
J Sci Comput
https://doi.org/10.1007/s10915-018-0711-0

Curvilinear Mesh Adaptation Using Radial Basis
Function Interpolation and Smoothing

Vidhi Zala1 · Varun Shankar2 ·
Shankar P. Sastry1 · Robert M. Kirby1

Received: 29 March 2017 / Revised: 19 March 2018 / Accepted: 13 April 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract We present a new iterative technique based on radial basis function (RBF) inter-
polation and smoothing for the generation and smoothing of curvilinear meshes from
straight-sided or other curvilinear meshes. Our technique approximates the coordinate defor-
mation maps in both the interior and boundary of the curvilinear output mesh by using only
scattered nodes on the boundary of the input mesh as data sites in an interpolation problem.
Our technique produces high-quality meshes in the deformed domain even when the defor-
mation maps are singular due to a new iterative algorithm based on modification of the RBF
shape parameter. Due to the use of RBF interpolation, our technique is applicable to both 2D
and 3D curvilinear mesh generation without significant modification.

Keywords Curvilinear mesh generation · Radial basis functions · Conformal mapping ·
Mesh deformation · Mesh adaptation · Mesh quality

Mathematics Subject Classification 65 (L/N/M)50 · 30E05 · 41A05

1 Introduction

The increasing use of simulations built upon high-order numerical methods in practical
engineering problems necessitates the generation of meshes that conform to irregular domain
geometries. To maintain the high-order numerical nature of these simulations, the geometric

B Varun Shankar
vshankar@math.utah.edu

Vidhi Zala
vidhi@sci.utah.edu

Robert M. Kirby
kirby@sci.utah.edu

1 Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA

2 Department of Mathematics, University of Utah, Salt Lake City, UT, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-018-0711-0&domain=pdf
http://orcid.org/0000-0002-4987-2972

J Sci Comput

accuracy of the domain must also be high-order, thus motivating (high-order) curvilinear
meshes. The starting point for many high-order meshing techniques is to create a valid low-
order (straight-sided) mesh which is then “adapted” to the curved geometry. The challenge
when accomplishing this update is the balancing act between faithfully representing the
boundaries of interest while maintaining a mesh whose elements of are of good quality
(and hence have favorable numerical properties). We present a technique based on RBF-
interpolation that produces superior quality meshes by first deforming the domain to meet
the geometric constraints of the problem and then iteratively adapting or smoothing the mesh
in a way to capitalize on the properties of the RBF-interpolation functions we employ. In this
work, mesh adaptation has been studied in the context of both refinement (coarsening) and
smoothing: the technique presented herein aims to combine the best of both approaches.

We begin by summarizing the state-of-the-art in high-order (curvilinear) mesh generation.
Over the last decade, many techniques for the generation and deformation of linear meshes
into curvilinear meshes have been proposed [27,28,39,44,54]. Sastry et al. [48] provided
the following taxonomy for partitioning the literature landscape: optimization-based meth-
ods [46,47], PDE-based meshods [44], and interpolation-based techniques [9]. Some of the
notable work done in themesh deformation and curvilinear mesh generation can be attributed
to the application of one or more techniques from these three classes. The optimization-based
techniques aim at optimizing an objective function depending on the geometry of the domain
and the mesh. Sastry et al. [47] proposed a log-barrier optimization routine to dictate vertex
movement and to improve the quality of a tangled mesh (due to the deformation) to obtain a
valid mesh. The Remacle group [30,46] developed a log-barrier technique that generates a
valid mesh by maximizing the minimum Jacobian of high-order elements in the mesh. From
the class of PDE-basedmethods,Moxey et al. [40] presented a technique based on the thermo-
elastic analogy by modelling the mesh as non linear elastic material. In a subsequent paper,
Moxey et al. [56] take the variational approach further by optimizing mesh quality using
a scaled Jacobian approach. Sastry et al. [48] compared and contrasted the thermo-elastic
method with the RBF interpolation using thin-plate-splines. Experiments for that effort help
establish the superiority of the RBF interpolation-based technique by generating elements
that are of higher quality and conform to the boundary geometry.

The last class, interpolation-based methods, has been mostly applied to linear mesh defor-
mation functions. Staten et al. [53] developed the simplex-linear transformation algorithm,
which carries out a linear interpolation of mesh vertices after making a coarse mesh as initial
step. Sastry et al. [48] developed a technique for curvlinear mesh generation using thin-plate
spline RBFs, which belong to the class of polyharmonic splines. They further demonstrated
that interpolants based on polyharmonic spline help preserve the shape of elements after
deformation. However, the thin-plate spline technique did not possess the ability to deal with
degenerate deformation maps, or smooth any resulting mesh tangles. Further, the technique
did not generalize to 3D meshes in a straightforward fashion.

Broadly speaking, we can treat PDE-based methods and interpolation-based methods as
being in the same class, where the positions of the interior mesh vertices are interpolated
from the positions of the boundary vertices using either the solution of a PDE or an explicit
interpolation technique. Such a characterization is useful as it helps motivate our work: we
seek to develop an interpolation-based method that through our choice of the interpolating
functions mimics some of the favorable properties observed in the PDE-based approaches
while being applicable to both 2Dand3Dmeshgeneration.Wepresent a generalization of [48]
that uses RBFs with a shape parameter to smooth node clusters resulting from singular or
non-smooth deformation maps. Specifically, we turn to the Matérn kernels (also referred to
as Sobolov splines), a family of RBFs closely related to the polyharmonic splines. As their

123

J Sci Comput

alternate name implies, interpolants based on these kernels are the minimum Sobolev norm
interpolants, possessing similar properties to polyharmonic splines, but possessing a shape
parameter that is extremely useful for tuning. In Sect. 3, we compare the Matérn kernels to
the polyharmonic splines, and present a tuning algorithm for the shape parameter to help
achieve quasi-local smoothing of these interpolants.

The remainder of the paper is organized as follows. In Sect. 2 we reviewRBF interpolation
with a focus on Matérn kernels, our basis of choice; we justify the use of this basis, and we
also present a generalization of existing techniques to smooth RBF interpolants. We go on
to present a mathematical description of our quality heuristics and a new adaptation and
smoothing algorithm in Sect. 3. We then undertake a thorough complexity analysis of our
method in Sect. 4. Finally, we present numerical experiments exploring the behavior of our
method ondifferent classes of deformation functions in Sect. 5.We concludewith a discussion
of the results and provide some comments on future work.

