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Abstract

Tracing neurons in large-scale microscopy data is crucial to establishing a wiring diagram of the 

brain, which is needed to understand how neural circuits in the brain process information and 

generate behavior. Automatic techniques often fail for large and complex datasets, and 

connectomics researchers may spend weeks or months manually tracing neurons using 2D image 

stacks. We present a design study of a new virtual reality (VR) system, developed in collaboration 

with trained neuroanatomists, to trace neurons in microscope scans of the visual cortex of 

primates. We hypothesize that using consumer-grade VR technology to interact with neurons 

directly in 3D will help neuroscientists better resolve complex cases and enable them to trace 

neurons faster and with less physical and mental strain. We discuss both the design process and 

technical challenges in developing an interactive system to navigate and manipulate terabyte-sized 

image volumes in VR. Using a number of different datasets, we demonstrate that, compared to 

widely used commercial software, consumer-grade VR presents a promising alternative for 

scientists.
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1 Introduction

Brain function emerges from the coordinated activity of billions of interconnected neurons 

that form dense neural circuits. A central goal of neuroscience is to understand how these 

circuits’ computations relate to behavior. The field of connectomics is founded on the 

principle that understanding the precise wiring of these circuits, i.e., the location of neurons 

and the connections between them, is crucial to comprehending brain function at a 

mechanistic level. More insight into the fundamental connectivity within the brain also has 

the potential to lead to breakthroughs in the understanding of brain diseases and open new 

avenues for treatment.

However, obtaining a comprehensive wiring diagram of even relatively small and simple 

mammalian brains, such as that of a mouse, is a massive undertaking. Similar projects in 

species with larger brains that are evolutionarily closer to humans, such as non-human 

primates (NHPs), take more time and are more complex. To date, the only species whose 

nervous system has been completely mapped is the nematode Caenorhabditis elegans [45], 

which is comprised of only 302 neurons. Currently, the majority of connectome efforts are 

focused on mapping the mouse brain [8, 10]. However, with recent advances in high-

resolution tissue labeling [27], optical tissue clearing [11, 46], and deep tissue imaging [13], 

mapping the NHP brain at mesoscopic scale is becoming feasible. One major impediment to 

mapping the NHP brain is the time-consuming, laborious effort of manually tracing labeled 

neuronal connections through the brain.

For most of the 20th century, reconstructing, annotating, and analyzing neurons has been 

done by creating hand-drawn images of labeled neurons, traced using an instrument known 

as camera lucida directly from thin brain sections viewed through a microscope. The first 

computer-aided system for tracing neurons [16] synced the movement of the microscope 

stage with a plotting board. The user would adjust the stage to select points along the neuron 

to be plotted, and press a foot pedal to record each point on the board and then measure 

distances between them. This system ultimately evolved into NeuroLucida [29], the current 

industry standard for neuron tracing. NeuroLucida allows scientists to draw lines along 

neuronal axons and dendrites using either tissue sections mounted on a glass slide or image 

stacks of scanned tissue. The software moves the microscope (or image) to keep the 

viewpoint and tracing aligned while the user navigates the data. Tracing labeled neurons 

manually is tedious and time-consuming, and may require months to reconstruct even small 

portions of the brain [5]. Part of the difficulty in this process is tracing 3D structures such as 

neurons through a 2D interface, i.e., a computer screen. Neurons often touch or run in 

parallel, and finding a viewpoint to properly distinguish them may require several non-

obvious rotations of the volume. When working with image slices, this process is made more 

challenging by the fixed viewpoint. Automatic techniques for neuron reconstruction fail on 

complex and noisy data, and often the results must be corrected manually. In fact, Peng et al. 

[35] report that the clean-up process may take longer than manual tracing. In practice, most 

neuron reconstruction is still done manually [31].

Beyond the mechanics of tracing, another challenge is that microscopy technology is rapidly 

outpacing the supporting tools in terms of raw data size. State-of-the-art microscopes 
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regularly produce terabytes worth of images, yet few existing tools are capable of handling 

data at this scale. Notably, the TeraFly [9] plugin for Vaa3D [36] supports paging in 

hierarchical volume data to explore large datasets. Other tools are often limited by the RAM 

capacity of the system. In this paper, we present a design study on how off-the-shelf virtual 

reality (VR) systems coupled with state-of-the-art data management and visualization 

solutions can improve the workflow of connectomics researchers. Working with trained 

neuroanatomists, we explore different rendering, interaction, and navigation methods, as 

well as the use of force feedback to improve the quality and speed of neuron tracing. We 

demonstrate that given a high enough frame rate and appropriate rendering techniques, a 3D 

interface substantially improves the overall user experience by allowing neuroscientists to 

directly interact with their data. Our contributions in detail are:

• A design study on using consumer-grade VR technology for neuron tracing;

• A flexible and scalable backend framework that allows neuron tracing in datasets 

that are orders of magnitude larger than currently feasible with existing 

approaches; and

• A comparison of the reconstruction accuracy and speed of our tool compared to 

the industry standard.

2 Background and Related Work

To provide context for the task of neuron tracing, we first discuss recent work in neuron 

tracing and the current state of the art in the connectomics tracing workflow. We then 

discuss related work in immersive environments and direct 3D interaction.

2.1 Neuron Tracing

Automated methods for neuron reconstruction continue to improve; however, neuroscientists 

often find the results of these algorithms unsatisfactory [26]. Thus, tracing neurons remains 

primarily a manual task. Meijering [31] noted that data quality was the primary reason these 

algorithms fail in practice, as the current state-of-the-art methods provide error-free results 

only in highly optimal conditions. For a full review and comparison of recent methods, we 

refer readers to a recent paper by Acciai et al. [4].

Tools such as Vaa3D [36] and NeuroLucida 360 [30] provide methods for semi-automatic 

reconstruction, in which the user guides the system along a neuron and the system extracts 

the 3D structure. The Virtual Finger [37], available in Vaa3D, casts rays into the volume to 

determine the potentially selected objects, e.g., neural structures, as the user draws a line 

with the mouse. To create a 3D curve from the line, the method searches locally in the data 

to connect the selected objects, resolving cases in which a ray intersects multiple features. 

The Virtual Finger is inherently view and visibility dependent and may require moving the 

viewpoint to make the desired selection or correct errors.

NeuroLucida 360 combines manual neuron tracing with automatic algorithms to provide 

semi-automatic extraction. The user places seed points for the algorithm by clicking or 

dragging along the neuron, and thereby guides the algorithm in selecting which data to 
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process. This guided extraction improves the speed at which neuron morphology can be 

traced, but sections with many labeled neuronal processes still need to be manually resolved 

or corrected. Similar to Virtual Finger, this method is also viewpoint and visibility 

dependent. These methods work well in many cases; however, as the data size increases, the 

amount of time spent on the challenging subset of cases grows correspondingly.

