Advances in Computer Methods for Partial Differential Equations VII

R. Vichnevetsky, D. Knight and G. Richter (Editors)
©1992 IMACS. All rights reserved.

SPATIAL AND TEMPORAL ERROR CONTROL IN THE ADAPTIVE SOLUTION
OF SYSTEMS OF CONSERVATION LAWS.

M. Berzins , J. Lawson and J.Ware.
School of Computer Studies,
The University of Leeds, Leeds LS2 9JT.

1. Introduction.

The area of fluid mechanics has long been recognised as one for the application of automated analysis capabil-
ities. The advent of reliable and robust mesh generators, physically realistic spatial discretization methods, sophisti-
cated time integration software, and error balancing techniques for time-dependent p.d.e. problems has made it pos-
sible 1o write reliable adaptive finite element programs for time-dependent fluid flow calculations. The programs
are intended to be reliable in that they make use of spatial and temporal error estimates to meet automatically the
users accuracy requirements. This paper follows the framework laid down by Berzins et. al.[2]. in describing the
basic components of a prototype automated solver for the solution of the time-dependent p.d.e.s. In such software
the accuracy of the numerical solution is influenced by the spatial discretisation method used, the spatial mesh and
the method of time integration.

The spatial discretisation method and positioning of the spatial mesh points should ensure that the spatial error
is controlled to meet the users requirements. Two key parts of the solver are the spatial mesh generator and the
adaptivity software used to refine and coarsen the mesh as part of the procedure to control the spatial discretization
error. The spatial discretization procedure used on the mesh should provide numerical solutions that are free of
spurious oscillations. Such discretizations are considered by very many authors e.g. by Koren [7] for the steady
Euler and Navier-Stokes equations using quadrilateral meshes. The general approach of Koren is extended by
Ware and Berzins | 11] to the use of unstructured triangular meshes in the spatial semi-discretization of the p.d.e.

This method of lines approach results in a system of time dependent o.d.e.s which can be solved by using
o.d.e. software. preferably with sufficient accuracy so that the spatial error is not degraded while maintaining
efficiency. This is achieved by using the error balancing approach of Berzins [4] in conjunction with the time
integrator of Berzins and Furzeland [3]. This error balancing approach makes use of local estimates of the space
and temporal errors to calculate the time accuracy tolerance in such a way that the spatial discretization and time
integration errors are of the same order of magnitude, but so that the spatial discretization error dominates the time
integration error.

2. Spatial Discretization for Compressible Navier-Stokes Equations.

The solution strategy for the Navier-Stokes equations is to split the equagions into their convective and dif-
fusive parts. This enables upwind discretization methods developed for the Euler equations to be used for the con-
vective part of the system and the centered discretization methods to be used for the diffusive part. The class of
p.d.e.s to be considered is written in cartesian co-ordinates as

L= L@ + 5 (0@ +82@) 1 e Okl &) € O @
with appropriate boundary and initial conditions. For the Navier Stokes equations the solution vector has the form
q(x, yt) = le,p,pu,pv)’ . Here, pis the fluid density; u,v are the cartesian components of the velocity vector,
¢ is the internal energy. The pressure p is evaluated according to an equation of-state. The fluxes f1 and g,
represent the convective fluxes while f, and g, are the diffusive fluxes. For simplicity only one p.d.e. of the form
of equation (2.1) will be considered in the rest of this paper.

The first step in the discretization process is to triangulate the region Q using a mesh generator, see Section 4
below. With a finite volume approach equations (2.1) are integrated over a triahgular element i (with vertices A,B
and C) and the divergence theorem is applied and a one point quadrature rule applied along the edges of the trian-
gle to obtain

60

99anC
ot

Areaapc - [CF1(qan) + F2(Gas)) Ayan - (81(gas) + 82(qaB)) Axap +

(f1(gpc) + f2(q8c)) Bysc -(81(03c)+82(q3c))Axnc +

(f1(gca) + f2(aca)) Byca - (81(qca) + 82(gca)) Axca] (2.2)

where g is the solution value midway along the edge AB , Axap is the change in the x co-ordinate in going from
A 10 B , gapc is the solution value associated with the centroid of the triangle ABC and the other values in the equa-
tion are similarly defined. As the solution values are only piecewise constant inside each triangle the evaluation of
the convective fluxes midway along the edge involves the approximate solution of three one-dimensional Riemann
problems in the direction of the normals {0 the edges of the triangle. This is done by using the scheme of Engquist
and Osher as described by Koren [7}. :