2 Review

2.1 RBF Interpolation

RBFs are a popular tool for scattered data interpolation in arbitrary dimensions and have
become increasingly popular in machine learning [35,49], computer graphics [5,34], mesh
generation and repair [36,48] and in the numerical solution of PDEs [32,51].More relevant to
this article,RBFshave also been used to interpolate data on co-dimension one submanifolds of
R
s with excellent approximation properties using only straight-line (i.e. Euclidean) distances

in the embedding space [25], a feature that has been leveraged to solve PDEs on surfaces [26,
52]. In our application, the relevant submanifolds are the boundaries of (irregular) domains
in R

2 and R3.
We now briefly describe RBF interpolation inRs ; for interpolation on submanifoldsM ⊂

R
s , it is only necessary for the points to lie onM. Given a set of (scattered) nodes X = {xi }Ni=1

in R
s and a set of data values Y = { yi }Ni=1 sampled from some function f : Rs → R, the

RBF approximation to f is obtained by a linear combination of shifts of a single radial kernel
or basis function φ such that

Iφ f (x, ε) =
N∑

i=1

λi (ε)φ(ε, ri (x)) (1)

where φ(ε, ri (x)) = φ(ε‖x − xi‖) and ε > 0 is a shape parameter that controls the flatness
of the RBF. To find the unknown coefficients λi , we enforce the interpolation conditions

Iφ f
∣∣
X = Y, (2)

�⇒ Iφ f (xi , ε) = { yi }Ni=1. (3)

If φ is a positive-definite radial kernel or an order one conditionally positive-definite ker-
nel on R

s and all nodes in X are distinct, the above interpolation problem has a unique
solution, and the corresponding RBF interpolation matrix is invertible [13]. In the limit as
ε → 0 (i.e. a flat kernel), RBF interpolants to data scattered in R

s typically converge to
(multivariate) polynomial interpolants [11,33,50], and to spherical harmonic interpolants on
a sphere [19]. For smooth target functions, smaller (but non-zero) values of ε generally lead
to more accurate RBF interpolants [20,33]. Unfortunately, computing these interpolants by

123

J Sci Comput

solving the linear system involving the RBF interpolation matrix becomes ill-conditioned for
small ε (see, e.g., [21]). While some stable algorithms have been developed for bypassing
this ill-conditioning [14,18–20,22,23], these algorithms do not apply when the nodes lie on
a lower-dimensional surface than the embedding space. Our approach will be to pick a value
of ε that results in some target condition number κ in the interpolation matrix that is very
close to the edge of ill-conditioning. This typically results in excellent approximation [52].
Our goal will be to approximate vector-valued functions in this work. We accomplish this by
interpolating each component of the vector-valued functions using a scalar RBF interpolant.

For similar reasons to [48], we choose an RBF φ with global support. Specifically, we use
the piecewise-smooth C4 Matérn kernel given by:

φ(εr) = (3 + 3εr + ε2r2)e−εr . (4)

Our reasons for using this kernel are twofold: first, the reproducing kernel Hilbert space
corresponding to this kernel is a standard Sobolev space and therefore well-understood;
second, unlike the polyharmonic splines, the Matérn kernel comes equipped with a shape
parameter ε, such that the limit ε → 0 recovers the polyharmonic spline kernels used in [48].
Modification of this shape parameter upon evaluation of the RBF interpolant can allow
smoothing. This will be explained in the following section. For more on Matérn kernels, we
refer the reader to [12,13].

2.2 Mesh Quality

Our RBF-based technique accomplishes two distinct purposes: first, it recovers deformation
maps (and therefore a deformedmesh) using data only on the boundary of the input and output
domains; second, it also attempts to automatically smooth the recovered deformation map
so as to obtain a deformed mesh with good-quality elements. An element quality metric is a
scalar function of node positions that measures some geometric property of the element [31].
In this section, we present a brief overview of the popular metrics for measuringmesh quality.
Assume for the following discussion that a mesh contains a finite set of vertices V defined
as V = {xi }Ni=1 in R

s , and a finite set of elements E defined by groupings of those vertices.
The elements are triangles in 2D and tetrahedra in 3D.

There are many popular techniques for generating meshes out of point sets, like octree
mesh generation [10], Delaunay triangulation [7,15,29] and advancing-front [38]. Out of
these techniques, the Delaunay triangulation is most commonly used as it provides triangu-
lations whose elements respect certain quality criteria. Given a set of points V, the Delaunay
technique attempts to create triangulations wherein each triangle maximizes one (or more) of
the following ratios: the inradius to the circumradius; the shortest edge to the longest edge; the
shortest altitude to the longest edge; the aspect ratio, etc. [1–3,8,10,16,17,24,37,41–43,57].
In this article, we use the inradius to circumradius ratio as our element-wise quality metric,
given by:

Q = 8A2s

abc(a + b + c)
, (5)

where a,b,c are side lengths, s is the dimension and A is the area of the element. The use of
the inradius to circumradius ratio for measuring the quality of elements was suggested by
Cavendish, Field and Frey [4]. A high value of Q ∈ [0, 1] implies better quality elements. An
equilateral triangle and a standard tetrahedron has Q = 1. They are considered the standard
elements for 2D and 3D meshes respectively.

123

J Sci Comput

3 Methods

3.1 Smoothing with the Shape Parameter

Our goal is to develop an iterative quasi-local smoothing algorithm to rectify singular defor-
mation maps. To do so, we utilize an interesting feature of RBF interpolation: smoothing
using the shape parameter. This was first proposed by Beatson in the context of surface recon-
struction from point cloud data [6], and has since been used as part of a numerical method
for solving coupled PDEs [51]. This technique is very simple to apply: first, find the inter-
polation coefficients λi (ε

∗), where ε∗ is some small non-zero value. Then, when evaluating
the interpolant, replace ε∗ with ε, where ε 	= ε∗. In other words, given an evaluation node
set X = {x j }Mj=1, evaluate the interpolant at each point x j as

Iφ f (x j , ε) =
N∑

i=1

λi (ε
∗)φ(ε, ri (x j)), (6)

where ri (x j) = ‖x j − xi‖. If ε < ε∗, this amounts to evaluating the coefficients against
a slightly smoother basis than the one we interpolated with; this results in a smoothing;
conversely, choosing ε > ε∗ can result in a sharpening of low-frequency details.

In this article, we present and utilize a simple generalization of the above approach: we
allow ε to vary from point to point. In other words, we now evaluate the interpolant pointwise
as

Iφ f (x j , ε j) =
N∑

i=1

λi (ε
∗)φ(ε j , ri (x j)), (7)

where ε j > 0, j = 1, . . . , M are now pointwise shape parameters that potentially differ from
the interpolation shape parameter ε∗. Since φ has global support, this is still not entirely a
local smoothing. However, compared to previous approaches which use a single ε, our new
approach constitutes a quasi-local smoothing of the interpolant. In Sect. 3.2, we describe a
technique which generates each ε j given ε∗, X and Yd ⊂ Yb samples of the deformation
function on the boundary.Here,Yd = pY b, 0 < p ≤ 1 andYb is set of points on the boundary
of deformed domain. The points on boundary are chosen based on the equation that describes
the boundary and a boundary thickness parameter α set in step 3 of the Algorithm 1. For
example, if the 2D domain is a unit circle centered at origin, all the points that satisfy the
equation x2 + y2 = 1 within a tolerance of α falls on the boundary. The parameter p is
chosen randomly and the subset is formed uniformly. The idea here is to show the efficacy
of deformation map in deforming the entire domain even when we pick fewer points on the
boundary. As we will see in Sect. 5, the scalar-valued RBF approximation and smoothing
method described here, when applied in component-wise fashion to 2D and 3D problems,
gives intuitive results in the form of an appropriately smoothed set of output nodes Y .

3.2 RBF-Interpolation Based Iterative Algorithm for Mesh Generation and
Quality Improvement

In this section we present the RBF-interpolation based algorithm for generating curvilinear
mesh and iterative smoothing, discuss implementation details of the same and provide a
detailed analysis in terms of complexity.