Independent of VR, volume rendering systems have been employed for visualization, 

segmentation, stitching, and tracing of neural microscopy data. Jeong et al. [21] combine 

segmentation and stitching analysis with an out-of-core GPU volume renderer for large 

datasets. This system was further improved by Beyer et al. [7] to handle larger and more 

diverse microscopy data. Wan et al. [44] address the problem of classification of multi-

channel microscopy data in volume rendering.

2.2 Neuron Tracing Workflow

A typical neuron imaging and tracing workflow proceeds as follows. First, neurons and their 

processes are labeled using neuroanatomical tracing methods. Modern approaches to 

labeling neurons in large brains involve the use of viral vectors carrying the genes for 

fluorescent proteins [27]. These vectors are injected into the brain to induce expression of 

these genes within neurons, labeling them at high resolution. Current approaches in 

connectomics then render the brain optically transparent using clearing techniques such as 

CLARITY [11], PACT [46], or SWITCH [32]. Imaging labeled neurons through brain 

tissue, either in brain slices or through whole brains or blocks, produces multiple stacks of 

images ranging in size from gigabytes to terabytes. Finally, neurons are traced on these 2D 

image stacks to extract the desired neuronal structures. Depending on the analysis being 

performed, these structures can be used in simulations or overlaid onto functional maps of 

the brain, in order to understand the connectivity between brain regions or cells within these 

regions.

Due to noise in the data, the neuron reconstruction process is often entirely manual. In many 

instances, several trained undergraduate students are responsible for the bulk of the tracing 

work. Tracing is done on a desktop computer using NeuroLucida [29]. When working on 

image stacks using this software, the user scrolls through the stack and clicks to mark points 

along the neuron or to create branches. However, some branches change depth rapidly, cross 

in complex ways, or have gaps due to imperfections in the labeling or imaging process, 

making the structure difficult to resolve.

2.3 Immersive Environments

Virtual reality environments such as CAVEs [12] are effective for enhancing visualization 

tasks related to understanding 3D data. Prabhat et al. [38] performed a comparative study on 

confocal microscopy data exploration in desktop, fishtank VR, and CAVE VR environments. 

They evaluated tasks focused on navigation and observation, e.g., locating and counting 

features or describing some structure. Users tended to perform better on these tasks in the 

CAVE environment. Laha et al. [24,25] examined how VR system fidelity affects the 

performance of common visualization tasks by varying field of view, head tracking, and 

stereo. The tasks studied were similar to those studied by Prabhat et al. [38] involving search 
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and examination. They found that more immersive VR environments improved users’ 

understanding of complex structures in volumes [25] and isosurfaces [24].

The original CAVE used a three-button tracked wand device to manipulate objects [12]. 

CAVE2 [14] employs a similar wand controller, using a modified PS3 Move controller. 

CAVE2 also supports a prototype-tracked sphere controller, the CAVESphere, for moving 

and interacting with the data, along with a tablet controller showing a webview. Although 

the CAVE is able to provide high-quality VR, it is a large and expensive system, both to 

purchase and to maintain, making its incorporation into the routine workflow of scientists in 

small laboratories unlikely. Direct 3D interaction with the data can also be challenging in a 

CAVE, since users’ hands block the display as they work, occluding their selection. 

Although well-suited for virtual tours of complex datasets with application-centric software 

(see, for example, [39]), using CAVEs for day-to-day tasks involving frequent manipulation 

of data would be costly and challenging.

Due to the difficulty of providing input feedback when working with free-form 3D 

controllers, many studies have evaluated the use of haptics to provide better feedback to the 

user. Ikits and Brederson designed the Visual Haptic Workbench [20], which combines a 

stereo display table with a probe arm. The arm is used to interact with the data and provide 

haptic feedback. For example, when tracing a streamline, the probe will be constrained to 

follow it. Palmerius et al. [33] described a system of primitives for computing haptics on 

volumetric data, e.g., for directional or vibration feedback, which can provide a greater sense 

of touching structures in the environment.

3 Design Process

Independent of the current effort, we developed a technology probe (Section 3.1) with the 

goal of investigating consumer-grade VR technology for scientific visualization. One of the 

datasets we used during testing was a large microscopy scan acquired in the laboratory of 

one of the authors (A.A.), which we down-sampled to fit on the GPU. Positive feedback 

from an incidental demonstration of this probe prompted us to explore the use of this 

technology for neuron tracing. Subsequently, we designed our tool in close collaboration 

with expert neuroanatomists in an open-ended, iterative process, influenced by the nine-

stage framework of Sedlmair et al. [42]. Through several iterations, we distilled the 

fundamental user requirements and added the necessary features to arrive at the tool 

discussed in Sections 4 and 5.

3.1 Technology Probe

The initial application was designed to explore the potential of using VR systems for generic 

scientific visualization tasks, and supported volume rendering, isosurfaces, and particle 

rendering (Fig. 2a). A user sits or stands at a desk and is able to move his or her head to look 

at the volume, or translate and rotate it using a gamepad. An initial demonstration of this 

system with microscope scans of labeled neurons encouraged us to further pursue this as a 

neuron tracing tool. In particular, the neuroscientists on our team noted that, compared to 

standard 2D interfaces, the VR system allowed better perception of the spatial relations 

between neurons, one of the key challenges in neuron tracing. However, in our initial 
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investigation, the ability to interact with the data was limited by the restriction of the Oculus 

DK2 head-mounted display (HMD) [2] and the use of a gamepad as the input device. The 

Oculus DK2 can track small head movements while the user is facing a webcam style 

tracker, but does not support walking around a room. Although the gamepad can be 

configured as a 6 DOF controller, it is not tracked and thus cannot be used to reach out and 

“touch” the data directly.

The desire for direct 3D manipulation led us to pursue a different interaction paradigm. To 

this end, we moved to the HTC Vive platform [3], which supports room-scale VR and 

includes tracked, wand-style controllers. The room-scale tracking allows users to walk 

around, as well as into the data, and interact with it naturally using their hands. Tilt Brush 

[17], which uses the same wands to paint in 3D, inspired the first prototype of our tool, 

which extended the painting metaphor to neuron tracing.

