
Noname manuscript No.
(will be inserted by the editor)

Learning Decentralized Swarms Using
Rotation Equivariant Graph Neural Networks

Taos Transue · Bao Wang

Received: date / Accepted: date

Abstract The orchestration of agents to optimize a collective objective with-
out centralized control is challenging yet crucial for applications such as con-
trolling autonomous fleets, and surveillance and reconnaissance using sensor
networks. Decentralized controller design has been inspired by self-organization
found in nature, with a prominent source of inspiration being flocking; however,
decentralized controllers struggle to maintain flock cohesion. The graph neural
network (GNN) architecture has emerged as an indispensable machine learning
tool for developing decentralized controllers capable of maintaining flock cohe-
sion, but they fail to exploit the symmetries present in flocking dynamics, hin-
dering their generalizability. We enforce rotation equivariance and translation
invariance symmetries in decentralized flocking GNN controllers and achieve
comparable flocking control with 70% less training data and 75% fewer train-
able weights than existing GNN controllers without these symmetries enforced.
We also show that our symmetry-aware controller generalizes better than ex-
isting GNN controllers. Code and animations are available at github.com/

Utah-Math-Data-Science/Equivariant-Decentralized-Controllers.

Keywords machine learning · graph neural networks · flocking · equivariance ·
computational learning theory

Mathematics Subject Classification (2020) MSC 68T05 · MSC 68Q32 ·
MSC 68T42

Taos Transue · Bao Wang
Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, Utah
84112, USA.

Bao Wang
Scientific Computing and Imaging Institute, University of Utah, 72 S Central Campus Drive,
Salt Lake City, Utah 84112, USA.
Corresponding author E-mail: taos.j.transue@gmail.com
E-mail: wangbaonj@gmail.com

ar
X

iv
:2

50
2.

17
61

2v
2

 [
cs

.R
O

]
 2

6
Fe

b
20

25

github.com/Utah-Math-Data-Science/Equivariant-Decentralized-Controllers
github.com/Utah-Math-Data-Science/Equivariant-Decentralized-Controllers

2 Taos Transue, Bao Wang

1 Introduction

Orchestrating a system of agents to optimize a collective objective is crucial
in autonomous vehicle control [28], surveillance and reconnaissance with sen-
sor networks [1], and beyond [17]. Designing controllers for these systems is
often inspired by self-organization in nature. A prominent source of inspira-
tion is flocking: myxobacteria travel in clusters to increase the concentration
of an enzyme they use to stun their prey, making predation more effective
for each individual [5]; pelicans follow a leader pelican in a vee formation,
taking advantage of special aerodynamics to reduce the energy expenditure of
flight [40]; and schools of fish coordinate their movement in several formations,
minimizing each individual’s risk of predation [27].

When designing a controller to optimize a collective objective, there are
three pertinent questions: (1) What objective should an agent optimize indi-
vidually? (2) What information about other agents or the environment does
an agent need to act? (3) How do the actions of each agent culminate in
optimizing the collective objective? The first two questions were studied for
flocking controllers in [30], where Reynolds sought to reproduce bird flocking
and created one of the earliest simulations of flock-like motion. His simulation
had each agent (so-called “bird-oid” or “boid”) balance the following three
objectives:

– Alignment: Each agent should steer toward its neighbors’ average direc-
tion.

– Cohesion: Each agent should move toward the average position of its
neighbors.

– Separation: Each agent should move away from its neighbors if they are
too close.

To optimize these objectives, each agent used the position and velocity of all
other agents. With qualitative answers to questions (1) and (2), Reynolds pro-
grammed agents that “participate in an acceptable approximation of flock-like
motion.” Since flock-like motion was not yet quantified, question (3) remained
unanswered. Later, researchers quantified flock-like motion with asymptotic
flocking and separation (Definitions 1 and 2). Now, question (3) is answered
by arguing that a given controller induces asymptotic flocking.

Notable flocking controllers include those designed in [35,12]. In [35], Tan-
ner et al. set the agents’ accelerations equal to a term that encourages align-
ment plus the negative gradient of a potential function for cohesion and sepa-
ration. If the graph representing what agents can exchange information is fully
connected, asymptotic flocking and separation are guaranteed. In [12], Cucker
and Smale define the agents’ accelerations in a way that aligns their velocities
while preserving the momentum of the flock. They achieve this with an “in-
fluence function,” which gauges an agent’s influence on another as a function
of their distance. The benefit of momentum conservation is that the limit-
ing velocity of the flock can be computed from the flock’s initial conditions.
Cucker and Smale’s controller guarantees asymptotic flocking, and guarantees

Title Suppressed Due to Excessive Length 3

separation with singular influence functions [11,22]. Further developments in
flocking controllers can be viewed as adding constraints when optimizing a
collective flocking objective. Developments that add constraints to Tanner et
al.’s controller include leader following – requiring the flock to follow a leader
agent [15], and segregation – flocking while having agents cluster into preas-
signed groups [32]. Developments that add constraints to the Cucker-Smale
controller include encouraging the agents to be a fixed distance R > 0 from
each other using a PID controller [26], and pattern formation via control terms
added to the agents’ acceleration [24,8,9].