123

J Sci Comput

Overview
Algorithm 1 describes the algorithm for obtaining a high-quality deformed mesh given a set
of points in an initial undeformed domain and a set of parameters that control the deformation
and smoothing process. Broadly, the procedure can be seen as a collection of following tasks:

1. Given the undeformed domain and samples of a deformation function on the boundary,
interpolate the function (given by Eq. (1)) to recover the deformation map in the interior
of the domain.

2. Tessellate the deformed domain and calculate element quality Q = q
e
(see Sect. 3.2.1).

3. Distribute the quality metric from the elements to vertices by averaging the quality of
elements in 2-ring neighborhood around each vertex (see Sect. 3.2.1).

4. For vertices with quality (q
v
) less than a predefined tolerance, reduce the shape parameter

(ε) by some factor (see Sect. 3.2.2).
5. Evaluate the interpolant using the list of modified shape parameters (ε j) described by

Eq. (7) to obtain an improved deformed mesh.
6. Repeat Steps 2 through 5 until convergence defined by stopping criteria.

Algorithm 1 RBF-based iterative algorithm for mesh generation and quality improvement
1: Set δ ← scaling factor for shape parameter update term
2: Set σ ← falloff of local Gaussian smoothing for shape parameter
3: Set α ← thickness of boundary
4: Xi ← Ni × s matrix of interior nodes on Ω(Rs)
5: Xb ← Nb × s matrix of boundary nodes on ∂Ω(Rs)
6: X = Xi ∪ Xb ← N × s matrix containing all nodes, N = Ni + Nb ← |Ω|
7: Xd ⊂ Xb , Nd × s matrix of data sites on ∂Ω , Nd ⊂ Nb = |∂Ω|
8: Yd ← Nd × s matrix of deformed boundary nodes (corresponding to Xd)
9: κt ← desired target condition number of interpolated matrix
10: ε∗ ← ideal shape parameter corresponding to κt
11: Initialize ε = ε∗∀ x in X
12: A ← RBF interpolation matrix using ε∗
13: λ ← Interpolation coefficients, obtained formally by finding A−1Xd once
14: Y ← Evaluate the RBF interpolant built on Xd at all nodes in X with ε

15: Tessellate Y to obtain element set E
16: For each y in Y , store its nk 2-ring neighbors ← { y, yk }
17: for each correction iteration until convergence do
18: Calculate q

e
← quality per element in E

19: Append ‖qe‖2 to h, history of mesh quality over iterations
20: Check convergence: ‖q

e
‖2 < max(h)

21: Distribute q
e
to q

y
← quality per vertex in Y

22: for each point yk in Y do
23: μ(yk , α) ← min ‖ yk − yp‖2 ∀ yp ∈ Yd

24: μ(yk , α) = 0 if μ(yk , α) ≤ α

25: for each j from 1 to nk do
26:

(
Ψ k

)
j ← |qk − q j |

27: end for
28: γ

k
← e−σΨ k

29: θk ← δμ(yk , α)

30: εk ← εk − θkγ k
31: end for
32: Compute smoothed node set Y using new ε and precalculated λ

33: Tessellate Y to obtain element set E
34: For each y in Y , update its nk 2-ring neighbor stencil ← { y, yk }
35: end for

123

J Sci Comput

3.2.1 Computing Quality Per-element and Per-vertex

At each iteration of our RBF-based technique, the resulting mesh element quality (q
e
) is

determined based on one of the definition of quality metric as detailed in Sect. 2.2. The
overall quality of the mesh is the aggregate of quality of all elements in the mesh. This is
used to determine the stopping criteria for the algorithm. If the overall quality satisfies a
predefined threshold, the algorithm converges.

Let yk be the 2-ring neighbors of a node y in Y . We view these nodes as constituents
of a stencil for measuring the per-vertex quality. Here, the number of vertices in the stencil
(nk) depends on the degree of connectedness of the vertex. For instance, vertices which are
close to the domain boundary have fewer neighbors while others have a full connectivity
with 2-ring neighbors. Because the quality is defined per-element and we want to have a
quality measure per-vertex, we need to find the elements connected by a vertex. To aggregate
elemental qualities q

e
to individual vertex qualities q

y
for vertices in Y , we use the following

average:

q(yk) = (qy)k = 1

nk

nk∑

i=1

qe(yi), k = 1, . . . , |Y |, (8)

where |Y | is the total number of vertices in the domain.

3.2.2 Modifying Shape Parameter Based on the Per-vertex Quality

We now describe our formula for generating a new modified shape parameter at each vertex.
We modify the shape parameter at a vertex based on two factors: the quality measure at the
vertex (given by Eq. (8)), and the proximity of the vertex to the boundary. Without loss of
generality, we focus on the vertex yk . Let εoldk be the nk-long vector of shape parameters
of yk and its 2-ring neighbors in the current iteration. At the first iteration of the smoothing
algorithm, the shape parameters at all vertices are the same, i.e., εoldk = ε∗, k = 1, . . . , N .
The goal is to obtain εnewk , the new vector of shape parameters, for every subsequent iteration.
We propose a simple update of the form

εnewk = εoldk − θkγ k
, (9)

where θk is a factor that accounts for proximity to boundaries, and γ
k
is a factor that depends

on the vertex qualities of yk and its 2-ring neighbors; this formula is given on line 30 of
Algorithm 1. We will first explain the γ

k
term, then the θk term.

The term γ
k
is a function of the vertex quality (qy)k associated with the vertex yk .

Specifically, this term attempts to decrease εoldk whenever the vertex quality associated with
yk is significantly different from the vertex qualities of its 2-ring neighbors. First, we define
the quantity Ψ k as

(
Ψ k

)
j = |(qy)k − q j |, j = 1, . . . , nk, (10)

where j indexes the 2-ring neighbors of the vertex yk . Clearly,Ψ k is a vector of differences in
quality between yk and its 2-ring neighbors. Our formula for γ

k
satisfies two requirements:

first, that γ
k
change smoothly as a function of Ψ k , and second, that γ

k
is smaller as we go

further away from yk . These two requirements are satisfied by requiring γ
k
to take the form

γ
k

= e−σΨ k , (11)

123

J Sci Comput

where σ is some user-supplied falloff factor. If σ is small relative to the distance between
nodes, the different Ψ k values contribute more equally to γ

k
. In contrast, if σ is large, the

contributions of Ψ k corresponding to nodes other than yk are smaller. In this article, we use
values of σ that ensure that we are in the latter regime. This allows us to more effectively
correct localized irregularities in vertex quality, while still smoothly updating the εoldk values.

When we attempted to update εoldk using only the γ
k
values, we ran into two difficulties.

First, we observed that nodes from the interior would leave the domain boundary, and hence
would need to be periodically deleted from the domain. Second, such updates tended to undo
mesh refinement near the domain boundary. Our first attempt at fixing this problem was to
multiply γ

k
by a switch that turns off smoothing near the boundary. However, noticing that

this produced some mesh tangling outside the boundary-refined layers, we choose instead to
multiply γ

k
by the scalar term θk (line 29 in Algorithm 1) defined as

θk = δμ(yk, α). (12)

Here, δ is some small number that controls the magnitude of θk , and μ(yk, α) is a function
that effectively specifies a “boundary-layer” for our algorithm. Let yp be the closest boundary
point to yk . Then, μ(yk, α) (lines 23 and 24 of Algorithm 1) is defined as

μ(yk, α) =
{

‖ yk − yp‖, ‖ yk − yp‖ > α

0, ‖ yk − yp‖ ≤ α

This function ensures that no update is made to the shape parameter of any node yk within
distance of α from its closest point yp on the boundary. Further, nodes yk further away from
their closest boundary points are allowed to receive larger updates to their shape parameter
vectors εk .