3.2 The Prototype

We designed the first prototype dedicated to neuron tracing to evaluate what different types 

of interactions would be useful, and explore how they could be mapped to the HTC Vive’s 

control scheme. Based on the available space and hardware setup, we created a medium-

sized tracked area, about 2.5m × 2m, and placed the data in a 1.53m box in the center of the 

room at about 1m above the ground. The prototype used both wands, one to interact with the 

data and the other to navigate the space. Using the first wand, the user could hold a button 

and draw a line coming from the tip of a tetrahedron shown in the middle of the wand’s loop 

(Fig. 2b). As only a subregion of the data could be rendered at a sufficient frame rate for VR 

(see Section 4.2), we rendered a 2563 subregion of the volume – the focus region – in the 

1.53m box. The second wand could then be used to grab and move the data within this 

region. To orient users within the dataset, we displayed a minimap of the dataset bounds and 

the focus region location within it. One notable observation was that given the opportunity to 

pan, users often preferred to drag neurons closer as opposed to walking toward them.

As our target users are not familiar with transfer function design, even in a desktop setting, 

we chose a preset for the datasets, allowing us to focus on just the task of tracing. Selecting 

from chosen presets has been found effective in medical visualization and museum 

installations [47], where users are also unfamiliar with designing transfer functions. 

Moreover, designing an effective interface for specifying transfer functions in VR is an open 

and challenging problem.

To evaluate the initial design of the tracing interaction, we asked expert neuroanatomists to 

trace neurons in some datasets acquired in A.A.’s laboratory. After a short introduction to 

the control scheme (about 10 minutes), they were free to use the tool as desired. These users 

noted that the painting metaphor was intuitive. Compared to existing 2D tools, they found 

the prototype easier to use for exploring the data, allowing them to better resolve complex 

crossings and spatial relations of neurons in the data.

The prototype, despite being limited to line drawing and simple exploration, provided an 

initial validation of both the navigation and interaction design. To extend this prototype to a 

minimally viable tool, we added additional features that are typically used by 
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neuroanatomists in the neuron reconstruction and analysis process in NeuroLucida. For 

example, color is used to distinguish axons and dendrites, and glyphs to mark areas of 

interest. NeuroLucida also allows for undoing operations and editing previous traces, which 

permits review and correction of previously traced neurons. Therefore, we extended our 

initial prototype by improving the tree drawing system and rendering quality, and added 

support for undoing and editing, placing markers, selecting line colors, and streaming large 

volumes from disk. Furthermore, we continued to expand the interaction paradigm by 

integrating haptic feedback. These improvements are incorporated into the current tool we 

describe in the following section.

4 Virtual Reality Tracing Tool

The design of the final tool focuses on two key aspects: the process of tracing and navigating 

(Section 4.1), and meeting the VR rendering performance requirements to provide a high-

quality experience and prevent motion sickness (Section 4.2). To analyze how scientists use 

our system and allow for its use as a training device, we also provide a recording and 

playback system (Section 4.3) that tracks the user’s actions rather than a video stream. 

Finally, our tool must fit into a larger data processing pipeline, which starts at the acquisition 

of volume data from a microscope and ends with the simulation and analysis of the 

reconstructions in the context of other brain maps. To fit well into the pipeline, our tool 

loads the IDX [34] volume format used by our collaborators. Once the neurons of interest 

have been reconstructed, the data is exported in a standard XML format used by 

NeuroLucida. Furthermore, previously traced neurons in this format can be opened in our 

tool, allowing for inspection and editing of earlier work.

4.1 Tracing and Navigation

Tracing neurons and navigating the data are the key tasks when reconstructing neurons. Both 

interactions require the 3D motion to be intuitive, and therefore we map these interactions to 

the motion of each wand. One is used for tracing and the other for navigation (Fig. 3). 

Tracing and navigation actions are initiated by holding the trigger button on the 

corresponding wand. In the VR environment, the tracing wand is displayed with an 

icosphere at the top, indicating from where the line will be drawn, similar to a paint brush 

(Fig. 3a). The navigation wand is rendered to match the wand’s physical model (Fig. 3b).

A neuron forms a tree that consists of a starting point, branch points, and termination points. 

Traces created by the user are stored in a graph structure that we update with the user’s edits 

and additions. To trace a neuron (Fig. 4), the user presses and holds the trigger button on the 

tracing wand, placing a starting point. The user then holds the trigger as he or she follows 

the neuron through the data, drawing a line from the brush. Releasing the trigger ends the 

line and creates the termination point. The user is then free to continue the line from the 

termination point, or trace branches as needed.

Tracing the branches of a neuron correctly is critical to properly recover its connections and 

structure. Moreover, this task is performed often, and therefore it must be easy to do. To 

create a branch, the user can start a new line along the current tracing and follow the neuron 

branch out (Fig. 5a), or start a new line on the neuron branch and reconnect to the parent tree 
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(Fig. 5b). To call attention to the reconnection, we highlight the selected node and send a 

small vibration to the wand to give a “click” feeling of selecting it. When connecting back to 

a line, the candidate node that would be created when the trigger is released is displayed as a 

small cube to indicate where the branching point will be placed (Fig. 5b). The visual and 

physical feedback provides a clear signal to the user that the connection has been selected as 

desired.

During the tracing process, mistakes may be made that need to be corrected. For example, 

the user may have an incorrect initial understanding of a complex crossing, the user’s hand 

could slip, or the system could drop a frame or momentarily lose tracking due to occlusion. 

Depending on the type of mistake, the user may make an immediate correction or revisit the 

error later. To correct mistakes, the tool provides two methods of undoing and editing: a 

quick fine-grained undo operation and the ability to remove entire lines and nodes at any 

time.

To immediately correct mistakes, the user can undo lines in the reverse order in which they 

were created by pressing the trackpad (Fig. 3). This undo is useful for quickly repainting 

segments where the user is not satisfied with how well the trace follows the neuron. The 

scope of the undo operation is controlled by placing undo breakpoints along the line every 

40 voxels, with each undo operation reverting to a previous breakpoint. Furthermore, any 

part of the line can be repainted by drawing a new line over the problematic section and 

reconnecting it after the section. The new line forms a loop in the trace, and the old section 

will be removed to reduce the graph to a tree. Since a neuron is physically a tree, any loop 

represents an invalid structure and can be assumed to be an edit.

Scientists may notice errors when revisiting a previously traced section. The undo and line 

redrawing operations may not be applicable in such instances. Instead, the user can delete 

specific lines or nodes with the tracing wand. Editing operations are initiated by selecting a 

line or node with the wand, noted by highlighting the feature and a “click” vibration, and 

pressing the undo button. The user can then reconnect the disconnected trees as desired. For 

example, in Fig. 5a the selected line (left) or the highlighted node and attached edge (right) 

could be deleted by pressing undo.