All these controllers require agents to exchange information with all oth-
ers agents, making them centralized controllers. As the number of agents
grows, an increasingly prominent alternative is decentralized controllers
where agent communication is represented by a sparse graph. In a flock of
N agents, a centralized controller requires each agent to communicate with
N−1 agents, resulting in quadratic (O(N2)) communication overhead growth.
Moreover, a centralized controller imposes a bound on N when separation is
required, and each agent has a maximum communication distance. Maximum
communication distance constraints arise in wireless communications where
the power required to send information over a distance r is proportional to rp

for some p ∈ [2, 4) [1]. A maximum communication distance Rcomm and a mini-
mum separation of Rmin bound N because only a finite number of disjoint balls
with diameter 2Rmin can be packed into a ball whose diameter is the maximum
diameter of the flock (2Rcomm). Decentralization is crucial for building
scalable flocking controllers, but compared to centralization, decentral-
ization requires additional assumptions to guarantee asymptotic flocking and
may not be compatible with other guarantees (e.g., separation).

Examples of decentralized controllers include those proposed by Tanner
et al. [35,36]. The controller proposed in [35] uses a fixed connected commu-
nication graph to guarantee asymptotic flocking,1 but it does not guarantee
separation because nonadjacent agents cannot communicate. Though flock co-
hesion is guaranteed, adjacent agents may need to communicate over arbi-
trarily large distances while the controller is active. Instead of a fixed agent
neighborhood, the neighborhood of an agent in [36] changes over time by only
containing other agents currently within the agent’s communication radius
Rcomm. In this case, the authors guarantee asymptotic flocking and separation
assuming that the communication graph is connected for all time; Fig. 1 shows
that this assumption is invalid for some initial conditions. In [15], the authors
propose a decentralized flocking controller with time-dependent agent neigh-
bors and a leader following constraint, but they only test the controller with a
fully connected communication graph. Without a fixed communication graph,
decentralized flocking controllers struggle to maintain communication graph
connectivity and flock cohesion – a requirement for effectively optimizing the
collective objective.

1 In practice, the communication graph can be constucted using the idea of virtual nodes;
see e.g., [34,16].

4 Taos Transue, Bao Wang

As suggested by question (2), a plausible approach to improve decentralized
controllers is providing more information to each agent. All the controllers we
described, centralized or decentralized, only use information from the current
time. Tolstaya et al. [37] apply machine learning (ML) to leverage current and
past information. Fig. 1 shows that their ML controller can achieve asymp-
totic flocking for flock initial conditions where the controller in [36] fails (see
Fig. 1). The ML controller works by having each agent retain a summary of
the information it receives during the current time step and, during the next
time step, send that summary to its neighbors. In addition, each agent retains
a summary of the summaries it receives to send to its neighbors later, and
this recursion continues up to K − 1 time steps in the past. This process gives
each agent access to information K hops away in the communication graph.
In training, the ML controller learns to utilize patterns in how the informa-
tion exchanged in the network changes over time. Though Tolstaya et al. [37]
have found a way to provide additional information to each agent, their ML
controller processes the information suboptimally. The flocking controllers in
[35,12] exhibit crucial symmetries, e.g., rotation equivariance, that have been
ignored. Symmetry-aware ML models have demonstrated remarkable advan-
tages in physical congruence and data efficiency [10,13,38,2]. We aim to bridge
this gap in this paper.

2 Our contributions

We improve decentralized ML flocking controllers by enforcing rotation equiv-
ariance into time-delayed aggregation GNNs (TDAGNNs) [37], restoring the
symmetries of non-ML flocking controllers. We summarize our key contribu-
tions as follows:

– We present a simple yet efficient rotation equivariant convolutional neural
network (CNN) and integrate it into TDAGNN for learning decentralized
flocking.

– We justify the theoretical advantages of rotation equivariance in learning
decentralized flocking by demonstrating better generalization compared to
non-equivariant controllers.

– We demonstrate the advantages of our new ML controller in decentralized
flocking, leader following, and obstacle avoidance.

2.1 Organization

We organize this paper as follows. In section 3, we review some related works on
flocking controllers. In section 4, we present our rotation equivariant GNN for
decentralized flocking. In section 5 and section 6, we analyze the generalization
advantages of the rotation equivariant GNN for learning decentralized flocking
and verify its effectiveness. Technical proofs and additional details are provided
in the appendix.

Title Suppressed Due to Excessive Length 5

3 Background

3.1 Flock representation and definitions

Let X = [x1, . . . , xN] ∈ R2×N be the position vectors of N agents, Ẋ be
their velocities, and rij = xi − xj be the relative position. We formulate the
alignment and cohesion rules for asymptotic flocking as follows:

Definition 1 (Asymptotic flocking [7]) A flock of N agents flocks asymp-
totically if and only if the following two conditions are satisfied: (1) Align-
ment: lim

t→∞
max
i,j

∥ṙij(t)∥ = 0, and (2) Cohesion: sup
0≤t<∞,i,j

∥rij(t)∥ <∞.

Asymptotic flocking is usually the primary objective of flocking controllers.
Controllers can also make guarantees concerning how their objectives are met,
such as agent separation, which is defined as follows:

Definition 2 (Agent Rmin-separation) Let Rmin ≥ 0. Agents are separated
if for all time t, ∥rij(t)∥ ≥ Rmin.

Other objectives or guarantees beyond those mentioned include segregation
[32], where agents cluster into preassigned groups, and pattern formation [24,
8,9].