In general, we find that δ needs to be small to improve quality, ensuring that the shape
parameters are not decreased too much in any iteration. Currently, δ, α and σ are selected
by trial and error, but one could imagine using training techniques from the neural networks
literature to accomplish this. We leave such extensions for future work.

3.2.3 Stopping Criterion

We now present a stopping criterion for the smoothing algorithm. The criterion is designed
to stop the iterative smoothing if the mesh quality begins to worsen as a consequence of
the iterative procedure. Such a worsening in quality, when it occurs, is a consequence of
the global support of the RBF interpolant. Despite the local nature of the shape parameter
updates, the global support of the RBFs means that most nodes are moved to some extent.

To determine a good stopping point for the iterative smoothing process, we simply check
the 2-norm of the per-vertex quality measure, i.e., ‖q

e
‖2. If ‖q

e
‖2 is smaller for the current

iteration than for previous ones, the algorithm halts. This choice of stopping criterion may
not be ideal, since it aggregates mesh quality into a single number. However, we have found
that it works well in conjunction with the global RBF interpolant. We leave the question of
stopping criteria for future work.

123

J Sci Comput

4 Complexity Analysis

4.1 Preprocessing

We first consider the preprocessing costs of our algorithm. Consider a tessellated domain
Ω ⊂ R

s . Let Nb be the number of points on the boundary of the domain (∂Ω) and Ni

be the points in the interior. The total number of points in the domain is then given by
N = Ni + Nb. However, not all Nb points are used to recover the deformation map via the
RBF interpolant. Let Nd ⊂ Nb be the number of points used to build the RBF interpolant. The
initial preprocessing step involves computing and decomposing the RBF interpolation matrix
once for a cost of O(N 3

d). The interpolant can then be evaluated for O(NNd). However, it is
more intuitive to express this cost in terms of the number of interior points. We now present
that derivation, specialized to s = 2, 3.

4.1.1 Complexity Analysis in 2D (s = 2)

Before proceeding, assume that points on the boundary are evenly-spaced with spacing hb.
Further, assume that the interior nodes are spacing hi . Then, we have

hb = l

Nb
, hi =

(
A

Ni

) 1
2

, (13)

where l is the perimeter of the boundary and A is the area of the domain. Assuming without
loss of generality that hi = hb, we have

l

Nb
=

(
A

Ni

) 1
2 �⇒ Nb = l A− 1

2 N
1
2
i . (14)

Now, letting Nd = pNb, 0 < p ≤ 1, we can rewrite Eq. (14) as

Nd = pNb = pl A− 1
2 N

1
2
i . (15)

Since the interpolation matrix is inverted for a one-time cost of O(N 3
d), we now have an

explicit expression for that cost. Using Eq. (15), this cost becomes:

N 3
d = p3l3A− 3

2 N
3
2
i �⇒ N 3

d = p3A
1
2

(
l

A

)3

N
3
2
i . (16)

Let ψs be a domain-dependent constant in s dimensions so that for s = 2, ψ2 = l
A . We can

use this to rewrite Eq. (16), obtaining:

N 3
d = p3A

1
2 ψ3

2 N
3
2
i . (17)

In general, Nb << Ni , implying that N ≈ Ni . Thus, the preprocessing cost C2 for our
technique in s = 2 spatial dimensions is asymptotically C2 = O(N 1.5). Note that if the
interpolation problem could be solved in O(Nd) operations, this cost reduces to O(

√
N).

We leave this extension for future work.

123

J Sci Comput

4.1.2 Complexity Analysis in 3D (s = 3)

We now derive 3D complexity estimates for our preprocessing step. Assuming that nodes
on the domain boundary (now a surface of co-dimension one in R

3) are quasi-uniform with
spacing hb and assuming the interior node spacing is hi , we have

hb =
(

A

Nb

) 1
2

and hi =
(
V

Ni

) 1
3

, (18)

where A is now the surface area of ∂Ω , and V is the volume of Ω . Assuming again that
hi = hb, we have

(
A

Nb

) 1
2 =

(
V

Ni

) 1
3 �⇒ Nb = AV− 2

3 N
2
3
i . (19)

Expressing this in terms of Nd , the number of data sites used to build the interpolant, we
have

Nd = pNb = pAV− 2
3 N

2
3
i . (20)

The preprocessing cost is O(N 3
d), which is now given by:

N 3
d = p3A3V−2N 2

i . (21)

Now letting ψ3 = A
V , we have

N 3
d = p3Vψ3

3 N
2
i . (22)

The preprocessing cost C3 can now be expressed in terms of the total number of points N as

C3 = O(N 2). Again, as in 2D, it is possible to lower this cost (to O(N
2
3)) if the interpolation

problem is solved in O(Nd) operations.

4.1.3 Finding the Initial Shape Parameter

Another contribution to the preprocessing cost comes from the calculation of the initial shape
parameter (ε∗).We use the fzero function inMatlab to find this shape parameter. This function
uses an iterative method called the Brent–Dekker method to find the zero of a function in
a given interval. Consequently, it requires an evaluation of that function multiple times. In
our application, the function that must be evaluated is the condition number of the RBF
interpolation matrix. This can be computed for a cost of O(N 3

d) if the 2-norm condition
number is used, and a cost of O(N 2

d) if the 1-norm or max-norm condition numbers are used.
From Eq. (15), and considering max-norm, it is obvious that this cost scales as O(N) in 2D;

similarly, Eq. (20) for max-norm condition number shows that this cost scales as O(N
4
3) in

3D.

4.2 Complexity of the Smoothing Algorithm

We now analyze the complexity of a single step of our smoothing algorithm. To do so, we
break down our algorithm into several key steps.

123

J Sci Comput

4.2.1 Finding the 2-Ring Neighbors

Each iteration of the algorithm requires finding the 2-ring neighbors of each vertex using
the Delaunay triangulation (which is itself constantly being updated). To find the 2-ring
neighbors of each vertex, we first find the list of vertices connected to each vertex (the 1-ring
neighbors). The cost of this operation for N vertices scales as O(N log N), with a dimension
dependent constant. The next step is to find the set of immediate neighbors of the 1-ring
neighbors. To do so, we simply repeat the above step for each of the 1-ring neighbors. The
total asymptotic cost of finding the 2-ring neighbors is therefore:

Cnk -neighbors = N (1 + nk) log N . (23)

4.2.2 Calculating Per-element and Per-vertex Quality

At each iteration, we calculate per-element quality (q
e
) and distribute it to the constituent

nodes forming the elements as (q
y
) given by Eq. (8). q

e
can be computed for a cost of O(N).

Similarly, q
y
requires an averaging over elements connected to each vertex. If the average

number of elements connected to each vertex is n, then this cost scales as O(nN), where
n << N . The complexity of this step therefore scales as O(N).

4.2.3 Updating the Evaluation Shape Parameter

At each iteration, the algorithm updates the shape parameter for each vertex in the node set
based on the quality metric and calculations described by Eq. (9). This operation utilizes
the 2-ring neighbor information from previous step and the predefined parameters described
in Sect. 3.2.2. By a similar argument to the previous subsection, this update also scales as
O(nN) ≈ O(N).