The piecewise constant finite volume schemes using Engquist and Osher’s flux evaluations are only first-order
accurate. The extension to a second order scheme on an unstructured triangular mesh is given by Ware and Berzins
[11]. This spatial discretization scheme results in a system of differential equations, each of which is of the form of
equation (2.2) . This system of equations can'be written as the i.v.p.

0 = Fy (1, 20), (2.3)

where the N dimensional vector, Q(l), is defined by
"
0 = [061.31.0 . Qay2 0L L QG w0

where (x; , y;) is the centroid of the ith triangle, Q (x; , y; . £) is o numerical approximation to ¢ (x; , y; , 1)
3. Time Integration, _

In practice the system of equations (2.3) is integrated in time to compute the approximation, V(¢), to the true
solution, ¢(r), of the p.d.e. The global error in the numerical solution can be expressed as the sum of the spatial
discretization error, es(¢) = q(t) - Q(:), and the global time error, ge(t) = Q(r) - V(). That is,

E(W =400 Y0 = 0 - 20) + Q) - V() (3.1)
S gf(t) + ge(r).

The new adaptive Theta algorithm, 3], used here for time integration can handle both stiff (diffusion or
source term dominated) and non-stiff (convection dominated) problems by automatically selecting the best value of
theta and the most efficient iteration method (Newton or functional iteration) with respect to step size and cost per
step. The criteria for selecting theta and for switching are established by optimising the permissible step size. For
non-stiff o.d.e.s the method uses functional iteration, [3]. The method assumes the approximations V(z,) to U((rs)
, and V(1) to Uy) , then the numerical solution at fp41 , where 1,41 = I, + k and k s the time step size, as denoted
by V(tn41) is defined by

Vi) = V() + (1-8Kk V(1) + 8k Fuliast, Vitnaa)) , 0<0<1 . (32)

"The new integrator is part of the SPRINT software package, an important feature of which is the capability to han-
dle p.d.e. space remeshing schemes. After each time step taken by the integrator a routine, generic name MON-
ITR, is called which is designed for tasks such as o.d.e. global error estimation and remeshing at discrete times.

In most time dependent fluid-flow p.d.e. codes either a CFL stability control is employed or a standard o.d.e.
solver is used which employs local time error per step, (LEPS), control with respect to a user supplied accuracy
tolerance, TOL, i.e.

l |[_€,,+] (tn+1 ’ TOL)I | <TOL. (33)
or the local time error per unit step (LEPUS), .
| 1/ +1(tas1 , TOL)| | < k TOL. ~ ' (3.4)

61

When controlling the LEPS it is difficult to establish a relationship between the accuracy tolerance, TOL, and the
global time error and to relate TOL to the spatial error. On the other hand, if the LEPUS is controlled then it can be
shown, see [8], that the time global error is proportional to the tolerance that is

ge(r) = v(r) TOL + o(TOL), (3.5)

where v(z) is independent of TOL and v (ri_and v/(t) are bounded on [0,1.]. Although LEPUS control is generally
thought to be inefficient for standard o.d.e.s, there is a fundamentally different situation in the time integration of
p.d.e.s in that the time error control strategy must take account of the spatial discretization error already present.

4, Balancing the Space and Time Errors.

In order that the solution is computed efficiently, the time integration error should not dominate the error due
10 the spatial discretization of the p.d.e. but nor should the o.d.e.s be integrated with a much higher degree of accu-
racy than that already attained in space. In practice, the spatial discretization error must dominate the temporal
error so that the estimate of the spatial discretization error is unpolluted by temporal error. Lawson and Berzins (8]
have developed one such strategy which controls the local time error to be a fraction of the growth in the spatial
discretization errors over the interval [z, , 1,41, that is,

|l lens1(tnr1 , TOL)| | < € | |es(tnin) - esGa) 1, (4.1)

and have shown that, for a suitable value of £, this yields a time integration error which is dominated by the spatial
discretization error. That this is a form of LEPUS control is seen by expanding using Taylor’s series about ¢, and
thus extracting a factor of the stepsize & .