Navigation around the dataset is accomplished by walking or by translating the volume. 

Within the focus region, the user is able to walk around the space to navigate. To explore 

data outside the focus region or pull the regions closer, a panning action is mapped to the 

navigation wand. By holding the trigger button and moving the wand, the user grabs the 

focus region and translates it through the volume. Via this interaction, arbitrary-sized 

volumes can be explored in our system. Furthermore, as volume sizes are often larger than 

available GPU memory, the data is paged on and off as the user pans, described in detail in 

the following section. To help the user track the location of the focus region relative to the 

dataset and previously traced neurons, we display a minimap in the corner (Fig. 1). When 

navigating large datasets, the minimap is useful to keep the user oriented as he or she pans 

through the space. Traced neurons are also displayed in the minimap to help the user track 

their progress through the dataset.
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4.2 Rendering

The HTC Vive uses a display panel with a resolution of 2160 × 1200, providing 1080 × 1200 

pixels per eye at a 90Hz refresh rate. Furthermore, due to lens distortion, it is recommended 

to supersample the image, effectively doubling the number of rendered pixels. Additionally, 

the VR environment imposes stringent lower bounds on the acceptable frame rate to avoid 

motion sickness. The combination of high-resolution and frame-rate requirements presents a 

significant challenge compared to traditional desktop visualization, where low frame rates 

and intermittent pauses for computations or data loading are more tolerable. To meet these 

requirements, we take cues from best practices for VR game development [43]. In order to 

communicate with the HTC Vive HMD, we use the OpenVR SDK, which provides methods 

for sending images to the eyes and tracking the head and wand positions.

At 90 FPS we have a tight budget of about 11ms to render each frame, from which 1ms is 

potentially consumed by the operating system. Furthermore, as GPUs are pipelined 

architectures, submitted work is not executed immediately, but enqueued into a command 

buffer. To account for this, Vlachos [43] recommends submitting draw calls ≈ 2ms before 

VSync. Submitting early allows the GPU to start rendering immediately after presenting the 

previous frame, increasing utilization.

Streamlining rendering performance requires pushing all non-rendering or non-critical work 

onto background threads and strictly budgeting work on the render thread. A single frame is 

divided as shown in Fig. 6. First, we wait until ≈ 2ms before VSync by calling 

WaitGetPoses from the OpenVR SDK (left side of CPU in Fig. 6), which obtains the most 

recent head position. After returning from this function, we submit all rendering work to the 

GPU. Opaque geometry, e.g., the wands and tracings, is rendered first (1ms). Next, the 

volume is rendered with raymarching to display a volumetric or implicit isosurface 

representation (4ms). After submitting the rendering work, we start the asynchronous 

volume data upload based upon the user’s focus region, and once the rendering finishes, we 

copy it into the sparse texture (2ms). This time budget leaves a buffer of 3ms to prevent 

unpredictable interferences that could cause dropped frames. Nevertheless, sometimes a 

system event or an expensive draw call can consume this buffer, causing a frame to be 

skipped. When this occurs, the OpenVR SDK will automatically render at half frame rate, 

45 FPS, while reprojecting the last frame using the latest head tracking information to 

display at 90 FPS, until the frame rate improves. Unfortunately, the reprojection cannot 

account for the wands’ motion, as the image transform is based only on the head motion. 

When the system is reprojecting, the wands appear to stutter, making the interaction feel 

sluggish.

4.2.1 Data Streaming—Typical microscopy volumes exceed the VRAM of current GPUs 

(4–24GB) and in most cases the RAM of typical workstations (64–128GB); datasets can 

range from hundreds of gigabytes to terabytes. Exploring such datasets inherently requires a 

data streaming solution. Moreover, as only 2ms is budgeted for data streaming on the render 

thread, we must amortize the work of updating the volume data over multiple frames, and 

perform as much work as possible asynchronously. We use a two-level caching system: the 

first level loads and caches pages from disk into RAM, and the second level takes these 
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pages and uploads them to the GPU. The caching system lets the tool keep the current focus 

region and a small neighborhood resident on the GPU, while a substantial history is cached 

in RAM. The cache drastically reduces disk access frequency and latency to display pages as 

users navigate.

The first-level cache takes page requests and immediately returns a future [6], which can be 

used to retrieve the page data. In case the page is not available in the cache, a worker thread 

will be responsible for loading the data from disk while the requester can asynchronously 

check for completion and retrieve the page. The second-level cache pushes page queries to a 

set of worker threads, which request the page from the first-level cache and copy the data 

into persistently mapped pixel buffer objects (PBOs). By uploading via persistently mapped 

PBOs, we take advantage of asynchronous data transfers via the GPU’s copy engines, 

thereby overlapping rendering work with data transfers.

We store the volume data on the GPU in a sparse 3D texture, a form of virtual memory 

where individual pages can be committed or decommitted. This texture allows for 

transparent handling of volume data larger than VRAM. The rendering work for a frame 

takes long enough for the asynchronous data upload to complete, after which the page is 

copied into a newly committed page in the sparse 3D texture (commit and copy, streaming 

segments of Fig. 6). The system uploads only a limited number of pages per frame to stay 

within its time budget and decommits pages no longer needed.

To minimize visible popping of pages into view, we load a box slightly larger than the focus 

region and prioritize pages closer to the user’s view. To avoid overwhelming the paging 

system by requesting many unneeded pages, e.g., in the case of quickly panning through the 

space, for each frame we enqueue only the four highest priority pages that are not already 

being uploaded. Additionally, if a page is no longer needed by the time the PBO is filled, we 

do not commit the page or copy it to the texture, as it would be immediately decommitted. 

We find this scheme of limiting the enqueueing rate simpler compared to updating priorities 

for already scheduled pages in a non-blocking thread-safe manner.

4.2.2 Volume Rendering—We use a GPU volume renderer written in GLSL [18]. 

Although the volume data is stored in a sparse 3D texture, this texture type requires no 

additional consideration in the GLSL code. Sampling missing pages is defined to return 0. In 

the raymarching step, we use the depth buffer produced by rendering the opaque geometry to 

terminate rays early in order to correctly composite with the geometry, wands, and tracings.

In a VR application, it is common to step inside the dataset. When walking through the 

volume we observed it appeared to vibrate, or the isosurface to move subtly. As the camera 

moves through the volume, the voxels sampled by rays leaving the eye will be offset 

differently in the data, causing them to sample slightly different locations. This artifact can 

be mitigated by increasing the sampling rate, but this is prohibitively expensive for VR. At 

its core, the issue is similar to ensuring correct ray sampling across subvolumes in 

distributed volume rendering [28]. To ensure consistent sampling of the data when inside the 

volume, we begin sampling at the sample point nearest to the clipping plane, based on 
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starting the ray from its entry point into the volume bounds. This approach corrects only for 

translation, but we found it sufficient in practice.