4.2.4 Computing the Smoothed node set

To obtain the smoothed node set Y at each iteration, we need to compute the RBF evaluation
matrix and multiply it with the precomputed interpolation coefficients. The computation of
the evaluation matrix is straightforward, as shown in line 32 of Algorithm 1. The operation
scales as O(NNd) when N evaluation points are used. It is clear from Eq. (15) that this cost

scales as O(N
3
2) in 2D with a small constant term. In 3D, Eq. (20) shows that this cost scales

as O(N
5
3), again with a small constant.

4.2.5 Tessellation of Domain to Obtain Element Set

As a last step of each smoothing iteration, the node set Y is tessellated to obtain a mesh
which is smoother than the previous iteration. This operation is performed using theDelaunay
triangulation in the code (refer to line 33 in Algorithm 1). There are many other algorithms
to obtain a mesh from the node set and depending on the use case, this choice can vary. In
general, this cost is O(N log N) in 2D, and O(N 2) in 3D.

123

J Sci Comput

Table 1 Summary of test parameters

Test ε∗ N = Ni + Nb Nd Mesh norm α δ σ

C1 boundary to a
C∞ boundary

0.2497 2106 = 1906 + 200 172 1.0058 0.001 9.9422e−07 0.1006

Annulus to a
square with an
airfoil cavity

0.4556 1420 = 1220 + 200 146 0.0137 0.01 7.3014e−06 1.3696

Cube to a sphere 0.7354 20063 = 18563 + 1500 1304 0.0015 0.001 6.5200e−07 0.0153

C4 Matérn kernel was used for all the experiments

5 Results

Wenowpresent the results of our numerical experiments using our algorithm. To demonstrate
the efficacy of the technique across different types of problems, we focus on three test cases
involving domains with boundaries of different smoothness:

1. Deforming a C1 boundary to a C∞ boundary.
2. Deforming a domain with a C∞ outer boundary and a C∞ inner boundary (an annulus)

to a C1 outer boundary and C1 inner boundary (a square with an airfoil cavity).
3. Deforming a cube (C1 boundary) to a sphere (C∞ boundary).

A fourth category for which results are not shown is the deformation of domains with C∞
boundaries to domains with C∞ boundaries. We do not show results for this case, as the
smoothing procedure is completely unnecessary here. The interpolation step itself produces
excellent meshes, at least partly due to the spectral convergence rates achieved by the RBF
interpolant to the deformation map.

In order to obtain tessellations on the undeformed domains, we first generate a set of
reasonably well-distributed nodes using a repulsion algorithm such as the one used by
Distmesh [45]. This gives us both interior and boundary nodes. The undeformed mesh is
then generated by applying a simple Delaunay triangulation on this set of nodes. Following
Sect. 3.1, we computed initial shape parameters for all the above test cases. The results are
summarized in Table 1.

For all experiments, our general approach is to prescribe a boundary deformation at a
subset of the boundary nodes using a conformal map (or some other transformation). The
RBF interpolant to the deformed boundary is then used as a proxy for the deformation map,
and evaluation in the interior of the deformed domain gives us a set of interior points on
that domain. We then run a few steps of our iterative smoothing algorithm to improve our
mesh. In order to compare the RBF based smoothing with other smoothing techniques, we
consider the Laplace smoother. At the end of each experiment in 2D, we run the same number
of Laplace smoothing iterations as required by RBF-based smoothing before the stopping
criterion terminates the algorithm. We also document the computational cost for each step
of Algorithm 1 in Table 2 for all our experiments.

5.1 Deforming a C1 Boundary to a C∞ Boundary

For this test, we set Ω to be the unit square [0, 1]2; naturally, its boundary is of limited
smoothness, i.e., ∂Ω ∈ C1(R2). We then prescribe a deformation so that the deformed

123

J Sci Comput

Table 2 A summary of runtime (in seconds) for all the experiments

Step no. C1 boundary to C∞ boundary Annulus to a square with an airfoil cavity Cube to a sphere

12 0.000621 0.000612 0.301047

13 0.000613 0.000334 0.298201

14 0.002114 0.002389 0.746076

15 0.004944 0.009064 0.226799

16 2.722284 1.563437 386.769592

18 0.000168 0.000093 14.133027

19 0.000189 0.000011 0.000015

20 0.000238 0.000018 0.000011

21 0.235500 0.382419 0.541982

23–30 0.303988 0.118030 13.342620

32 0.059021 0.152558 5.322097

33 0.005053 0.020471 0.005053

34 1.751741 3.605688 384.959461

The table shows time-averaged per-iteration costs for the important steps in Algorithm 1 (from Sect. 3.2) for
each of our experiments

boundary ∂Ω ′ is a circle, and ∂Ω ′ ∈ C∞(R2). The deformation map f is given component-
wise by:

f (x, y) =
⎡

⎣x

(
1 − y2

2

) 1
2

, y

(
1 − x2

2

) 1
2

⎤

⎦ . (24)

This conformal map has four singularities corresponding to the four corners of the square.
These singularities are likely to manifest as distortions in the tessellation of the deformed
domain. The results of this experiment are shown in Fig. 1. Figure 1b shows a surface plot of
the per-vertex quality measure on the undeformed domain. Figure 1d shows the per-vertex
quality in the deformeddomain obtained fromRBF interpolation, and the correspondingmesh
is shown in Fig. 1c. As predicted, the deformed mesh shows mild distortions corresponding
to the singularities in the conformal map. Our smoothing algorithm terminates after three
iterations with little improvement in per-vertex quality (Fig. 1e, f). In fact, Fig. 2 shows
that the per-vertex quality decreases after just three iterations, which is indeed the cause
for termination. We posit that this lack of improvement in quality is due to the fact that the
deformed mesh is of relatively high quality to begin with. It is likely that a purely local
algorithm would be able to achieve higher per-vertex quality than our quasi-local algorithm.
Figure 3 shows the result of applying three iterations of Laplace smoothing to the deformed,
unsmoothedmesh from Fig. 1c. Laplace smoothing, being a purely local technique, improves
the quality of elements faster than the RBF-based smoothing.

