastic construction. Therefore, white noise provides a good

means of assessing how the perception pipeline affects various

spatial frequencies, avoiding any potential artifacts from regular

sampling. Figure 4(b)Ðplotted in normalized spatial frequency, and

we limit the highest frequency to 60% to match Figure 4(a)Ðshows

relative amplitude of logarithmic power spectra of a white noise

image and its simulations from the perception pipeline of d = 10 cm

through 100 cm with a stride of 10 cm. Compared to the relative
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Figure 5: Flow chart of the proposed method. Luminance images fi (x,y) and fL(x,y) are inverted for visibility.

amplitude of real datasets (Figure 4(a)) in the middle range of fre-

quency, i.e., the normalized spatial frequency of 0.1Ð0.35, the white

noise curves behave qualitatively similar and quantitatively compa-

rable. Linear regression is calculated for both relative power spectra

of visualizations (spatial frequency: 0.1Ð0.35) and white noise (spa-

tial frequency: 0.1Ð0.6), and the slopes of the fitted lines are shown

in Table 1.

Therefore, it is valid to use white noise as a representative for

the power spectra of visualization images.

3.3 Spectral Perceptual Model

We have a filtering that is frequency-dependent, and therefore, we

formulate a spectral perception model for an image f (x,y):

Sd [f (x,y)] = F
−1[F [f (x,y)] · Hd (ν )] , (1)

where Sd [·] is the perceptual simulation operation for a virtual

viewing distance d , andHd is a transfer function of radial frequency

v . As shown in Equation 2, Hd is the radial power spectrum of the

white noise data simulated at d (one of the curves in Figure 4(b)):

Hd (ν ) = Pr [F [Sd [n(x,y)]]](ν ) . (2)

Here, we assume that the original noise image n(x,y) is normalized

in the sense that its power spectrum averages to one.

We can replace the input image by the sum of L images in a

Gaussian pyramid; therefore, Equation 1 can be rewritten as:

Sd [f (x,y)] = F
−1

[

L
∑

i=1

F [fi (x,y)] · Hd (ν )

]

. (3)

Since the transfer function changes in a controlled way, it is valid

to approximate the transfer function on each frequency interval of

the bandpass images with a constant Hi . The Fourier transform is

a linear operator, therefore we have:

Sd [f (x,y)] ≈ F
−1

[

L
∑

i=1

F [fi (x,y)] · Hi

]

(4)

=

L
∑

i=1

Hi · fi (x,y) . (5)

This equation serves as the mathematical model of our simplified

perception pipeline. Figure 3 illustrates the spectral perceptual

model on the left.

It is possible to compute the inverse of the model for a virtual

viewing distance d , by replacing the constantsHi with their inverse

1/Hi in Equation 5. Effectively, it raises the power spectrum of the

perceived image at d to the constant value, leading to perceptual

compensation.

3.4 Spectral Visualization Sharpening Pipeline

The basis of our spectral sharpening pipeline (Figure 5) is revert-

ing the frequency transfer of Equation 5 to invert the frequency

damping of the image. Given an input image f (x,y) in its gray-

scale version fG (x,y), a number of L − 1 band images fi (x,y) are

derived by taking the top level and then calculating the differences

between two neighboring levels in a Gaussian pyramid. It is then

possible to compensate for contrast loss via the power spectrum by

assigning proper weights to band images. In Section 4, the weight

optimization method for virtual viewing distance compensation is

explained.

Finally, a visualization fV (x,y) is generated by combining the

luminance difference image fL(x,y), which is a weighted sum of

bandpass images fi (x,y), and the color image fC (x,y). Here, the

fC (x,y) contains the full chromatic information and the lowpass

version of the achromatic image. Therefore, the achromatic chan-

nel of the final image is the sum of the achromatic channel of

fC (x,y) and fL(x,y), the chromatic channels are directly taken

from fC (x,y).

4 COMPENSATION

In this section, we explain compensationÐthe formulation of the

problem and its solution (Figure 3 right)Ðand overcompensation.