The Lawson and Berzins approach is designed for parabolic problems and is not appropriate for convection
dominated p.d.e.s, see [4]. For this reason the error control strategy used here measures the growth in the spatial
error over the timestep in a similar way to that used by Moore and Flaherty, [10], but modified for convection-
dominated p.d.e.s. Define the local in time spatial error, es(t), as the spatial error at time r given the assumption
that es(t,) = 0. A local in time error balancing approach is then given by

| llenrUnr » TOL] T < € knar | 1€5Cas)] (4.2)

equations, see Berzins [4]. The error control strategy used here differs from that of [10] in that no nodal supercon-
vergence results are assumed, the computed solution is treated as the high-order solution and a low-order solution is
estimated in a computationally inexpensive way. The difference between the two solutions will only be an estimate
of the error in the low-order solution and so local extrapolation in space is effectively being used when the high-
order solution is used to move forward in time. The low order solution is obtained by using only the piecewise
constant finite volume scheme thus defining a modified o.d.e. system which will be denoted by

£’_n+l (1) = EN([» Va4l) . Xn+i(rn) = Z([n)) £n+1 (tn) = L}(tn)- (4.3)
The local in time space error is then given by
é:([n+l) = Z(tn+]) < VYn+l (ta+1) (4.4)

The local in time space error is computed by applying the & method of Section 3 1o equation (4.3) to get
Vot ()= V() + 8k FN(, Yant Gnst) + (1= 00k V(o).
Using this equation with equations (3.2) and (4.4) gives

€5(tar1) = 0k [FNCas1 2 V(tas1)) = FNGnsr s Var1 (na1))] (4.5)
where k = t,4, - t, . From this equation the LEPUS tolerance used in the code on the step 1o 2, is then given by
TOL = € 0 || FN(tas1 , V(tra1)) - ENUnir s Va1 (1)) 1] : (4.6)

5. Mesh Generation.

In two space dimensions it is important to be able to solve problems defined on irregular regions. This
requires the use of a mesh generator for unstructured triangular spatial meshes. At the same time it is necessary to
ensure that the spatial mesh is fine or coarse enough so that the solution satisfies the users’ accuracy and efficiency
requirements. This requires the use of adaptive mesh techniques. .

62

The mesh generator used was written at Shell Research and is based on the ideas of George et al. [6]. An
equilateral triangle which totally surrounds the whole of the user’s geometry is constructed. Each of the user sup-
plied vertices is added to the mesh, one at a time. Typically, there will be two cases - the new vertex lies within an
existing triangle, in which case edges from the new vertex to each of the triangle’s vertices are drawn. On the other
hand, the vertex may lie on or near the common edge of two triangles. In this case, edges from the new vertex to
each of the triangles’ vertices are drawn and so the two triangles are replaced by four new ones.

At the end of this process, a riangulation may not respect the user’s geometry and so is modified using the
algorithm of [6] so that the boundary edges are present in the mesh. At this point, any triangles lying outside the
geometry (that is, connected to the vertices of the large equilateral triangle) are discarded.

The triangulation may still contain very long thin triangles. These are removed by diagonal flipping in which
the diagonal of the quadrilateral formed by two adjacent triangles may be swapped with the other diagonal. This
flipping will only occur if it leads to the creation of two better shaped wiangles. At the end of the flipping process
there may still be some long thin triangles, in which case, vertices may be added at strategic points in the mesh.
The meshes produced by this mesh generator are generally coarse, unless the user has provided extra vertices or tri-
angles, and so must be selectively refined to be used with p.d.e. solvers.

6. Adaptivity and Iterated Function Systems.

The aim of the adaptivity routines is to change the mesh during the computation by using smaller elements
where the. solution changes rapidly and leaving larger elements where the solution is smooth. The potential of
adaptive methods is demonstrated by Lohner [9] who shows that there is a factor of between 4 and 11 difference
between the number of points required in a uniform mesh compared to the number required in the final mesh
obtained through adaptivity.