5.2 Deforming an Annulus into a Square with an Airfoil Cavity

We now consider a more complicated test case. In this test, we deform a circular annulus into
a square containing an airfoil. Essentially, this test transforms both inner and outer boundaries
from C∞ smoothness to C1 smoothness. This test case shows the ability of our method to
naturally handle embedded boundaries. The deformation function on the cavity boundary

123

J Sci Comput

Fig. 1 Deforming a C1 boundary to a C∞ boundary. a Undeformed domain. bQuality of undeformed mesh.
c Deformed mesh before smoothing. d Quality of deformed mesh before smoothing. e Deformed mesh after
smoothing. f Quality of deformed mesh after smoothing

is the standard Joukowsky conformal map [55] from circle to airfoil, while the deformation
function on the outer boundary is another conformalmap from a circle to a square. The results
of this experiment are shown in Fig. 4. Figure 4b shows the per-vertex quality surface plot

123

J Sci Comput

Fig. 2 Quality as a function of
number of iterations when
deforming a C1 boundary to a
C∞ boundary. The blue line
corresponds to the use of a
stopping criterion. The red line
shows the quality when no
stopping criterion is used (Color
figure online)

Fig. 3 Quality of the mesh after
3 iterations of Laplace smoothing
applied to the original
un-smoothed deformed mesh
from Fig. 1c

of the undeformed mesh, while Fig. 4d shows the same plot for the deformed mesh before
smoothing. The singularity in the Joukowsky map manifests as poor quality elements near
the trailing edge of the airfoil. Our smoothing algorithm now runs for ten iterations before
terminating; the resulting mesh is shown in Fig. 4e, and its quality is shown in Fig. 4f. The
benefits of smoothing are apparent: the mesh distortions near the trailing edge have been
reduced without adversely affecting the higher-quality regions. The mesh distortion near the
left edge of the square has also been reduced. A study of the mesh quality as a function of
the number of iterations is shown in Fig. 5. While it is impossible to capture overall mesh
quality with a single number, it is easy to see the improvement of quality due to the smoothing
algorithm and the benefit of the termination criterion. Figure 6 shows the result of applying
ten iterations of Laplace smoothing to the deformed, un-smoothed mesh from Fig. 4c. Once
again, Laplace smoothing performs the smoothing faster due to its local nature.

5.3 Deforming a Cube to a Sphere

One of the main advantages of RBF interpolation is that it requires no modifications for
interpolating data scattered on submanifoldsM ⊂ R

3 [26]. Thus, our algorithm requires no
modification inR3 beyond recovering the deformation map for the third coordinate.Wework
completely in Cartesian coordinates and do not employ special node sets on our undeformed

123

J Sci Comput

Fig. 4 Deforming an annulus into a square with an airfoil cavity. a Initial tessellated undeformed domain.
bQuality of undeformed initial mesh. cDeformedmesh before smoothing. dQuality of deformedmesh before
smoothing. e Deformed mesh after smoothing. f Quality of deformed mesh after smoothing

123

J Sci Comput

Fig. 5 Quality as a function of
number of iterations when
deforming an annulus into a
square with an inner airfoil. The
blue line corresponds to the use
of a stopping criterion. The red
line shows the quality when no
stopping criterion is used (Color
figure online)

Fig. 6 Quality of the mesh after
10 iterations of Laplace
smoothing applied to the original
un-smoothed deformed mesh
from Fig 4c

domain boundary. We now consider the 3D analogue of the square-to-disk test by deforming
the unit cube to a sphere. Once again, as in the 2D test cases, we employ a straightforward
conformal map from the cube to the sphere. The undeformed domain mesh is shown in
Fig. 7a–c show the element quality in that mesh. It is easy to see from Fig. 7b, c that the mesh
is mostly comprised of low quality elements on the boundary, and very low quality elements
in the interior. We now apply the RBF interpolation and smoothing procedure to the mesh
to obtain a mesh within a sphere. The resulting mesh and element quality after smoothing
are shown in Fig. 8. Figure 8a shows the curvilinear mesh obtained with the sphere. An
exterior view of element quality (Fig. 8b) shows that the mesh quality is lowest at spatial
locations corresponding to singularities in the conformal map. Interestingly, both Fig. 8b, c
show that the overall element quality in the deformed mesh is higher than in the undeformed
mesh, especially in the interior. This illustrates a strength of the RBF technique in generating
curvilinear meshes. It should be noted that the improvement in quality by smoothing does not
invalidate any elements in the mesh. This can be easily verified by observing that no element
in the deformed mesh has a negative jacobian. Finally, the last plot shows that our smoothing
procedure terminates after just two iterations as further improvement is not possible. Indeed,
this test case indicates that the quality of the undeformed mesh proves crucial in dictating
the quality of the curvilinear smoothed mesh. However, this test case still illustrates that
our technique is viable in 3D without any real changes to the algorithm. We also tested our

123

J Sci Comput

Fig. 7 Tetrahedral cube mesh and element quality. aUndeformed domain. b Exterior view of element quality.
c Interior view of element quality

technique using a high-quality mesh on the undeformed domain. In this case, we note that our
smoothing algorithm did not significantly improve the quality of the mesh on the deformed
domain (results not shown).

6 Discussion

The main contribution of this article is a framework for generating 2D and 3D curvilinear
meshes using RBF interpolation on the domain boundary, and a quasi-local iterative algo-
rithm for smoothing those meshes by modifying RBF shape parameters. Interestingly, the
technique allows mesh generation in the interior of the domain using an approximation to
the deformation map built solely on the domain boundary. Despite the maps not being har-
monic functions, this technique appears to produce meshes that either preserve or improve
the quality of the undeformed mesh. Our results indicate that smoothing can be beneficial,
especially with meshes produced from singular deformation maps such as the Joukowsky

123

J Sci Comput

Fig. 8 Curvilinear mesh obtained by deforming the cube to the sphere. a Deformed domain. b Exterior view
of element quality. c Interior view of element quality. d Quality as a function of number of iterations when
deforming a unit cube to a sphere. The blue line corresponds to the use of a stopping criterion. The red line
shows the quality when no stopping criterion is used (Color figure online)

transform. Further, our algorithm is directly applicable to both 2D and 3D mesh generation
in Cartesian coordinates due to the ability of RBF interpolants to handle scattered node sets
on submanifolds of Rd .

Despite its quasi-local nature, our smoothing algorithm is still global due to the use of
global interpolants on the boundary. This likely limits the ability of our algorithm to han-
dle isolated low-quality regions without adversely affecting high-quality regions. A natural
approach to overcome this will be to use RBF-based Partition of Unity (RBF-PU) or RBF-
based Finite Difference (RBF-FD) methods to approximate the boundary deformation map.
These methods retain the advantages of global RBF interpolants– the ability to handle scat-
tered data on submanifolds of Rd , high-order convergence rates for smooth functions– but
have lower costs and are more localized. Both these methods have the potential to bring down
the preprocessing costs from O(N 1.5) and O(N 2) to O(N). Further, per-iteration evaluation

costs can also be decreased to O(N) from O(N
3
2) and O(N

5
3). This is an area of future

research.
We remark that our algorithm is likely applicable in many scenarios beyond generating

curvilinear meshes. For instance, we envision that our algorithm may be useful in remeshing

123

J Sci Comput

particlemeshes in Lagrangianmethods, or in generating node sets for themeshfree ormeshed
solution of PDEs on time-varying domains. Finally, an open area of research is to understand
how RBF interpolation on the boundary is able to recover a non-harmonic conformal map in
the interior of the domain.

Acknowledgements VZ was supported by NSF OCI-1148291 and NSF IIS-1212806. VS was supported
by NSF DMS-1521748. SPS was supported in part by the NIH/NIGMS Center for Integrative Biomedical
Computing Grant 2P41 RR0112553-12 and a Grant from the ExxonMobil corporation. RMK was supported
in part by DMS-1521748 and W911NF-15-1-0222.