4.1 Mathematical Formulation for
Compensation

Consider the compensation for a virtual viewing distance d as an

operatorCd [·], along with the simulation operator Sd [·] for our sim-

plified perceptual model. We can then formulate the compensation

problem as follows:

Sd [Cd [f (x,y)]]
!
= f (x,y) . (6)

Equation 6 essentially says that the simulated result from our sim-

plified perception model of a compensated image should be equal

to the input image f (x,y). In exactly the same way of Sd [·], the
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(a) Original (b) Compensated (c) Overcompensated

Figure 6: A comparison of no compensation (a), compensation (b), and overcompensation (c) for contrast on a slice of a CT

scan of a tomato.

compensation operator has the following form:

Cd [f (x,y)] =

L
∑

i=1

wi · fi (x,y), andwi ≥ 0 , (7)

where wi are non-negative weights for bandpass images. We do

not modify the lowpass image, i.e.,wL = 1.

4.2 Finding Optimal Weights

In order to derive a set of wi in a data-independent fashion, we

apply the white noise image f (x,y) ≡ n(x,y), and apply the Fourier

transform to both sides of Equation 6:

F [Sd [Cd [n(x,y)]]]
!
= F [n(x,y)] (8)

⇒

L
∑

i=1

wiF [Sd [ni (x,y)]]
!
=

L
∑

i=1

F [ni (x,y)] (9)

It is possible to approximate Equation 9 by minimizing the differ-

ence between its left- and right-hand sides:

argmin
wi

p , subject towi ≥ 0 , (10)

with the objective function:

p =
















L
∑

i=1

{wiF [Sd [ni (x,y)]] − F [ni (x,y)]}
















2

. (11)

The objective function is then simplified: we drop the phase

information of the Fourier transform, and evaluate only the power

spectrum Pr [·]. Also, instead of evaluating the power spectrum for

the whole frequency range, the band-limited power spectrum of

the middle frequency is used for its robustness against artifacts.

Therefore, the objective function p reads:

p =

∫

bνm

aνm

(

L
∑

i=1

{wiPr [F [Sd [ni (x,y)]]](ν )−

Pr [F [ni (x,y)]](ν )}
2

)

dv ,wi ≥ 0 , (12)

where νm is the maximum frequency of the image, and a and b are

values satisfying 0 < a < b < 1; a = 0.05 and b = 0.6 are utilized

in our implementation. Recalling Figure 4, Pr [F [Sd [ni (x,y)]]](ν )

is essentially the band-limited power spectrum of the white noise

image simulated at a distance d , whereas Pr [F [ni (x,y)]](ν ) is the

constant power spectrum of the original image.

Finally, the optimal weights are found by solving a constrained

nonlinear optimization of Equation 10. We solve this problem using

the conjugate gradient method [Nocedal and Wright 2006], which

has good convergence performance. Since it is impossible to ana-

lytically compute the gradient of p, we approximate the gradient

with central differences.

We only need to compute the optimal weights for a white noise

image, and therefore the optimization is conducted in a preprocess-

ing stage. Optimal weightswi found through the process are stored

and loaded at runtime during the visualization.

4.3 Overcompensation

In many cases, it is necessary to emphasize details in the image for

visualization purposes rather than just to compensate for contrast

loss. Such overcompensation can be easily achieved by setting the

virtual viewing distance parameter d to be greater than the actual

viewing distance. Comparing the result of overcompensation as in

Figure 6(c) to compensation in Figure 6(b), it is noticeable that over-

compensation makes structure boundaries have increased contrast

and details become more visible. Specifically, overcompensation

improves the visibility of details in the placental tissue in blue, re-

gions on the pericarp wall colored in light blue, and also adds halo

effects for the boundary of the tomato.

The user can interactively change the virtual viewing distance by

controlling a single slider. In our GPU-accelerated implementation,

the optimal band weightswi are precomputed and are used during

runtime to compute a luminance image, which further composites

with the chromatic image.

5 EXAMPLES

We show the usefulness of our sharpening method for a wide range

of typical applications: color mapping on 2D images (slices) to show

scalar fields, 3D volume renderings, and 2D map-based geographic

information visualization. A video of screen captures of interactions

with these datasets can be found in the supplemental material.