Even when using gradient shading, depth perception can be challenging in volume 

rendering, particularly when using transparent transfer functions and subtle lighting cues. 

This lack of depth cues can make it difficult to tell the exact position of the wands when 

placed inside neuronal structures, due to the faint occlusion effect provided by the volume. 

In fact, we had one user report experiencing eye strain while viewing the volume 

representation, potentially due to the limited depth cues. More advanced rendering 

techniques such as shadows or global illumination [22] can improve depth perception, and 

potentially user performance, but come at significant frame-rate or memory cost, making 

them challenging to apply in a VR setting. To maintain a sufficient frame rate for VR, the 

volume rendering quality in our tool is relatively simple, providing just gradient shading.

To enhance depth cues, we added the ability to switch to an implicit isosurface mode, with 

Phong shading and ambient occlusion [19]. In this mode, the user can scroll on either of the 

two wands’ trackpads to change the isovalue, which is necessary to resolve crossings or 

neurons with low intensity values. The front faces of the isosurface are rendered to be semi-

transparent, allowing the user to see when the brush and traces are placed well inside the 

neuron. The back faces, however, are rendered to be fully opaque, as it is difficult to perceive 

depth relations when they are semi-transparent. When dealing with noisy data such as 

microscopy images, isosurfaces are often not ideal, as the noise manifests as small objects in 

the volume. Especially in a VR environment, these objects result in distracting aliasing 

artifacts. To counter this effect, we de-noise the data by filtering out objects less than 11 

voxels in size before uploading the page to the GPU by finding small connected 

components.

The performance of volume raycasting is directly tied to the number of rays rendered, i.e., 

the number of shaded pixels. The rendering resolution recommended by the HMD is very 

high; fortunately, this resolution is needed only at the center of each eye. In the periphery, 

due to lens distortion and the properties of the human vision system, it is possible to render 

at much lower resolutions (e.g., using the NV clip space w scaling extension) with 

little to no perceived difference.

4.3 Recording and Replaying

Evaluation and iteration of any tool requires understanding how it is used. Moreover, a 

recording of an expert’s session can serve as training material for novices. In desktop 

applications, user sessions can be recorded using screen recording software. However, in VR 

recording the “screen” restricts the playback to a single viewpoint, potentially removing 

relevant context in the space. For example, a mistake made when tracing may depend on the 

user’s viewpoint, but to properly observe the situation, it must be possible to watch the 

user’s session from a viewpoint different from the recorded one. Even more concerning is 

that viewing the recording in VR typically induces nausea due to the mismatch in the 

recorded head motion and the viewer’s head motion. To this end, we have developed a 

recording and playback system for tracking user sessions that is based on the actions 

performed by the users, instead of video recording.
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Such action-based recording can be performed at multiple levels. The low-level wand and 

HMD state and poses could be saved each frame, the tracing could be played back by 

stepping through snapshots, or the user’s logical operations (e.g., tracing, toggled isosurface, 

or panning) could be saved. The last option provides the most flexibility for both playback 

and later analysis. This option also supports playback of the recording on different VR 

systems or later iterations of the tool with different control schemes, without needing to re-

map low-level button presses or HMD information. Moreover, session analysis is easier with 

such a representation, as queries can be made at a higher level, e.g., “how far does the user 

trace in a single motion?” or “how long did they use each rendering mode?”.

Replaying a saved session recreates the entire tracing by moving the wands and HMD as 

they were during the session. By viewing the hand and head motions during the replay, we 

can observe differences in how users work. During this time, the user viewing the replay can 

walk around the space independently. To better demonstrate the replay capability and the 

tool itself, we include a video taken while replaying an expert’s session in the supplementary 

material.

5 Evaluation

To evaluate our design choices and compare our tool to the state of the art, we conducted a 

pilot study with neuroanatomists who are familiar with neuron tracing and the existing 

software (NeuroLucida). Specifically, we present two case studies with seven users tracing 

neurons in two different datasets. In practice, the two primary metrics of concern are 

accuracy and speed. In terms of accuracy, the goal is to determine the connectivity of 

neurons as well as possible, including geometric location and tree topology. Misinterpreting 

a crossing as a branch point or missing branches entirely will cause substantial errors in the 

subsequent analysis. Nevertheless, as usual in expert-driven systems, the final result is 

subjective, and experts sometimes disagree on specific choices. Furthermore, some mistakes 

are more critical than others. Slightly elongating a trace by crossing a small gap may be 

acceptable, but erroneously attaching a branching structure is not. In terms of speed, the 

field of connectomics is moving to acquisition of ever increasing amounts of data; therefore, 

the time necessary to trace neurons is of significant concern.

DIADEM Scores—In order to automatically compare traces, we used the DIADEM 

scoring method [15], which takes into account both the length and the connectivity of a 

trace. The computed score correlates well with expert judgment, and informal comparisons 

suggest it is a reasonable proxy for accuracy. The score measures the similarity between 

traces with values ranging from 0 (dissimilar) to 1 (identical). For example, missing a small 

branch in a large tree (Fig. 7b) has a smaller impact on the score than missing a large subtree 

(Fig. 7c).

Case Studies—The first dataset consists of six aligned subvolumes containing 34 mostly 

planar axons, each with a reference tracing (Section 5.1). The second dataset is a single large 

volume containing several noisy cell bodies (Section 5.2). In both cases, we provided a 

predetermined set of points from which users start tracing a neuron in each tool. To avoid 

bias, we split all starting points into sets traced on alternate days in different tools, such that 
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no set was traced on consecutive days. In most cases, there were multiple days between 

sessions, due to users’ work schedules. For the first case study, we report scores with respect 

to the reference traces, whereas for the second case study, we compute scores by comparison 

with traces performed by domain experts. We also collected qualitative feedback from the 

users during the sessions, and had each participant complete a questionnaire at the end of 

every tracing session.