References

1. Baker, T.: Element quality in tetrahedral meshes. In: 7th International Conference on Finite Element
Models in Flow Problems, Huntsville, Alabama (1989)

2. Bank, R.E., Xu, J.: An algorithm for coarsening unstructured meshes. Numer. Math. 73(1), 1–36 (1996)
3. Bhatia, R., Lawrence, K.: Two-dimensional finite element mesh generation based on stripwise automatic

triangulation. Comput. Struct. 36(2), 309–319 (1990). https://doi.org/10.1016/0045-7949(90)90131-K
4. Caendish, J.C., Field, D.A., Frey, W.H.: An apporach to automatic three-dimensional finite element mesh

generation. Int. J. Numer. Methods Eng. 21(2), 329–347 (1985)
5. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Recon-

struction and representation of 3d objects with radial basis functions. In: Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’01, pp. 67–76. ACM, New
York, NY, USA (2001). https://doi.org/10.1145/383259.383266

6. Carr, J.C., Beatson, R.K., McCallum, B.C., Fright, W.R., McLennan, T.J., Mitchell, T.J.: Smooth Surface
Reconstruction fromNoisy Range Data. In: Proceedings of the 1st International Conference on Computer
Graphics and Interactive Techniques in Australasia and South East Asia, GRAPHITE ’03, pp. 119–ff.
ACM, New York, NY, USA (2003)

7. Chen, L.: Mesh smoothing schemes based on optimal delaunay triangulations. In: Proceedings of the 13th
International Meshing Roundtable, IMR 2004, Williamsburg, Virginia, USA, September 19–22, 2004,
pp. 109–120 (2004). http://imr.sandia.gov/papers/abstracts/Ch317.html

8. Dannelongue, H., Tanguy, P.: Three-dimensional adaptive finite element computations and applications
to non-Newtonian fluids. Int. J. Numer. Methods Fluids 13(2), 145–165 (1991)

9. de Boer, A., van der Schoot, M.S., Bijl, H.: Mesh deformation based on radial basis function interpolation.
Comput. Struct. 85(11–14), 784–795 (2007)

10. de Cougny, H., Georges, M., Shephard, M.: Explicit node point mesh smoothing within the octree mesh
generator. SCORECReport: Scientific Computation Research Center. Program for AtuomatedModeling,
Scientific Computation Research Center, Rensselaer Polytechnic Institute (1990). https://books.google.
com/books?id=QtGHPgAACAAJ

11. Driscoll, T., Fornberg, B.: Interpolation in the limit of increasingly flat radial basis functions. Comput.
Math. Appl. 43(3), 413–422 (2002)

12. Fasshauer, G.E.: Green’s functions: taking another look at kernel approximation, radial basis functions
and splines. In: Springer Proceedings in Mathematics, vol. 13, pp. 37–63. Springer (2011)

13. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. Interdisciplinary Mathematical Sci-
ences, vol. 6. World Scientific Publishers, Singapore (2007)

14. Fasshauer, G.E., McCourt, M.J.: Stable evaluation of Gaussian radial basis function interpolants. SIAM
J. Sci. Comput. 34, A737–A762 (2012)

15. Field, D.A.: Laplacian smoothing and delaunay triangulations. Commun. Appl. Numer. Methods 4(6),
709–712 (1988)

16. Field, D.: A generic Delaunay triangulation algorithm for finite element meshes. Adv. Eng. Softw. Work-
stn. 13(5), 263–272 (1991). https://doi.org/10.1016/0961-3552(91)90031-X

17. Field, D.A.: Qualitative measures for initial meshes. Int. J. Numer. Methods Eng. 47(4), 887–906 (2000)
18. Flyer, N., Fornberg, B., Bayona, V., Barnett, G.A.: On the role of polynomials in rbf-fd approximations:

I. Interpolation and accuracy. J. Comput. Phys. 321, 21–38 (2016). https://doi.org/10.1016/j.jcp.2016.05.
026

19. Fornberg, B., Piret, C.: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput.
30, 60–80 (2007)

123

https://doi.org/10.1016/0045-7949(90)90131-K
https://doi.org/10.1145/383259.383266
http://imr.sandia.gov/papers/abstracts/Ch317.html
https://books.google.com/books?id=QtGHPgAACAAJ
https://books.google.com/books?id=QtGHPgAACAAJ
https://doi.org/10.1016/0961-3552(91)90031-X
https://doi.org/10.1016/j.jcp.2016.05.026
https://doi.org/10.1016/j.jcp.2016.05.026

J Sci Comput

20. Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape
parameter. Comput. Math. Appl. 48, 853–867 (2004)

21. Fornberg, B., Zuev, J.: The Runge phenomenon and spatially variable shape parameters in RBF interpo-
lation. Comput. Math. Appl. 54, 379–398 (2007)

22. Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J.
Sci. Comput. 33(2), 869–892 (2011)

23. Fornberg, B., Lehto, E., Powell, C.: Stable calculation of Gaussian-based RBF-FD stencils. Comput.
Math. Appl. 65, 627–637 (2013)

24. Fukuda, J., Suhara, J.: Automatic mesh generation for FEA. In: Proceedings of International Conference
on Finite Element Method, pp. 931–937 (1982)

25. Fuselier, E., Wright, G.: Scattered data interpolation on embedded submanifolds with restricted positive
definite kernels: Sobolev error estimates. SIAM J. Numer. Anal. 50(3), 1753–1776 (2012). https://doi.
org/10.1137/110821846

26. Fuselier, E.J., Wright, G.B.: A high-order kernel method for diffusion and reaction-diffusion equations
on surfaces. J. Sci. Comput. (2013). https://doi.org/10.1007/s10915-013-9688-x

27. Gargallo-Peiro, A., Roca, X., Peraire, J., Sarrate, J.: Defining quality measures for mesh optimization on
parameterized CAD surfaces. In:Jiao, X., Weill, J.C. (eds.) Proceedings of the 21st International Meshing
Roundtable, pp. 85–102. Springer, Berlin (2013)

28. Gargallo-Peiro, A., Roca, X., Peraire, J., Sarrate, J.: Defining quality measures for validation and genera-
tion of high-order tetrahedralmeshes. In: Sarrate, J., Staten,M. (eds.) Proceedings of the 22nd International
Meshing Roundtable, pp. 109–126. Springer, Berlin (2014)

29. George, P., Borouchaki, H.: Delaunay Triangulation and Meshing: Application to Finite Elements.
Butterworth-Heinemann, Oxford (1998). https://books.google.com/books?id=HZGfI61PSUQC

30. Geuzaine, C., Johnen, A., Lambrechts, J., Remacle, J.F., Toulorge, T.: IDIHOM: Industrialization of
High-Order Methods—A Top-Down Approach: Results of a Collaborative Research Project Funded by
the European Union, 2010–2014, chap. The Generation of Valid CurvilinearMeshes, pp. 15–39. Springer,
Cham (2015)

31. Knupp, P.M.: Algebraic mesh quality metrics. SIAM J. Sci. Comput. 23(1), 193–218 (2001). https://doi.
org/10.1137/S1064827500371499

32. Larsson, E., Fornberg, B.: A numerical study of some radial basis function based solution methods for
elliptic PDEs. Comput. Math. Appl. 46(5–6), 891–902 (2003)

33. Larsson, E., Fornberg, B.: Theoretical and computational aspects of multivariate interpolation with
increasingly flat radial basis functions. Comput. Math. Appl. 49, 103–130 (2005)

34. Macêdo, I., Gois, J.P., Velho, L.: Hermite interpolation of implicit surfaces with radial basis functions.
In: 2009 XXII Brazilian Symposium on Computer Graphics and Image Processing, pp. 1–8 (2009)