Figures 6 and 7 are examples of grayscale volume slices with per-

ceptual colormaps applied. The tomato and the hurricane datasets

are generated using ColorBrewer color maps [Harrower and Brewer

2003], while the MRI scan is encoded with a multihue isoluminant

color map [Kindlmann et al. 2002]. Examples of RGB-colored im-

ages from previously published visualization techniques are shown

in Figures 1 and 8.
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Figure 7: Examples of volumetric data slices. The virtual viewing distance used to create results with our method are 75 cm

for the MRI brain data set, and 90 cm for the Hurricane Isabel pressure dataset.

The tomato CT scan (Figure 6), which has been discussed in Sec-

tion 4.3, and theMRI brain scan (Figure 7, row 1) contain rather clear

boundaries between anatomically meaningful structures. Without

sharpening, the MRI image has a washed-away look so that one

cannot easily separate the brain from the surrounding tissues (cyan)

and it is difficult to recognize the delicate folded details. Fine details

of the brain become clearly noticeable with a viewing distance of

75 cm. Figure 7, row 2, shows the pressure attribute of the Hur-

ricane Isabel dataset of one time step that contains smooth and

homogeneous structures of large scale with subtle yet important

vortex details. The hurricane eye, the spiral arms, and the shore

area are roughly visible in the original visualization; with a viewing

distance of 90 cm, the eyewall feature and spiral structures are more

visible.

Depth-of-field volume renderings [Schott et al. 2011] of a com-

bustion simulation are shown in Figure 1. Figure 8, row 1, shows vol-

ume rendered images generated by a volumetric scattering method

[Ament et al. 2013]. The original image contains sharp edges but

loses some fine details inside vortices. In contrast, using our method

with a viewing distance of 49 cm, fine details inside vortices are

enhanced, and the image becomes crisper. A lowpass volumetric

shadowing technique [Ament et al. 2014] is able to enhance the

depth cues of a volume rendering as shown in Figure 8, row 2.

The edges in the original rendering are fuzzy. Enhanced with lu-

minance at a viewing distance of 48 cm, object boundaries and

high-frequency details are highlighted and become clearly visible.

The third row of Figure 8 shows a focus-and-context visual analysis

method for movement behavior [Krueger et al. 2014] applied to a

GIS dataset of a city: dark red road networks and the region inside

the circle are in focus, while other regions have reduced contrast.

The sharpened result generated with a viewing distance of 32 cm en-

hances the overall contrast while preserving the focus-and-context

impression. Inside the circle of focus, icons and structures become

more prominent and are emphasized by halos; outside the focus,

one could gain insights more easily with slightly enhanced details

that are not distracting users from the focus region.

6 CONCLUSION AND FUTURE WORK

We propose an image-based method that compensates contrast

loss depending on viewing distance. We start from a well-accepted

computational perception model [Pattanaik et al. 1998]. Then, we

simplify the model with a spectral approximation to invert the

contrast loss due to viewing distance by compensating the power

spectrum. Specifically, we extract bandpass images and find the

optimal weighting for these images that compensate the power

spectrum by solving an optimization problem. Compensation and
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Figure 8: Examples of color images (left column) improved by sharpening (right column) with virtual viewing distances of

49 cm for vortex visualization with scattering (row 1), 48 cm for volume shadowing (row 2), and 32 cm for GIS data (row 3).

Images in the left column (top to bottom): © IEEE. Reprinted, with permission, from Ament et al. [2014; 2013] and Krueger et

al. [2014].

overcompensation can be easily achieved with a simple user in-

terface. A wide range of datasets that have representative image

features is used as examples to demonstrate the usefulness of our

method.

Our method has some limitations. In particular, the white noise

approximates behaviors of the mean of visualization images, but

might deviate from individual input datasets. Although all 50 images

for spectral analysis are carefully hand-picked to represent typical

visualizations, it is still a rather small number andmay not represent

all variations.

For future work, we would like to extend the method for auto-

matic visualization sharpening in VR/AR environments by setting

the viewing distance with sensors for an immersive experience. In

addition, a larger number of visualization images could be used

for spectral analysis for better calibration. Finally, a more accurate

model that inverts the perceptual simulation [Pattanaik et al. 1998]

could be devised to convey more faithful visualizations to users.