We report results for seven users, including two senior neuroanatomists (users 4 and 6), two 

expert undergraduate students with 2–3 years of experience reconstructing neurons with 

NeuroLucida in A.A.’s laboratory (users 5 and 7), and three undergraduate students with no 

background in neuroanatomy (users 1–3). In a typical lab, the bulk of tracing work is 

performed by trained undergraduates (e.g., users 5 and 7), who start with little background 

(e.g., users 1–3) and are trained by senior members of the lab (e.g., users 4 and 6). By 

evaluating with a cross-section of the experience levels found in a typical lab, we can 

determine how well our tool fits into existing workflows. Specifically, the tool must be 

usable by senior members and expert students for tracing, and be easy to learn for new hires 

such as users 1–3. Based on the range of experience with tracing in NeuroLucida, we binned 

the users into two groups, an experts group, consisting of the neuroanatomists and the expert 

undergraduates, and a novices group, with the three inexperienced undergraduates. During 

our evaluation, the VR tool ran on a workstation with a dual socket Intel Xeon E5-2680 

CPU, 64 GB RAM, an NVIDIA GTX 1080 GPU, and an SSD.

5.1 Planar Axons Reference Dataset

Although all tracings can contain some subjectivity, it is important to establish a baseline of 

performance with respect to a given reference. Here we use the Neocortical Layer 1 Axons 
dataset [1] from the DIADEM challenge [15] and the corresponding reference traces. The 

dataset consists of six volumes of neurons in a mouse brain that can be stitched to form a 

1464 × 1033 × 76 volume with the provided alignment information. The resolution of the 

data is ≈ 0.08μm/pixel in X and Y and 1μm/pixel along Z.

The dataset includes 34 reference tracings, of which we used the first two for training and 

the rest for evaluation. For each neuron, users started from the first point of the reference 

tracing and traced the corresponding neuron to its perceived termination points. Once all 

sessions had been completed, we compared the results from each tool with the provided 

reference tracings. In general, our experts rated the reference tracings as acceptable 

reconstructions, with the exception of a few neurons where branchings were judged to be 

crossings, or a crossed gap was considered too wide. Table 1 shows, for each user, the mean 

score, reconstruction time, and speed-up across all 32 evalution traces. Speed-up is defined 

as the average time per tracing in NeuroLucida divided by the average time per tracing in 

VR.

When comparing the scores for traces done by the experts in NeuroLucida vs. those done in 

VR (Fig. 8), we found that in most cases the traces performed were acceptably equivalent in 

both tools (dark blue bar, Fig. 8), with some neurons traced better in each tool (green and 

light blue bars, Fig. 8). Overall, there was no statistically significant difference between the 

scores achieved in VR vs. NeuroLucida (Mann-Whitney U = 6426.5, n1 = 122, n2 = 120, p = 
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0.097). The distributions of scores for experts (Fig. 9) indicate that experts can achieve 

similar, and sometimes better, tracing quality in our VR tool when compared to their current 

workflow. In cases where experts produced equivalent quality traces in both tools, we find a 

statistically significant speed-up, with experts being on average 1.7× faster tracing in VR 

(Mann-Whitney U = 1004.5, n1 = 54, n2 = 54, p = 0.005). Moreover, expert users were 

similarly consistent in VR and NeuroLucida, as indicated by the mean of standard deviations 

on each trace, 0.23 and 0.24, respectively.

In fewer cases (37%, green bars in Fig. 8), the experts performed better in NeuroLucida than 

in VR, beyond the acceptable error bounds. When investigating these cases, we found that 

they involved the same neuron for all experts, with each expert making the same mistake. 

One such neuron is the eighth neuron from the dataset, where a stitching issue was 

misinterpreted as two neurons passing each other in VR (Fig. 11). The VR tool performed 

better in other cases (19%, light blue bars Fig. 8) where neurons traveled along the Z axis 

down through image slices, as this is much harder to follow in NeuroLucida, requiring 

scrolling through the image stack (Figs. 12 and 13).

Novice users performed similarly, with 72% of their traces falling within acceptable error or 

being better than those performed in NeuroLucida (Fig. 10). On average, novices were 2.1× 

faster in VR on traces where they achieved similar scores in VR and NeuroLucida. We do 

not report more significant results for novices due to the limited data collected. We discarded 

user 1’s results from the summary statistics entirely, as the user made a mistake in the 

NeuroLucida sessions and miscalibrated the Z level of the traces.

5.2 Cell Bodies Dataset

To compare usability on a dataset with neuronal structures of interest, we also evaluated our 

experts’ performance on a dataset acquired in A.A.’s laboratory. The dataset, shown in Fig. 

1, consists of neurons in the visual cortex of a marmoset monkey labeled with green 

fluorescent protein, and was acquired in 2012 using a 2-photon microscope. The volume is 

1024 × 1024 × 314 with a resolution of 0.331μm/pixel in X and Y and 1.5μm/pixel in Z. The 

neuronal structures in this dataset branch significantly more often than those in the dataset 

described in Section 5.1. Moreover, this dataset has a higher level of noise and frequency of 

ambiguous cases, and is therefore more challenging to trace. In this evaluation, we were 

concerned with scaling in the sense of cognitive load of the user, not necessarily data size. 

We selected five starting points in the data, to be traced by the experts in VR. Furthermore, 

as there is no reference available, we measured performance by selecting user 6’s tracings as 

the reference (Table 2).

We compared the proportion of time spent on tracing or panning during each trace. Since 

this dataset is more complex, we were interested in whether users would use the tool 

differently with respect to the more planar dataset in Section 5.1. On average, users spent 

15% of their time tracing and 48% panning, which is only slightly different from the 21% 

and 58%, respectively, in the Neocortical Layer 1 Axons dataset. Users toggled between the 

volume and isosurface rendering modes more frequently in this dataset. Although this result 

is interesting, it requires further evaluation on multiple datasets and a more rigorous measure 

of data complexity to provide meaningful evaluation.
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We replayed several of user 6’s sessions and noted that he was changing viewpoints 

frequently to check potential branchings and obtain a better understanding of the data. Such 

frequent viewpoint manipulation in NeuroLucida requires moving back and forth through 

hundreds of images. Furthermore, during these sessions several experts remarked that they 

would prefer to trace this data in VR, as scrolling through image stacks in NeuroLucida 

becomes more difficult as the dataset thickness increases.

5.3 Discussion

Our design study consisted of open-ended feedback sessions with neuroanatomists and 

quality evaluation of the tracings produced by users of our VR system compared to state-of-

the-art desktop software, NeuroLucida. Additional feedback was collected during the 

evaluation through a survey filled out at the end of each tracing session, and by soliciting 

feedback with regard to the usability and comfort of each tool. This section describes our 

users’ qualitative responses to our system regarding neuron tracing, navigation, and 

rendering. Moreover, it discusses the overall strengths and limitations of our current tool.