The acceleration of the i-th agent is ẍi = ai(X(t), Ẋ(t)) where ai is the
flocking controller. The design of ai ensures the flocking controller’s objectives
are met while maintaining its guarantees. The two main classes of flocking
controllers – centralized and decentralized – are separated by whether they
use the entire flock state (X, Ẋ) or only a subset of the columns of X and Ẋ
based on what agents can communicate.

3.2 Centralized flocking

We recap on the centralized flocking controller from [35], which defines an
agent’s acceleration as

ẍi = ai(X, Ẋ) := −
N∑
j=1

ṙij −
N∑
j=1

∇U(∥rij∥), (1)

where U : (0,∞) → R is a potential function such that limr→∞ U(r) = ∞ and
r∗ > 0 is U ’s unique minimizer representing the desired distance between two
agents. The first summation aligns the agents’ velocities, and the second sum-
mation uses U to control flock cohesion and agent separation. The potential
function for U used in [36] is U(r) = 1/r2 + ln(r2), which encourages agents
to be a distance r∗ = 1 from each other for cohesion and is singular at r = 0
for separation. The function U can be changed to induce a variety of flock
behaviors. For example, organizing leader-following [15] and segregating the
agents into clusters [32].

6 Taos Transue, Bao Wang

3.3 Decentralized flocking

We briefly review the decentralized flocking controllers from [35,36]. The first
decentralized controller [35] operates on a fixed sparse communication graph
and defines an agent’s acceleration as

ẍi = ai(X, Ẋ) := −
∑
j∈Ni

ṙij −
∑
j∈Ni

∇U(∥rij∥),

where Ni is the neighborhood of agent i. This controller guarantees asymptotic
flocking but does not guarantee separation because nonadjacent agents cannot
communicate to avoid collision. Another drawback of this controller is that
any adjacent agents must be able to communicate regardless of their spatial
distance.

The second decentralized controller [36] defines the neighborhood of an
agent to only include agents within radius Rcomm, i.e., Ni(t) = {j : j ̸=
i, ∥rij∥ ≤ Rcomm}. The agent’s acceleration is defined as

ẍi = ai(X, Ẋ) := −
∑

j∈Ni(t)

ṙij −
∑

j∈Ni(t)

∇U(∥rij∥).

This controller guarantees asymptotic flocking and separation. However, it
assumes the communication graph is connected for all time, but Fig. 1(a,b,c)
show that this assumption may be invalid.

(a) t0 (b) t27 (c) t53

(d) t0 (e) t27 (f) t53

Fig. 1: Snapshots at times tn of a flock of agents (orange dots) with veloc-
ities (blue arrows) and the flock’s communication graph (light blue edges).
When controlled by the time-dependent neighborhood decentralized flocking
controller from Tanner et al. [36] (top row), the communication graph loses
connectivity from time t27 onward. In contrast, the ML-based decentralized
flocking controller from Tolstaya et al. [37] (bottom row), not trained on these
agent initial conditions, successfully maintains communication graph connec-
tivity and achieves asymptotic flocking.

Title Suppressed Due to Excessive Length 7

3.4 ML-based decentralized flocking

3.4.1 Time-delayed aggregation graph neural networks

We review TDAGNN from [37]. Let Ni(t) = {j : j ̸= i, ∥rij∥ ≤ Rcomm} be
the neighborhood of agent i at time t. Define a function ψ : R2 × R2 → RC1

and the recurrence relation at time tn as

h1
i (tn) =

∑
j∈Ni(tn)

ψ(rij(tn), ṙij(tn)), (2)

hk
i (tn) =

1

|Ni(tn)|
∑

j∈Ni(tn)

hk−1
j (tn−1). (3)

With ψ(rij(tn), ṙij(tn)) representing the message from agent j to agent i at
time tn, h

1
i (tn) summarizes the messages within a one-hop neighborhood of

agent i, and h2
i (tn) summarizes the one-hop summaries from the previous time

step within a one-hop neighborhood. Let Hi(tn) = [h1
i (tn), . . . ,h

K
i (tn)]. Fi-

nally, TDAGNN outputs the vector ϕ(Hi(tn)) for agent i’s acceleration, where

ϕ : RC1×K → RCL
ϕ
+1 is a 1D CNN with element-wise tanh activation after

each convolutional layer except the last layer Lϕ. For agents in R2, CLϕ+1 = 2.
K is the depth that the recurrence is computed to, and the larger K is, the
more message summaries each agent needs to store; i.e., each agent i stores
Hi(tn−1) to be passed on at time tn.

TDAGNN is trained using imitation learning (IL) reviewed in section 3.4.2.
In our context of flocking control, the expert controller for IL is the centralized
controller in Eqn. (1) with the potential function

U(r) =

{
1/r2 + ln(r2) r ≤ Rcomm,

U(Rcomm) else.
(4)

The output of the expert controller ai is clamped so that ∥ai(X, Ẋ)∥∞ ≤ 100.
In [37], ψ : R2 × R2 → R6 computes the terms that enter linearly into the
centralized controller’s acceleration:

ψ(rij , ṙij) = [ṙ⊤ij , ∥rij∥−4r⊤ij , ∥rij∥−2r⊤ij]
⊤. (5)

TDAGNN trained using this U and ψ learns flocking control. Using the U from
[32] and the ψ from [25], TDAGNN learns flocking control with segregation.