Spectral Visualization Sharpening SAP ’19, September 19–20, 2019, Barcelona, Spain

ACKNOWLEDGMENTS

This work is funded by the Deutsche Forschungsgemeinschaft (DFG,

German Research Foundation) ś Project-ID 251654672 ś TRR 161,

National Institute of General Medical Sciences of the National In-

stitutes of Health under grant number P41 GM103545-18, and the

Intel Graphics and Visualization Institutes.

REFERENCES
M. Ament, F. Sadlo, C. Dachsbacher, and D. Weiskopf. 2014. Low-Pass Filtered Volu-

metric Shadows. IEEE Transactions on Visualization and Computer Graphics 20, 12
(2014), 2437ś2446. https://doi.org/10.1109/TVCG.2014.2346333

M. Ament, F. Sadlo, and D. Weiskopf. 2013. Ambient Volume Scattering. IEEE
Transactions on Visualization and Computer Graphics 19, 12 (2013), 2936ś2945.
https://doi.org/10.1109/TVCG.2013.129

P. G. Barten. 1999. Contrast Sensitivity of the Human Eye and its Effects on Image Quality.
Vol. 72. SPIE Press.

L. D. Bergman, B. Rogowitz, and L. A. Treinish. 1995. A Rule-Based Tool for Assisting
Colormap Selection. In Proceedings of the IEEE Conference on Visualization ’95. IEEE,
118ś125. https://doi.org/10.1109/VISUAL.1995.480803

F. W. Campbell and J. G. Robson. 1968. Application of Fourier Analysis to the Visibility
of Gratings. The Journal of Physiology 197, 3 (1968), 551ś566.

S. J. Daly. 1992. Visible Differences Predictor: an Algorithm for the Assessment of
Image Fidelity. In Proceedings of SPIE, 1666, Human Vision, Visual Processing, and
Digital Display III, Vol. 1666. 1666 ś 1666 ś 14. https://doi.org/10.1117/12.135952

R. Fattal, D. Lischinski, and M. Werman. 2002. Gradient Domain High Dynamic
Range Compression. ACM Transactions on Graphics 21, 3 (2002), 249ś256. https:
//doi.org/10.1145/566654.566573

M. A. Georgeson and G. D. Sullivan. 1975. Contrast Constancy: Deblurring in Human
Vision by Spatial Frequency Channels. The Journal of Physiology 252, 3 (1975),
627ś656.

M. Harrower and C. A. Brewer. 2003. ColorBrewer.org: an Online Tool for Selecting
Colour Schemes for Maps. The Cartographic Journal 40, 1 (2003), 27ś37. https:
//doi.org/10.1179/000870403235002042

V. Interrante, B. Ries, and L. Anderson. 2006. Distance Perception in Immersive Virtual
Environments, Revisited. In IEEE Virtual Reality Conference (VR 2006). IEEE, 3ś10.
https://doi.org/10.1109/VR.2006.52

P. Isenberg, P. Dragicevic, W. Willett, A. Bezerianos, and J.-D. Fekete. 2013. Hybrid-
Image Visualization for Large Viewing Environments. IEEE Transactions on Visual-
ization and Computer Graphics 19, 12 (2013), 2346ś2355. https://doi.org/10.1109/
TVCG.2013.163

G Kindlmann, E Reinhard, and S Creem. 2002. Face-based Luminance Matching
for Perceptual Colormap Generation. In Proceedings of the IEEE Conference on
Visualization. IEEE, 299ś306. https://doi.org/10.1109/VISUAL.2002.1183788

P. Kovesi. 2015. Good Colour Maps: How to Design Them. arXiv:1509.03700 [cs.GR]
2015.

R. Krueger, D. Thom, and T. Ertl. 2014. Visual Analysis of Movement Behavior Us-
ing Web Data for Context Enrichment. In IEEE Pacific Visualization Symposium
(PacificVis). IEEE, 193ś200. https://doi.org/10.1109/PacificVis.2014.57

Z. Mai, H. Mansour, R. Mantiuk, P. Nasiopoulos, R. Ward, and W. Heidrich. 2011.
Optimizing a Tone Curve for Backward-Compatible High Dynamic Range Image
and Video Compression. IEEE Transactions on Image Processing 20, 6 (2011), 1558ś
1571. https://doi.org/10.1109/TIP.2010.2095866