Tracing—The experts reported that tracing neurons, creating branch points, and correcting 

mistakes were more intuitive in the VR tool than in NeuroLucida. The combination of 

tracing in free space with a single button press and the flexible graph editing system allowed 

users to focus on the data, instead of having to continuously flip back to a toolbar to mark 

branches and termination points, or frequently scroll through the image stack. We recorded 

similar responses in the survey, with users rating the VR tool easier to use for these tasks. 

However, experts expressed the need for fine manipulation of lines and nodes to edit 

previous tracings, without going through a delete and re-trace interaction. When analyzing 

user sessions, we found that users employed the quick undo command more often than 

explicitly deleting lines or nodes. We hypothesize that the delete and re-trace feature is less 

intuitive, or that it may be more applicable to post-trace editing sessions. Designing an 

intuitive system for editing previous tracings in VR poses an interesting challenge. 

Introducing additional button commands or menus could make the system non-intuitive, and 

manually switching between tracing and editing modes could break the “flow” of a user 

during the task.

When replaying the tracing sessions, we noticed that some errors in traces produced in VR 

were due to users forgetting to return to a branch point. In NeuroLucida, branches and 

termination points are explicitly marked; when a branch is ended at a termination point, the 

system scrolls the user back to the branch point to trace the rest of the branches. With our 

graph-based editing system, creating branches and termination points is implicit, and the 

user must remember to return to the branch point after completing the current branch. In the 

VR sessions, some users placed markers at complex crossings or branch points, as reminders 

to revisit the location later. Users also requested the ability to hide the dataset entirely, 

allowing them to observe the traced tree structure independently. Our prototype included the 

ability to hide the rendering by panning the focus region outside the volume and observing 

the tree from a distance, or viewing the minimap. However, providing an explicit option 

would be desirable in future iterations.
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Navigation—The users easily adapted to navigating by grabbing the focus region and 

moving it. During the tracing sessions, some users chose to sit, and the panning system 

allowed them to easily bring the data closer. One user commented that he felt as productive 

sitting as he did standing. The current version of our tool does not support rotating the 

volume, due to the inherent ability in VR to simply walk around the dataset instead. 

However, this feature would be useful when tracing while seated. Instead, when seated, users 

moved the volume behind them and spun the chair around to view the data from the opposite 

side. In one case, an expert did not perform this less intuitive action, and misinterpreted a 

crossing as a branch point. When asked to re-trace this neuron while standing, the expert 

correctly resolved the crossing by observing it from a different angle. We include a video of 

these two sessions in the supplementary material.

Users found the minimap to be somewhat useful, especially for displaying the tracings; 

however, users reported rarely looking at it during active tracing, as it is small and tucked 

away in a corner. Users did report finding it useful for navigating to the starting point and 

reviewing the trace. We suspect the minimap might be more useful for larger datasets, where 

orienting oneself becomes more challenging. Additionally, in some cases users 

misinterpreted a neuron as terminating, when it was in fact just at the focus region boundary. 

Based on this feedback, we now display the volume bounds in the world space to clearly 

convey the dataset bounds.

Rendering—Neuroanatomists are often not familiar with typical scientific visualization 

representations such as volume rendering and isosurfaces. For example, when viewing the 

volume representation, users often misinterpreted stitching artifacts between acquisitions 

(Fig. 11). After a second VR session, one of the experts mentioned preferring the volume 

representation after gaining more understanding of what is shown. In his first session, he 

primarily used isosurfaces, but found them to be potentially deceiving, as neurons may 

manifest at some isovalues but not at others, and can appear to change thickness as the 

isovalue is adjusted.

Users also raised concerns that the volume and isosurface representations could hide or filter 

out faint or fine-detail features in the data, such as spines or boutons (small important 

structures present on dendrites and axons, respectively). Expert users also suggested 

introducing the option of viewing the original microscope image slices within the volume 

data, in order to supplement the new representation with something more familiar to the 

neuroanatomist. It would also be valuable to add support for clipping planes to cull out noisy 

or dense regions of the data. During the evaluation sessions, we observed users employing 

the focus region bounds as a form of clipping plane, by panning the data in and out of view, 

indicating a need for this feature.

When reviewing traces in the reference datasets where users performed poorly in VR, we 

found that some of these cases involved crossing a gap in the data, where the labeling of the 

neuron was faint or incomplete. In NeuroLucida, users correctly perceived this gap as caused 

by non-uniformity in the signal. However, no scale bar was displayed in our VR tool, which 

could lead users to misinterpret the size of gaps or structures they are seeing in physical 

units.
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Novice users found the 3D representation helpful in understanding the 3D nature of the 

neuronal structures. One novice mentioned that after using the VR tool, she was better able 

to construct the 3D structure mentally when working on 2D image slices in NeuroLucida.

6 Future Work

The results of our evaluation are promising, but several additions to our tool could improve 

users’ performance. One useful modification would be to provide additional guidance during 

the tracing process, by highlighting potential errors and reminding users to return to branch 

points. For example, trifurcating branch points occur rarely in neurons and, if created by the 

user, could be automatically highlighted as potential errors. Unsupervised machine learning 

techniques, such as clustering, could be used to automatically compute the likelihood of 

sections of a trace by comparing cluster size, and utilize more complex features of the data.

Editing and reviewing traces could be improved by supporting moving nodes and lines. 

However, developing a natural interaction for editing in VR presents a challenge. As 

discussed in Section 5.3, adding more complex button combinations or system menus can 

increase the cognitive load for users and reduce productivity. It is also unclear how to best 

manipulate the graph. In NeuroLucida, one works on a coarse set of points with straight 

lines between them, but the VR tool provides smooth lines. To this end, a spline-based 

manipulation system could work well, but may be unintuitive for novices.

Supporting multiple users in the same virtual environment, either locally or over a network, 

would be useful for facilitating collaborative work and training sessions. For example, it was 

difficult for two users to discuss complex crossings or stitching issues, with one wearing the 

HMD and the other looking at a mirrored view on a desktop monitor. The separation of the 

users hampered discussions between the two, as the user viewing the desktop could not point 

to features viewed by the other in VR.

A combined rendering mode [23], potentially with shadows and ambient occlusion built in, 

could help users by presenting both modes simultaneously, along with stronger depth cues. 

Providing more familiar representations to the experts could also encourage neuroanatomists 

to adopt the tool, such as adding the option to view the original images of individual 

sections. However, in principle, a single well-interpretable rendering modality would be 

preferable to repeatedly bringing up 2D images.