3.4.2 Imitaiton learning

Flocking controllers are evaluated by whether they achieve their collective
objective and by what intermediate steps they take to do so. For example,
controllers that guarantee separation are devalued if they take intermediate
steps that cause agent collisions. While non-ML controllers can be designed
with these evaluation criteria in mind, ML controllers must be trained to

8 Taos Transue, Bao Wang

comply with the constraints imposed by these criteria. IL is a framework that
trains ML controllers to produce the same output as a compliant “expert”
controller. Let ai be the expert controller in Eqn. (4) and ϕ be TDAGNN – a
pupil controller. The IL loss function used in [37] is

L(X, Ẋ, {Hi}Ni=1) =
1

N

N∑
i=1

ℓ(ai(X, Ẋ), ϕ(Hi)), (6)

where ℓ is another loss function (e.g., the squared error loss), and Hi is the
input to TDAGNN for agent i. Ideally, we would compute L for every tuple
(X, Ẋ, {Hi}Ni=1) but this is intractable. Instead, we sample a training set from
the space of these tuples using Dataset Aggregation (DAgger) reinforcement
learning [31]. DAgger is employed in [37] to train TDAGNN as follows: Let
E and T be the number of training epochs and time steps in a flocking sim-
ulation, respectively. At the beginning of each epoch e ∈ {0, . . . , E − 1}, an
initial flock state (X(t0), Ẋ(t0)) is chosen from a dataset of initial conditions.
Next, flocking is simulated for T time steps. For each n ∈ {0, . . . , T − 1},
ai(X(tn), Ẋ(tn)) and Hi(tn) are computed. With probability βe, the acceler-
ation ai(X(tn), Ẋ(tn)) is used to update the flock state, computing X(tn+1)
and Ẋ(tn+1); otherwise, the acceleration ϕ(Hi(tn)) is used. Finally, the tuple
(X(tn), Ẋ(tn), {Hi(tn)}Ni=1) is added to the training set. Once T time steps
of flocking are complete, a batch B of tuples is uniformly randomly sampled
from the training set. The average value of L over the batch is computed and
TDAGNN’s weights are updated. We can update the weights more than once
per epoch by sampling more batches.

3.5 Rotation equivariance and translation invariance of flocking controllers

Symmetry is a fundamental inductive bias for designing reliable and efficient
neural networks [19,20,29,41,38]. The symmetry of a function f : X → Y
is often described by equivariance: f is equivariant if f(Tg(x)) = T ′

g(f(x)),
where Tg, T

′
g are transformations representing the group element g on X and

Y , respectively. If T ′
g is the identity, f is invariant. A crucial property of GNNs

is that their node feature aggregations are permutation invariant [14], and
GNNs have also been extended to be roto-translation equivariant [33,4]. For
flocking, prominent controllers ai (e.g., [35,12]) have the following symmetries:

Title Suppressed Due to Excessive Length 9

– Translation invariance: For any t1, t2 ∈ R2, considering the controller
in Eqn. (1), we have

ai(X + t11
⊤
N , Ẋ + t21

⊤
N)

= −
N∑
j=1

(ẋi + t2)− (ẋj + t2)−
N∑
j=1

∇U(∥(xi + t1)− (xj + t1)∥)

= −
N∑
j=1

ṙij −
N∑
j=1

∇U(∥rij∥)

= ai(X, Ẋ)

– Rotation and reflection equivariance: For any orthogonal matrix Q ∈
O(2), we have

ai(QX,QẊ) = −
N∑
j=1

Qẋi −Qẋj −
N∑
j=1

∇U(∥Qxi −Qxj∥)

= −
N∑
j=1

Qṙij −
N∑
j=1

U ′(∥Qrij∥)
Qrij
∥Qrij∥

= Q

−
N∑
j=1

ṙij −
N∑
j=1

∇U(∥rij∥)


= Qai(X, Ẋ).

Existing ML models, like TDAGNN, do not satisfy these symmetries.

4 Equivariant controllers for learning decentralized flocking

In this section, we present a rotation equivariant ML controller for decen-
tralized flocking. Our approach replaces the CNN in TDAGNN with an O(2)
equivariant CNN, ensuring rotation and reflection equivariance of the resulting
ML controller.

4.1 Rotation equivariant convolution layers

TDAGNN is translation invariant, but not rotation equivariant because its
CNN component ϕ is not. There has been significant effort put toward de-
veloping roto-translation equivariant CNNs (e.g., SO(2)-steerable CNNs [39]);
however, these cannot be directly integrated into TDAGNN. As such, we aim
to replace ϕ with an O(2) equivariant CNN ϕEqConv equipped with rotation
equivariant convolutional layers and activations. To ease our presentation, we
make the following two assumptions:

10 Taos Transue, Bao Wang

Assumption 1 The 1D convolutional layers

{Conv1dℓ : RCℓ×Fℓ → RCℓ+1×Fℓ+1}Lϕ

ℓ=1

of ϕ have no padding.

Assumption 2 The input of ϕ always has the same size.