B. Meyer, S. Grogorick, M. Vollrath, and M. Magnor. 2016. Simulating Visual Contrast
Reduction During Nighttime Glare Situations on Conventional Displays. ACM
Transactions on Applied Perception 14, 1, Article 4 (2016), 20 pages. https://doi.org/
10.1145/2934684

J. A. Movshon and L. Kiorpes. 1988. Analysis of the Development of Spatial Contrast
Sensitivity in Monkey and Human iInfants. Journal of the Optical Society America
A 5, 12 (1988), 2166ś2172. https://doi.org/10.1364/JOSAA.5.002166

K. T. Mullen. 1985. The Contrast Sensitivity of Human Colour Vision to Red-Green
and Blue-Yellow Chromatic Gratings. The Journal of Physiology 359 (1985), 381ś400.
https://doi.org/10.1113/jphysiol.1985.sp015591

F. L. Van Nes and M. A. Bouman. 1967. Spatial Modulation Transfer in the Human
Eye. Journal of the Optical Society of America 57, 3 (1967), 401ś406. https://doi.org/
10.1364/JOSA.57.000401

J. Nocedal and S. J. Wright. 2006. Numerical Optimization, Second Edition. Springer,
New York, USA, 497ś528.

L. Padilla, P. S. Quinan, M. Meyer, and S. H. Creem-Regehr. 2017. Evaluating the Impact
of Binning 2D Scalar Fields. IEEE Transactions on Visualization and Computer
Graphics 23, 1 (2017), 431ś440. https://doi.org/10.1109/TVCG.2016.2599106

S. N. Pattanaik, J. A. Ferwerda, M. D. Fairchild, and D. P. Greenberg. 1998. A Multiscale
Model of Adaptation and Spatial Vision for Realistic Image Display. In Proceedings
of the 25th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’98). 287ś298. https://doi.org/10.1145/280814.280922

P. S. Quinan, L. M. Padilla, S. H. Creem-Regehr, and M. Meyer. 2019. Examining Implicit
Discretization in Spectral Schemes. Computer Graphics Forum 38, 3 (2019), 363ś374.
https://doi.org/10.1111/cgf.13695

E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda. 2002. Photographic Tone Reproduc-
tion for Digital Images. ACM Transactions on Graphics 21, 3 (July 2002), 267ś276.
https://doi.org/10.1145/566654.566575

B. Rogowitz, L. A. Treinish, and S. Bryson. 1996. How Not to Lie with Visualization.
Computers in Physics 10, 3 (1996), 268ś273. https://doi.org/10.1063/1.4822401

M. Schott, A.V. Pascal G., T. Martin, V. Pegoraro, S. T. Smith, and C. D. Hansen. 2011.
Depth of Field Effects for Interactive Direct Volume Rendering. Computer Graphics
Forum 30, 3 (2011), 941ś950. https://doi.org/10.1111/j.1467-8659.2011.01943.x

K. Vaziri, P. Liu, S. Aseeri, and V. Interrante. 2017. Impact of Visual and Experiential
Realism on Distance Perception in VR Using a Custom Video See-through System.
In Proceedings of the ACM Symposium on Applied Perception (SAP ’17). ACM, Article
8, 8 pages. https://doi.org/10.1145/3119881.3119892

C. Ware. 1988. Color Sequences for Univariate Maps: Theory, Experiments and
Principles. IEEE Computer Graphics and Applications 8, 5 (1988), 41ś49. https:
//doi.org/10.1109/38.7760

A. B. Watson and J. A. Solomon. 1997. Model of Visual Contrast Gain Control and
Pattern Masking. Journal of the Optical Society of America A 14, 9 (1997), 2379ś2391.
https://doi.org/10.1364/JOSAA.14.002379

H. R. Wilson. 1991. Psychophysical Models of Spatial Vision and Hyperacuity. Spatial
Vision 10 (1991), 64ś81.

L. Zhou and C. D. Hansen. 2016. A Survey of Colormaps in Visualization. IEEE
Transactions on Visualization and Computer Graphics 22, 8 (2016), 2051ś2069. https:
//doi.org/10.1109/TVCG.2015.2489649