Although our paging system can handle terabyte-sized data produced by high-resolution 

microscopes, the small, highly zoomed-in focus region hinders a global view of the data, 

thereby potentially hampering understanding of the data and productivity. Improving 

rendering performance would enable us to increase the resolution of the focus region, and 

adding a zoom option or coarse resolution view would allow users to obtain an overview of 

the data. Finally, the addition of semi-automated methods for extracting neuron structure 

would greatly accelerate reconstructions, especially in large datasets, by allowing users to 

quickly resolve easier cases. We are actively working on integrating a semi-automatic guided 

method, e.g., using Voxel Scooping [41] and Rayburst sampling [40], to extract neuronal 

structures and their radii.
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The small scope of our pilot study was appropriate due to the domain-specific nature of our 

system and the familiarity of our collaborators with the problem of manual neuron tracing. 

However, it would be useful to broaden our study and examine the impact of VR on other 

problems in neural imaging, such as multi-channel data [44] or data employing automatic or 

semi-automatic registration and segmentation techniques [21]. To this end, we have released 

our software open-source and are working to expand deployment to other labs.

7 Conclusion

We have presented a design study to develop a virtual reality tool for neuron tracing, 

conducted through a close collaboration between computer scientists and neuroscientists. 

We have established that the resulting tool is effective for neuron tracing. On average, users 

are as accurate and faster at neuron tracing using our VR tool as they are using the current 

industry standard tool, and can trace orders of magnitude larger datasets via the integrated 

paging system. Moreover, users find the VR tool easier to interact with, and less fatiguing. 

Although we did not rigorously explore this aspect, use of our tool does not require tiring 

actions such as standing or keeping one’s arms raised. In fact, users reported feeling equally 

productive while seated as when standing. Overall, recent consumer-grade VR systems like 

the HTC Vive are affordable and provide a sufficiently high-quality VR experience to be 

used as a standard tool in scientific data analysis and visualization. Although not all analysis 

tasks may be well suited to VR, those involving understanding complex 3D structures or 

interacting directly with 3D data, like neuron tracing, can be aided by VR-based tools.

The features we added to the tool proved useful to experts. For example, one such added 

feature, the replaying system, specifically aided users in joint discussions, as well as in 

identifying and understanding the causes of tracing mistakes. Through our evaluation and 

discussions with users, we have identified several potential improvements to the tool that 

could facilitate identification of common mistakes and aid in understanding of the data, as 

well as further reducing tracing time.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A screenshot of our VR neuron tracing tool using the isosurface rendering mode. The dark 

gray floor represents the extent of the tracked space. Users can orient themselves in the 

dataset via the minimap (right), which shows the world extent in blue, the current focus 

region in orange, and the previously traced neuronal structures. The focus region is 

displayed in the center of the space. The 3D interaction and visualization provides an 

intuitive environment for exploring the data and a natural interface for neuron tracing, 

resulting in faster, high-quality traces with less fatigue reported by users compared to 

existing 2D tools.
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Fig. 2. 
The technology probe and prototype were used to explore different interaction and rendering 

possibilities for scientific visualization and neuron tracing in VR.
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Fig. 3. 
The wand model shown in VR can be changed from the physical model. On the tracing 

wand (a), we removed the top loop seen in (b) to avoid occlusion while tracing. The button 

sticking out underneath (a) is the trigger, and the large circular button is the trackpad. The 

icosphere brush in (a) is colored to match the selected line color.
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Fig. 4. 
From left to right: the neuron tracing process begins by finding a neuron. A starting point is 

placed by moving the brush inside the neuron and pressing the trigger. While holding the 

trigger, the user follows the neuron with the brush, tracing it. To end the line, the trigger is 

released.
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Fig. 5. 
A branch can be created by placing the brush close to an existing line, where a candidate 

branch point will be shown (a), or an existing node, and tracing from it. The branch can also 

be started as a new line and re-connected to the parent tree (b), in which case the candidate 

branch point created by the connection is shown.
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Fig. 6. 
The anatomy of a single frame. WaitGetPoses blocks until ≈ 2ms before VSync and 

returns the latest head tracking data. This allows the renderer to start submitting work before 

VSync to fully utilize the GPU. We first submit draw calls for the geometry and volume, and 

then page in asynchronously uploaded volume data into the sparse texture.
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Fig. 7. 
Examples of different mistakes and their effect on the DIADEM score. Trees (b) and (c) are 

compared against the reference (a) with scores 0.875 and 0.5, respectively. The error in (c) 

misses a large subtree, impacting later analysis more significantly than that in (b).
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Fig. 8. 
Differences between scores of expert traces in VR vs. NeuroLucida. For each neuron traced, 

we compute the difference in score achieved compared to the reference between the two 

tools. We find that overall experts performed within the acceptable error range (±0.1, dark 

blue) and sometimes better in VR (light blue) when compared to their work in NeuroLucida.
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Fig. 9. 
Distribution of scores (higher is better) for experts. In (a) median score: 0.7, mean score: 

0.57 ± 0.38. In (b) median score: 0.6, mean score 0.49 ± 0.39. A score of ≥ 0.8 is a tracing 

acceptably similar to the reference.
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Fig. 10. 
Distribution of scores (higher is better) for novices, excluding user 1. In (a) median score: 

0.5, mean score: 0.42 ±0.37. In (b) median score: 0.49, mean score 0.5 ± 0.37. A score of ≥ 

0.8 is a tracing acceptably similar to the reference.
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Fig. 11. 
A stitching issue clearly visible in NeuroLucida (a–b), but difficult to perceive with volume 

rendering or isosurfacing (c). What appears as two neurons (c) is in fact a single neuron, 

slightly misaligned due to stitching issues at the border of two acquisitions. When scrolling 

through the image slices in NeuroLucida, the stitching issue can be seen by flipping between 

the slices (a–b) and those above and below. In NeuroLucida, all experts traced the neuron 

correctly, whereas in VR only one expert traced it correctly. We note that this issue is not 

specific to VR, but to the volume visualization method chosen.
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Fig. 12. 
A neuron branching along the Z plane is not visible on the image plane used to trace the 

main structure (left). The branch can be seen only after scrolling down the stack (right). 

Only two experts traced this branch correctly in NeuroLucida, but in VR all users traced it 

correctly.
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Fig. 13. 
From left to right: a neuron travels vertically through consecutive slices, appearing as a dot 

(middle) in these images. In NeuroLucida, only two experts traced this correctly, but in VR 

all users except one expert traced it correctly.
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Table 2

Average scores (with standard deviation) and times for traces on the Cell Bodies dataset. User 6 is used as the 

reference.

User VR Score Time (s)

1 0.54 ± 0.23 537

2 0.58 ± 0.17 252

3 0.70 ± 0.23 207

5 0.66 ± 0.19 360

6 – 469

7 0.59 ± 0.34 542
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