The adaptive algorithm used here is based on & -refinement in which a new mesh is created by subdividing or
deleting elements in the existing mesh. The meshes are usually relatively fine and are quasi-uniform. When solv-
ing time dependent problems, it is important to be able to coarsen the mesh as well as refine it, particularly when
moving features in the solution are being tracked. The approach used here is a combination of the the regular sub-
division approach of Lohner [9] and Bank [1] by using the iterated function systems approach of Bova and Carey
[5].

Iterated Function Systems (IFS), Bova and Carey [5], are mappings that can be applied recursively to any tri-
angle to generate points in a conceptually elegant fashion. These points may be used to refine an existing mesh.
Depending on the mapping used, points can be generated to lie over the whole of a triangle, towards an edge or
towards a vertex. The following diagrams show triangles that have been refined using a TRIANGLE, EDGE and
VERTEX attractor, respectively. The attractors specify the mapping to be applied, for example, an EDGE attractor
indicates that a triangle is to be refined towards an edge.

B
A A
" Refined using TRIANGLE Refined using EDGE Refined using VERTEX
attractor. attractor towards AB. attractor towards A.
Refinement level 2 Refinement level 2 Refinement level 2

Graded mcshés can be obtained in the following way. Consider a triangle to be refined with a TRIANGLE attrac-
tor. Then all its neighbouring triangles which share an edge with it, are refined towards that shared edge. Simi-
larly, all triangles with a vertex in common with the original triangle are refined towards that vertex. Finally

63

Bank’s green rule is applied to ensure the mesh is conforming, [1]. This is illustrated in the diagram below in
which a level 2 refinement is applied to the central triangle

0 I
AA — & ‘

where dashed lines represent the bisecting edges of green mwiangles. The concept of IFS attractors thus provides an
elegant way to implement multiple levels of regular refinement.

The input to the refinement routines consists of a list of triangles to be refined using a TRIANGLE attractor
and a list of triangles to be deleted. These lists are generated according to an adaptive strategy based on computed
error estimates for each triangle. De-refinement is a reversal of the refinement process, that is, the four children
created through regular subdivision can be deleted, leaving the parent. Only one level of de-refinement is allowed
at any one remeshing time, in addition, all four children must be marked for deletion. De-refinement will not be
allowed if a triangle in the initial mesh, produced by the mesh generator, is specified. The refinement/de-
refinement strategy is described below. These rules are applied to each triangle marked for deletion. Appropriate
triangles are then deleted. For each triangle marked for refinement with the TRIANGLE attractor adJacent trian-
gles are marked for refinement with EDGE or VERTEX attractor and same refinement level. The mesh is refined
by using the atiractors. A conforming triangulation is obtained by applying Bank’s green rule where necessary. If
the triangles in the initial mesh are of good quality then most of the triangles in subsequent meshes (created as a
result of regular subdivision) will also be of good quality. The exceptions will be those triangles created as a result
of application of the green rule, when triangles are bisected. These triangles are required to complete the mangula-
tion, but will be removed before any further modification of the mesh takes place. This prevents deterioration in
the quality of the triangles.

The refinement technique used here allows both uniform refinement of the mesh and development of graded
meshes. This technique complements the mesh generator which aims to produce coarse meshes in which the trian-
gles are as close to equilateral as the user requests.

7. Numerical Experiments.

A number of experiments with both one and two space-dimensional problems using the new error control stra-
tegy are described by Berzins [4] The experiment described illustrates the approach for a two dimensional Burgers
equation problem and provides a comparison were made with the standard local error control strategy. The test
problems is:

du ou du %u o%u

o PR YOG VG) T
where (x,y,2) € (0,1)x(0,1)x (0, 1].

The analytic solution is given by u(x,y,t) = v(x,t) v(y,t) where v(x,r) is defined by

0.14 +05B + C
A+B+C

0.05(x - 0.5 +4.950/v) " _ _—0.25(x - 0.5 + 0.75)/v) , — ,(=0.5(x - 0.375)/v)
,B=¢ ! andC =e .