L. Zhou and D. Weiskopf. 2018. Contrast Enhancement Based on Viewing Distance. In
Proceedings of the 11th International Symposium on Visual Information Communi-
cation and Interaction (VINCI ’18). ACM, 25ś32. https://doi.org/10.1145/3231622.
3231628



Spectral Visualization Sharpening—Supplemental Material

Liang Zhou
SCI Institute

University of Utah

Rudolf Netzel
VISUS

University of Stuttgart

Daniel Weiskopf
VISUS

University of Stuttgart

Chris R. Johnson
SCI Institute

University of Utah

ABSTRACT
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paper for conciseness. Specifically, we provide sources of visual-

ization images used in the spectrum study, the actual simulated

sequence using the perception model and the power spectra of one

visualization. We further show the derivation of the spectral model

(Equations 1 and 2) in Section 3.3 of the paper.
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1 VISUALIZATIONS USED IN SPECTRUM
ANALYSIS

We obtained 50 visualizations from the Internet using the Google

image search engine and manual selection to cover a wide range

of visualization examples. These images can be classified into five

categories: volume rendering, flow visualization, DTI visualization,

GIS visualization, and slices of medical scans (CT and MRI).

(a) Original (b) Sharpened

Figure 1: The original rendering (a) and the sharpened

visualization (b) of the Engine dataset. Image (a) © S.

Roettger. Reprinted, with permission, from http://schorsch.

efi.fh-nuernberg.de/roettger/uploads/Main/Engine.png.

1.1 Data Sources

We hereby list sources of these visualization images.

SAP ’19, September 19ś20, 2019, Barcelona, Spain

© 2019 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in ACM Symposium
on Applied Perception 2019 (SAP ’19), September 19ś20, 2019, Barcelona, Spain, https:
//doi.org/10.1145/3343036.3343133.

Volume Rendering

• https://www.marcusbannerman.co.uk/articles/img/Bonsai.

jpg

• http://schorsch.efi.fh-nuernberg.de/roettger/uploads/

Main/Engine.png

• http://old.cescg.org/CESCG-2004/web/Bruckner-Stefan/

html/

• https://www.exxim-cc.com/img/Shoulder_vr.jpg

• https://www.exxim-cc.com/img/Volume_rendered_foot_p.

jpg

• https://www.gcc.tu-darmstadt.de/media/gcc/projects/

volcomp/xmas_orig_light_529x0.jpg

• https://www.tue.nl/en/research/research-groups/

medical-image-analysis/people/BRomeny/PACS/NERI_

09-terHaarRomeny_files/image013.jpg

• [Kruger et al. 2006]

• [Praßni et al. 2009]

Flow Visualization

• https://www3.nd.edu/~cwang11/2dflowvis.html

• Slides 21, 41 of

https://www3.nd.edu/~cwang11/research/

vis13-tutorial-weiskopf.pdf

• [Sadlo 2015]

• [Lawonn et al. 2014]

• [Treib et al. 2012]

• [Karch et al. 2012]

GIS Visualization

• http://vis.pku.edu.cn/trajectoryvis/en/densitymap.html

• https://carto.com/blog/location-intelligence-end-of-gis-as-we-know-it

• http://www.cs.rug.nl/svcg/uploads/Shapes/SBEB_frair.jpg

• [Scheepens et al. 2011]

• [Wu et al. 2016]

• [Wang et al. 2014]

• Slides 6, 29, 39, 43 of http://vis.cs.kent.edu/TrajAnalytics/

files/OverviewofVisualization.pdf

DTI Visualization

• https://www.siemens-healthineers.com/nl/

magnetic-resonance-imaging/options-and-upgrades/

clinical-applications/syngo-dti-tractography

• https://www.researchgate.net/profile/Donna_Sorkin2/

publication/308203750/figure/fig4/AS:667817812701207@

1536231582517/DTI-image-showing-central-brain-tracts_

W640.jpg

• https://s3.amazonaws.com/spectrumnews-web-assets/

uploads/image-archive/images/images-2014/blog2014/

20141223blogdtierrors.jpg
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(a) d = 10 (b) d = 20 (c) d = 30 (d) d = 40 (e) d = 50

(f) d = 60 (g) d = 70 (h) d = 80 (i) d = 90 (j) d = 100

Figure 2: Simulations of the Engine data with viewing distance d = 10 cm to d = 100 cm.