35. Malleswaran, M., Deborah, S.A., Manjula, S., Vaidehi, V.: Integration of INS and GPS using radial basis
function neural networks for vehicular navigation. In: Control Automation Robotics Vision (ICARCV),
2010 11th International Conference, pp. 2427–2430 (2010)

36. Marchandise, E., Piret, C., Remacle, J.F.: CAD and mesh repair with radial basis functions. J. Comput.
Phys. 231(5), 2376–2387 (2012). https://doi.org/10.1016/j.jcp.2011.11.033

37. Miller, T.: Optimal good-aspect-ratio coarsening for unstructured meshes. In: SODA: ACM-SIAM Sym-
posium on Discrete Algorithms (1997)

38. Möller, P., Hansbo, P.: On advancing front mesh generation in three dimensions. Int. J. Numer. Methods
Eng. 38(21), 3551–3569 (1995). https://doi.org/10.1002/nme.1620382102

39. Moxey, D., Green, M., Sherwin, S., Peiró, J.: An isoparametric approach to high-order curvilinear
boundary-layer meshing. Comput. Methods Appl. Mech. Eng. 283, 636–650 (2015). Cited By 3

40. Moxey, D., Ekelschot, D., Keskin, Ü., Sherwin, S., Peiró, J.: High-order curvilinear meshing using a
thermo-elastic analogy.Comput.AidedDes. 72, 130–139 (2016). (23rd InternationalMeshingRoundtable
Special Issue: Advances in Mesh Generation)

41. Parthasarathy, V., Kodiyalam, S.: A constrained optimization approach to finite element mesh smoothing.
Finite Elem. Anal. Des. 9(4), 309–320 (1991)

42. Parthasarathy, V., Graichen, C., Hathaway, A.: A comparison of tetrahedron quality measures. Finite
Elem. Anal. Des. 15(3), 255–261 (1994)

43. Perronnet, A.: Triangulation par arbre-4 de triangles equilateraux et maximisation de la qualite. Tech.
Rep. R 92015-Vol. 11; fasc. 3. Universit Pierre et Marie Curie (Paris) (1992). http://opac.inria.fr/record=
b1031284

44. Persson, P.-O., Peraire, J.: Curved mesh generation and mesh refinement using Lagrangian solid mechan-
ics. In: Proceedings of the 47th AIAA Aerospace Sciences Meeting. American Institute of Aeronautics
and Astronautics, Inc., Orlando, pp. 949:1–11 (2009)

45. Persson, P.O., Strang, G.: A simple mesh generator in MATLAB. SIAM Rev. 46(2), 329–345 (2004)

123

https://doi.org/10.1137/110821846
https://doi.org/10.1137/110821846
https://doi.org/10.1007/s10915-013-9688-x
https://books.google.com/books?id=HZGfI61PSUQC
https://doi.org/10.1137/S1064827500371499
https://doi.org/10.1137/S1064827500371499
https://doi.org/10.1016/j.jcp.2011.11.033
https://doi.org/10.1002/nme.1620382102
http://opac.inria.fr/record=b1031284
http://opac.inria.fr/record=b1031284

J Sci Comput

46. Remacle, J.F., Toulorge, T., Lambrechts, J.: Robust untangling of curvilinear meshes. In: Proceedings of
the 21st International Meshing Roundtable, chap., pp. 71–83. Springer, Berlin (2013)

47. Sastry, S.P., Shontz, S.M., Vavasis, S.A.: A log-barrier method for mesh quality improvement and untan-
gling. Eng. Comput. 30(3), 315–329 (2014)

48. Sastry, S.P., Zala, V., Kirby, R.M.: Thin-plate-spline curvilinear meshing on a calculus-of-variations
framework. Proc. Eng. 124, 135–147 (2015). (24th International Meshing Roundtable)

49. Savitha, R., Suresh, S., Sundararajan, N.: A fully complex-valued radial basis function network and its
learning algorithm. Int. J. Neural Syst. 19(04), 253–267 (2009). (PMID: 19731399)

50. Schaback, R.: Multivariate interpolation by polynomials and radial basis functions. Constr. Approx. 21,
293–317 (2005)

51. Shankar, V., Wright, G.B., Fogelson, A.L., Kirby, R.M.: A radial basis function (RBF)-finite difference
method for the simulation of reaction–diffusion equations on stationary platelets within the augmented
forcing method. Int. J. Numer. Methods Fluids 75(1), 1–22 (2014). https://doi.org/10.1002/fld.3880

52. Shankar, V., Wright, G., Kirby, R., Fogelson, A.: A radial basis function (RBF)-finite difference (FD)
method for diffusion and reaction–diffusion equations on surfaces. J. Sci. Comput. 63(3), 745–768 (2015).
https://doi.org/10.1007/s10915-014-9914-1

53. Staten, M.L., Owen, S.J., Shontz, S.M., Salinger, A.G., Coffey, T.S.: A comparison of mesh morphing
methods for 3D shape optimization. In: Proceedings of the 20th International Meshing Roundtable, chap.,
pp. 293–311. Springer, Berlin (2012)

54. Toulorge, T., Geuzaine, C., Remacle, J.F., Lambrechts, J.: Robust untangling of curvilinear meshes. J.
Comput. Phys. 254, 8–26 (2013)

55. Tsien, H.S.: Symmetrical Joukowsky airfoils in shear flow. Q. Appl. Math. 1(2), 130–148 (1943)
56. Turner, M., Peir, J., Moxey, D.: A variational framework for high-order mesh generation. Proc. Eng. 163,

340–352 (2016). https://doi.org/10.1016/j.proeng.2016.11.069. (25th InternationalMeshing Roundtable)
57. Watabayshi, G., Galt, J.: An optimized triangular mesh system from random points. Numer. Grid Gen.

Comput. Fluid Dyn. 437–438 (1986)

123

https://doi.org/10.1002/fld.3880
https://doi.org/10.1007/s10915-014-9914-1
https://doi.org/10.1016/j.proeng.2016.11.069

	Curvilinear Mesh Adaptation Using Radial Basis Function Interpolation and Smoothing
	Abstract
	1 Introduction
	2 Review
	2.1 RBF Interpolation
	2.2 Mesh Quality

	3 Methods
	3.1 Smoothing with the Shape Parameter
	3.2 RBF-Interpolation Based Iterative Algorithm for Mesh Generation and Quality Improvement
	3.2.1 Computing Quality Per-element and Per-vertex
	3.2.2 Modifying Shape Parameter Based on the Per-vertex Quality
	3.2.3 Stopping Criterion

	4 Complexity Analysis
	4.1 Preprocessing
	4.1.1 Complexity Analysis in 2D (s=2)
	4.1.2 Complexity Analysis in 3D (s=3)
	4.1.3 Finding the Initial Shape Parameter

	4.2 Complexity of the Smoothing Algorithm
	4.2.1 Finding the 2-Ring Neighbors
	4.2.2 Calculating Per-element and Per-vertex Quality
	4.2.3 Updating the Evaluation Shape Parameter
	4.2.4 Computing the Smoothed node set
	4.2.5 Tessellation of Domain to Obtain Element Set

	5 Results
	5.1 Deforming a C1 Boundary to a Cinfty Boundary
	5.2 Deforming an Annulus into a Square with an Airfoil Cavity
	5.3 Deforming a Cube to a Sphere

	6 Discussion
	Acknowledgements
	References