, v=10.0001 ,

vix,r) =

where A = ¢©

64

The problem was solved using fixed evenly spaced space meshes of 9x9 , 27x27 and 81x81 points. The
meshes were constructed so that the mesh points were the centres of square cells and so that the meshes were
nested. The Theta method described in Section 3 was used with the functional iteration option switched on . Two
different error control strategies were used within the time integration routines :-

(i) The LEPUS strategy given by equations (4.2) and (4.5) with & = 0.5.
(ii) The standard absolute LEPS strategy given by equation (3.3).

Table 1 shows the results obtained with these two strategies with the best accuracy tolerance in terms of
efficiency, as well as with smaller and larger accuracy tolerances. The CPU time quoted, however, does not reflect
the experimentation needed to actually find the best tolerance. From these results it can be seen that by using
smaller tolerances the same accuracy is achieved but at a greater cost, while using larger tolerances may increase
the efficiency, but larger global errors are obtained, proving that the spatial error is no longer dominating. NPTS is
the number of points used in the spatial mesh. TOL is the LEPS tolerance used in the o.d.e. integration routine
except that New 0.5 refers to the new strategy, with € = 0.5. MAX L1 ERR is the maximum grid error found at
the specified output times. CPU is the amount of CPU time used, measured in seconds. NSTEPS is the number of
time steps used in the integration of the o.d.e.’s. '

Table 1 Results for Burgers Equation.

Max. L1 err. at Time
NPTS TOL T=011 T=044 | T=077 | T=1.00 NSTEPS | NFCN CPU
0.5D-2 0.27D-1 | 0.15D-1 | 0.30D-1 | 0.49D-1 38 91 0.95
0.1D-2 0.25D-1 | 0.14D-1 | 0.34D-1 | 0.52D-1 61 160 1.60
9x9 0.5D-3 0.26D-1 | 0.15D-1 | 0.32D-1 | 0.52D-1 88 234 2.36
New 0.5 | 0.25D-1 | 0.14D-1 | 0.31D-1 | 0.51D-1 157 433 4.36
0.5D-2 0.11D-1 | 0.95D-2 | 0.22D-1 | 0.29D-1 55 126 10.2
0.3D-2 0.11D-1 | 0.92D-2 | 0.22D-1 | 0.26D-1 71 183 14.0
27x27 0.5D-3 0.10D-1 | 0.87D-2 | 0.22D-1 | 0.27D-1 144 407 30.6
New 0.5 | 0.10D-1 | 0.87D-2 | 0.22D-1 | 0.27D-1 298 797 62.0
0.1D-3 0.37D-2 | 0.82D-2 | 0.49D-2 | 0.70D-2 493 1297 1060
0.5D-4 0.37D-2 | 0.82D-2 | 0.49D-2 | 0.70D-2 645 1703 1460
81x81 0.2D-4 0.36D-2 | 0.81D-2 | 0.48D-2 | 0.69D-2 788 2022 1790
New 0.5 | 0.36D-2 | 0.81D-2-| 047D-2 | 0.68D-2 659 1717 1350

8. Towards an Automatic Algorithm.

The prototype automatic algorithm consists of the error control strategies described in the previous Sections.
The strategies for deciding when to remesh are essentially those of Lawson and Berzins [8]. The input required
from the user consists only of the problem specification, an initial spatial mesh from the mesh generator. and an
error tolerance for the spatial discretization error, EPS. At each time step the estimate of || es(e) | | is calculated,
and if it is greater than some fraction (say between 0.25 and 0.9) depending on the estimator of EPS, then a new
mesh is constructed that ensures that the subsequent error is less than EPSDN where EPSDN is a fraction of EPS.
The underlying assumption in this adaptive process is that the introduction of extra mesh points will cause the error
to decrease. Should this not be the case it will be necessary to backtrack to an earlier time at which the solution
and error estimates have been saved.

Once a new mesh has been found, the computed solution and the time history array used by the time integrator
are interpolated, using a conservative interpolation scheme of Ramshaw, see [2], onto this mesh and the time
integration is restarted. A " flying restart " , which uses the same stepsize and order used immediately before
remeshing, is performed. This is often faster than performing a full restart. Once the time integration has been res-
tarted, the time integration proceeds until the next point where remeshing is required is reached or the end of the
computation, whichever is soonest.

65