We represent the input Hi,ℓ of Conv1dℓ as a block matrix composing vec-
tors in R2 that are O(2) equivariant with respect to the agents’ positions and
velocities:

Hi,ℓ = [gcin,f]
(Cℓ/2),Fℓ

cin=1,f=1 ⊂ RCℓ×Fℓ

If ℓ = 1 and we use ψ from Eqn. (5), then Hi,ℓ = Hi from section 3.4, Cℓ = 6,
and Fℓ = K. Moreover, the last convolutional layer in ϕ outputs acceleration so
CLϕ+1 = 2 and FLϕ+1 = 1. By Assumption 1, Conv1dℓ can be represented by

a collection of Toeplitz matrices W : {1, . . . , Cℓ} × {1, . . . , Cℓ+1} → RFℓ×Fℓ+1

and bias terms b : {1, . . . , Cℓ+1} → R. For cout ∈ {1, . . . , Cℓ+1}, the output
channel Conv1dℓ(Hi,ℓ)[cout] can be represented as

Conv1dℓ(Hi,ℓ)[cout]

= b(cout)1
⊤
Fℓ+1

+

Cℓ∑
cin=1

[(Hi,ℓ)cin,1, . . . , (Hi,ℓ)cin,Fℓ
]W (cin, cout)

= b(cout)1
⊤
Fℓ+1

+

Cℓ/2∑
cin=1

2∑
c=1

[(gcin,1)c, . . . , (gcin,Fℓ
)c]W (2(cin − 1) + c, cout)

= b(cout)1
⊤
Fℓ+1

+

Cℓ/2∑
cin=1

1⊤
2

[
[(gcin,1)1, . . . , (gcin,Fℓ

)1]W (2(cin − 1) + 1, cout)

[(gcin,1)2, . . . , (gcin,Fℓ
)2]W (2(cin − 1) + 2, cout)

]
.

Applying an orthogonal matrix Q ∈ O(2) to the agents’ position and velocity,
we have

Conv1dℓ

(
[Qgcin,f]

(Cℓ/2),Fℓ

cin=1,f=1

)
[cout]

= b(cout)1
⊤
Fℓ+1

+

Cℓ/2∑
cin=1

1⊤
2

[
[(Qgcin,1)1, . . . , (Qgcin,Fℓ

)1]W (2(cin − 1) + 1, cout)

[(Qgcin,1)2, . . . , (Qgcin,Fℓ
)2]W (2(cin − 1) + 2, cout)

]
̸= QConv1dℓ

(
[gcin,f]

(Cℓ/2),Fℓ

cin=1,f=1

)
.

From the above analysis, we see that Conv1dℓ is not O(2) equivariant for
three reasons: (1) the bias term, (2) vector element indexing is not O(2) equiv-
ariant, and (3) Q does not commute with 1⊤

2 . We need to address these
issues to develop an O(2) equivariant convolution. For the first issue, we

Title Suppressed Due to Excessive Length 11

eliminate the bias term. For the second issue, we eliminate the vector ele-
ment indexing through weight sharing. By setting W (2(cin − 1) + 1, cout) =
W (2(cin − 1) + 2, cout) for all cin, then for an output channel cout, we have

Cℓ/2∑
cin=1

1⊤
2

[
[(gcin,1)1, . . . , (gcin,Fℓ

)1]W (2(cin − 1) + 1, cout)

[(gcin,1)2, . . . , (gcin,Fℓ
)2]W (2(cin − 1) + 2, cout)

]

=

Cℓ/2∑
cin=1

1⊤
2 [gcin,1, . . . , gcin,Fℓ

]W (2(cin − 1) + 1, cout).

For the third issue, we drop 1⊤
2 , which changes the number of rows per output

channel from one to two. To retain the original number of rows in the output of
Conv1d, we halve the number of output channels but set each output channel
to have two rows (or “subchannels”). With these changes, we define a new O(2)
equivariant convolution EqConvℓ: For output channels cout ∈ {1, . . . , Cℓ+1/2},

EqConvℓ(Hi,ℓ)[cout] =

Cℓ/2∑
cin=1

[gcin,1, . . . , gcin,Fℓ
]W (2(cin − 1) + 1, cout).

EqConvℓ is O(2) equivariant since

EqConvℓ

(
[Qgcin,f]

(Cℓ/2),Fℓ

cin=1,f=1

)
[cout]

=

Cℓ/2∑
cin=1

[Qgcin,1, . . . , Qgcin,Fℓ
]W (2(cin − 1) + 1, cout)

= QEqConvℓ

(
[gcin,f]

(Cℓ/2),Fℓ

cin=1,f=1

)
[cout].

EqConvℓ can be implemented using a standard 2D convolutional layer whose
kernels have one row and a vertical stride of one.

4.2 Rotation equivariant activations

To build an O(2) equivariant CNN, we need O(2) equivariant activations.
Notice that the output of EqConvℓ is also a block matrix composing 2D vectors
that are O(2) equivariant:

Hi,ℓ+1 = EqConvℓ(Hi,ℓ) = [gcout,f]
(Cℓ+1/2),Fℓ+1

cout=1,f=1 ⊂ RCℓ+1×Fℓ+1 .