• https://qph.fs.quoracdn.net/

main-qimg-e24e3fe93bd87b64c2a0ae9e0571b126.webp

• [Friedman et al. 2014]

• [Zhukov and Barr 2003]

• Figures 4, 10, 12, 16 of [Isenberg 2015]

Medical Imaging

• http://zoi.utia.cas.cz/files/u3/ct.png

• https://d2htw67fsvc5r2.cloudfront.net/blog/wp-content/

uploads/2018/04/brainMRI.png

• https://www.ctisus.com/resources/library/teaching-files/

ctpet/391724.jpg

• https://d2htw67fsvc5r2.cloudfront.net/blog/wp-content/

uploads/2018/04/MRIabdomen.jpg

• https://prod-images.static.radiopaedia.org/images/

32248663/5931fb2a0d5f599957ba71ff5e5707_big_gallery.

jpeg

• http://www.radiologyassistant.nl/data/bin/

a5097978bbd183_6b.jpg

• https://d2htw67fsvc5r2.cloudfront.net/blog/wp-content/

uploads/2018/04/brainMRI.png

• https://www.materprivate.ie/__uuid/

150fac2e-54f5-4d70-866f-e348f8800a88/MRI-Head2.jpg

• https://my-ms.org/images/CerebCor201.16.jpg

• http://www.brainfacts.org/-/media/Brainfacts2/In-the-Lab/

Tools-and-Techniques/Article-Images/

1.2 Analysis of One Visualization

In Figure 2, we show an actual sequence of simulations with viewing

distance from 10 cm to 100 cm of the volume rendering of the engine

data shown in Figure 1(a).

Applying our visualization sharpening to the Engine data with

a viewing distance of 80 cm yields the result in Figure 1(b), and the

original image is shown in Figure 1(a) for comparison.

The logarithmic power spectra of the Engine dataset and the

logarithmic relative amplitude curves of these power spectra can

be seen in Figure 3. Note that the similarity between Figure 3(b)

and the logarithmic relative amplitude of white noise in Figure 4

in the paper: the curves have similar behaviors over the frequency

range and also have similar logarithmic relative amplitude.

2 DERIVATION OF THE SPECTRAL MODEL
(EQUATIONS 1 AND 2 IN THE PAPER)

We have a filtering that is frequency-dependent, therefore, we for-

mulate a spectral perception model for an image f (x,y):

Sd [f (x,y)] = F
−1[F [f (x,y)] · Hd (ν )] , (1)

where Sd [·] is the perceptual simulation operation for a virtual

viewing distance d , and Hd is a transfer function. As shown in

Equation 2, Hd is the power spectrum of the white noise data

simulated at d (one of the curves shown in Figure 4(b) in the paper):

Hd (ν ) = Pr [F [Sd [n(x,y)]]](ν ) . (2)

Here, we assume that the original noise image n(x,y) is normalized

in the sense that its power spectrum averages to one.

We can replace the input image by the sum of a number of

bandpass images; therefore, Equation 1 can be rewritten as:

Sd [f (x,y)] = F
−1

[

L
∑

i=1

F [fi (x,y)] · Hd (ν )

]

. (3)

Since the transfer function changes in a controlled way, it is valid

to approximate the transfer function on each frequency interval of
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Figure 3: Logarithmic power spectra of perception simula-

tions of the Engine data (a), and (b) logarithmic relative am-

plitude of power spectra of simulations normalized by the

power spectrum of the original image.

the bandpass images with a constant Hi . The Fourier transform is

a linear operator, therefore we have:

Sd [f (x,y)] ≈ F
−1

[

L
∑

i=1

F [fi (x,y)] · Hi

]

(4)

=

L
∑

i=1

Hi · fi (x,y) . (5)

This equation serves as the mathematical model of our simplified

perception pipeline.

Then, it is possible to inverse the model for a virtual viewing

distance d , by replacing the constants Hi with their inverse 1/Hi in

Equation 5. Effectively, it raises the power spectrum of the perceived

image atd to the constant value leading to perceptual compensation.
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