We construct an O(2) equivariant activation for Hi,ℓ+1 by applying an O(2)
equivariant activation to each gcout,f separately. By Proposition 1 of [21], any
O(2) equivariant function can be expressed as σ(x) = xσ̃(∥x∥) for some func-
tion σ̃ : R → R. Therefore, the output channel cout ∈ {1, . . . , Cℓ+1/2} with an
equivariant activation applied is given by

σ(Hi,ℓ+1)[cout] = [σ(gcout,1), . . . , σ(gcout,Fℓ+1
)]

= Hi,ℓ+1[cout]⊙ 12[σ̃(∥gcout,1∥), . . . , σ̃(∥gcout,Fℓ+1
∥)],

12 Taos Transue, Bao Wang

where ⊙ denotes the Hadamard product. The O(2) equivariant convolution
layer and O(2) equivariant activations are combined to create an O(2) equiv-
ariant convolution neural network ϕEqConv.

We construct the following tailored activations for our application:

σ̃ln(x) =

{
1 x = 0
ln(1+x)

x x ̸= 0
, and σ̃tanh(x) = tanh(x),

σln(Hi,ℓ)[cout] = Hi,ℓ[cout]⊙ 12[σ̃ln(∥gcout,1∥), . . . , σ̃ln(∥gcout,Fℓ+1
∥)],

σtanh(Hi,ℓ)[cout] = Hi,ℓ[cout]⊙ 12[σ̃tanh(∥gcout,1∥), . . . , σ̃tanh(∥gcout,Fℓ+1
∥)].

The activation σln provides an important normalization effect similar to tanh
in the non-equivariant ML controller TDAGNN. Large convolutional layer
inputs can occur because the input features in Eqn. (5) are unbounded as
∥rij∥ → 0, potentially causing instabilities during training. Applying tanh el-
ementwise bounds the features passed inside the CNN to (−1, 1). However, in
the non-equivariant controllers, tanh is not applied before the first convolu-
tional layer because it reduces all large-magnitude features to approximately
the same magnitude (i.e., it is saturated); doing so would remove important in-
formation about the proximity of neighboring agents. Unfortunately, the first
convolutional layer is still subject to large inputs. In contrast, for ϕEqConv we
can reduce the size of the inputs to the first convolutional layer and avoid sat-
uration by using σln. Next, the activation σtanh is simply a nonlinear scaling
of the feature vectors.

4.3 Further improving TDAGNN

We present two strategies to improve both equivariant and non-equivariant
ML controllers further.

Activate once: The tanh activation of the CNN ϕ normalizes the output
of each convolutional layer into (−1, 1). Since the activation is applied after
all but the last convolutional layer, the last convolutional layer must have
large weights to ensure the controller can output a large acceleration vector.
A large acceleration is needed whenever the controller needs to react quickly to
maintain a connected communication graph or avoid collision. However, large
weights concentrated in the last convolutional layer may cause the controller to
output large accelerations too often, leading to over-corrections of the agents’
velocities. When training TDAGNN, the CNN ϕ must balance the need for
large weights in the last convolutional layer with their risk. This challenge
is lessened by applying the activation only after the first convolutional layer,
allowing the controller to learn large weights across its convolutional layers.

Mean one-hop aggregation: In Eqn. (2), TDAGNN uses a sum aggrega-
tion of the messages in the one-hop neighborhood of agent i. Sum aggregation
can cause over-corrections when agent i’s neighbors send similar messages.
Consider the scenario where all neighbors of agent i have the same velocity
vNi

and agent i has velocity ẋi ̸= vNi
. Each neighbor sends a message to

Title Suppressed Due to Excessive Length 13

agent i requesting that it corrects its velocity by −(ẋi − vNi). With sum ag-
gregation, agent i overcorrects its velocity by −|Ni|(ẋi −vNi), but with mean
aggregation, agent i corrects its velocity by −(ẋi − vNi

), exactly what was
requested by all its neighbors.

5 Generalization analysis

In this section, we analyze the generalizability of TDAGNN-related models
when trained for flocking following the generalization analysis framework in
[18].

5.1 Generalization gap

Definition 3 (Generalization gap) Let f : X → Y and define the loss
function L : Y × Y → [0,∞). Let B = {(xb, yb)}Bb=1 be a set of i.i.d. samples
from a probability distribution D over X ×Y. The generalization gap RB,L of
f is the difference between the expected risk and empirical risk, i.e.,

RB,L(f) = E(x,y)∼D[L(f(x), y)]︸ ︷︷ ︸
expected risk

− 1

B

B∑
b=1

L(f(xb), yb)︸ ︷︷ ︸
empirical risk

.

The generalization gap can be bounded by the expressiveness of the class
of ML models. Empirical Rademacher complexity (ERC) measures how well
the family of functions can fit random noise.

Definition 4 (Empirical Rademacher complexity) Let F = {f : X →
R} be a family of bounded functions and B = {xb}Bb=1 ⊂ X . The empirical
Rademacher complexity (ERC) of F is

R̂B(F) = Eσ

[
sup
f∈F

1

B

B∑
b=1

(σ)bf(xb)

]
,

where the entries of σ ∈ {−1, 1}B are distributed such that P ((σ)b = −1) =
1/2 and P ((σ)b = 1) = 1/2.

Using the ERC, a probabilistic bound for the generalization gap can be
derived.

Theorem 3 (ERC bounds generalization gap [23]) Define the loss funci-
ton L : Y × Y → [0, 1], let F = {f : X → Y}, and let D be a probability
distribution over X × Y. Let B = {(xb, yb)}Bb=1 be a set of i.i.d. samples from
D. For any δ > 0, for all f ∈ F , the following bound holds with probability
1− δ:

RB,L(f) ≤ 2R̂B(FL) + 3

√
ln
(
2
δ

)
2B

,

where FL = {(x, y) 7→ L(f(x), y) : f ∈ F}.

14 Taos Transue, Bao Wang

Therefore, we only need to bound ERC. The covering number is a cele-
brated tool to bound ERC.

Definition 5 (Covering number) The covering number N (Z, r, ∥ · ∥) of a
set Z with respect to some norm ∥ · ∥ is the minimum cardinality of a set
Z ′ such that, for any element of Z, there is an element in Z ′ that is within a
distance r of it, i.e.,N (Z, r, ∥ · ∥) = min{|Z ′| : ∀z ∈ Z, ∃z′ ∈ Z ′, ∥z−z′∥ ≤ r}.

Now, we state an established bound of the ERC in terms of the covering
number.

Lemma 1 (Bounding ERC [3]) Let F = {f : X → [−β, β]}, and assume
that there exists a function f0 ∈ F such that f0(x) = 0 for all x ∈ X . With
∥f∥∞ = supx∈X |f(x)|, for any B = {xi}Bi=1 ⊂ X ,

R̂B(F) ≤ inf
α>0

(
4α√
B

+
12

B

∫ 2β
√
B

α

√
ln(N (F , r, ∥ · ∥∞)) dr

)
.

5.2 Behavior cloning with fast-forwarding

The space of training data for TDAGNN – using IL with DAgger – is the
set of tuples (X, Ẋ, {Hi}Ni=1), and the probability distribution on that space
is induced by how DAgger generates these tuples. However, Definition 3 re-
quires that the training samples are independent, but the tuples generated
by DAgger are not for two reasons. First, each tuple is computed using the
previously generated tuple. At the beginning of each epoch, flocking is simu-
lated for T time steps where (X(tn+1), Ẋ(tn+1)) is computed by applying
an acceleration to (X(tn), Ẋ(tn)). In addition, Hi(tn) is computed using
{(X(tn−k+1), Ẋ(tn−k+1))}Kk=1. The second reason is that the ML controller
is trained on previously generated tuples, and it can influence what tuples are
generated next by applying its acceleration.

The second reason cannot be addressed without fundamentally changing
DAgger, and therefore, the probability distribution it induces on the space of
training data. A primary motivation for the DAgger algorithm is allowing the
ML controller to influence what training examples (e.g., tuples) are generated,
and since the ML controller’s weights depend on previously generated training
examples, the training examples generated next cannot be independent. There-
fore, we cannot analyze the generalization gap of ML controllers trained using
IL with DAgger. To move forward with our analysis, we substitute DAgger
with a variation of behavior cloning we call fast-forward behavior cloning
(FFBC).

FFBC addresses the second reason by only using the expert controller’s
acceleration during the flocking simulations run before each epoch. The first
reason is addressed by ensuring every tuple saved is derived from a newly sam-
pled flock initial condition using fast-forwarding. Instead of sampling an initial

Title Suppressed Due to Excessive Length 15

condition once at the beginning of each simulation, we sample an initial condi-
tion at each time step of the simulation. At time tn, we sample (X(0), Ẋ(0)),
and then use the expert controller to advance it to (X(tn), Ẋ(tn)) by se-
quentially applying the accelerations {ai(X(tn′), Ẋ(tn′))}n−1

n′=0. Once the last
acceleration is applied, we have also computed {Hi(tn)}Ni=1. Finally, we save
the tuple (X(tn), Ẋ(tn), {Hi(tn)}Ni=1) to the training set.

FFBC is independent of the ML controller’s weights, so the dataset of
tuples may be computed before training by running E flocking simulations.
Note that the dataset is dependent on whether the ML controller uses sum
aggregation or mean aggregation (see section 4.3) because the tuples contain
Hi. The datasets are split into training and test sets, and each ML controller
is trained on its respective training set. We train the ML controller on the
entire training set each epoch so that the training set size does not vary as the
ML controller trains, allowing us to compare generalization gaps at different
epochs.

5.3 TDAGNN reinterpretations and loss function

The bound proved in [18] is for EGNN [33] applied to graph-level tasks (e.g.,
graph classification). For these tasks, all invariant node features after the last
EGNN layer are aggregated, and the aggregated feature is fed to a final scoring
model (e.g., an MLP) to produce a label for the graph. In flocking, each agent
attempts to compute an acceleration for itself to match that of an expert
controller, so the ML controller is performing a node-level task. We need to
convert the node-level task into a graph-level task to adapt the analysis in
[18]. We normally train ML controllers using squared error (SE) between their
acceleration and the expert’s acceleration averaged over all agents, resulting
in a mean SE (MSE) loss. To convert to a graph-level task, we modify the
output of each agent to be the SE instead of its acceleration, then define the
scoring model hG for the flock as

hG(MSE) = w2 +MSE, (7)

where MSE = 1
N

∑N
i=1 SEi, SEi = ∥ai(X, Ẋ)−ϕ(Hi)∥2, and w is a trainable

parameter in the scoring model. Note that SEi is O(2) invariant, so MSE is an
aggregation of invariant node features. The scoring model now computes the
original loss given by Eqn. (9), so we can simply choose the identity function
L(y) = y as the loss function. However, to comply with the assumptions of
Theorem 3, we instead choose the loss function L(y) = min{1, y/C} for some
C > 0.

5.4 Bounding the generalization gap

Paper [18] uses MLPs to update the node features of EGNN, so our adaptation
of their proof considers the MLP representations of ϕ given by Lemma 8 or

16 Taos Transue, Bao Wang

9. The authors also assume that the input to EGNN is bounded, so we also
assume a bound on the input of the MLP representation in Assumption 4.

Definition 6 (Input of TDAGNN as an MLP) The first convolutional
layer Conv1d1 : RC1×F1 → RC2×F2 of ϕ has C1 input channels that are row
vectors of the form Hi,1[cin] = [(Hi)cin,1, . . . , (Hi)cin,F1

]. The input HMLP
i,1

of ϕ as an MLP is the row-wise concatenation of the input channels and 1⊤
F2

to

account for the bias term of Conv1d1: H
MLP
i,1 = [Hi,1[1], . . . , Hi,1[Cℓ], 1

⊤
F2
].

Definition 7 (Input of O(2) equivariant TDAGNN as an MLP) EqConv1 :
RC1×F1 → RC2×F2 of ϕEqConv has C1/2 input channels that are two-row ma-
trices of the form Hi,1[cin] = [gcin,1, . . . , gcin,F1

]. The input HMLP
i,1 of ϕ

as an MLP is the row-wise concatenation of the input channels: HMLP
i,1 =

[Hi,1[1], . . . , Hi,1[C1/2]].

Assumption 4 (FFBC datasets are bounded) There exists β ≥ 1 such
that for all tuples (X, Ẋ, {Hi}Ni=1) in the FFBC dataset,

max
i

{∥ai(X, Ẋ)∥, ∥HMLP
i,1 ∥F } ≤ β,

where ai is the expert controller and HMLP
i,1 is defined in either Definition 6

or Definition 7.

Now we state the generalization gap bound for the ML controllers with
proof in the appendix.

Proposition 1 (Generalization bound of TDAGNN) Let P be the prob-
ability distribution over tuples (X, Ẋ, {Hi}Ni=1) induced by FFBC. Let L(y) =
min{1, y/C} for C > 0 be the loss function. Let {Wℓ}

Lϕ

ℓ=1 be the weights of
the MLP representation Φ of ϕ given by Lemma 8 or 9, and let w of hG in
Eqn. (7) be such that w ∈ [0,

√
C]. For any δ > 0, with probability at least

1− δ over choosing a batch B of B tuples sampled from P , the following bound
holds:

RB,L(hG) ≤
8

B
+

48d√
B

√√√√(3Lϕ + 1) ln(10LϕβKσ
Lϕ

√
dBC) + (2Lϕ + 3)

Lϕ∑
ℓ=1

ln(max{1, ∥Wℓ∥F })+

3

√
ln(2δ)

2B
.

(8)

Title Suppressed Due to Excessive Length 17

6 Experiments

Controllers and hyperparameters: We compare four ML controllers and
the expert controller used to train them. The expert controller is TannerEtAl
from Eqn. (1) with the potential function from Eqn. (4). In [37], TannerE-
tAl’s acceleration ai(X, Ẋ) is clamped so that ∥ai(X, Ẋ)∥∞ ≤ 100, but this
breaks TannerEtAl’s O(2) equivariance. To retain O(2) equivariance, we en-
force ∥ai(X, Ẋ)∥2 ≤ 100.

Controller Aggregation Activations (after conv. ℓ) Conv. layers

TDAGNN Sum σℓ = tanh, ℓ ∈ {1, . . . , Lϕ − 1} Conv1d

TDAGNN+TF Sum σ1 = tanh Conv1d

TDAGNN+TF+µ Mean σ1 = tanh Conv1d

ETDAGNN Mean σ0 = σln, σ1 = σtanh EqConv

Table 1: Summary of the architectural differences between the compared ML
controllers for flocking. The subscripts ℓ of the activations in the Activations
column indicate the convolutional layer that the activation is applied after. If
the subscript ℓ is 0, then the activation is applied before the first convolutional
layer. If a subscript value is not listed, then no (or the identity) activation is
applied after the corresponding convolutional layer.

The first controller is TDAGNN from [37] and serves as a baseline. The
second is TDAGNN with the “Activate once” improvement described in sec-
tion 4.3 and is denoted by TDAGNN+TF – “TF” stands for “tanh first.”
The third is TDAGNN with both the improvements described in section 4.3
and is denoted by TDAGNN+TF+µ. The last is TDAGNN+TF+µ with the
CNN ϕEqConv described in section 4.1 and the equivariant activations pro-
posed in section 4.2, and it is denoted by ETDAGNN. The architectural dif-
ferences, including what activations are used after each convolutional layer,
are summarized in Table 1. All ML controllers use Lϕ = 3 convolutional layers

mapping RCℓ×Fℓ to RCℓ+1×Fℓ+1 for ℓ ∈ {1, . . . , Lϕ}. Explictly writing their
domains and ranges, (C1, F1) = (6,K), (C2, F2) = (32, 1), (C3, F3) = (32, 1),
and (C4, F4) = (2, 1). With these hyperparameters, Table 2 shows each ML
controller’s trainable parameter count.

TDAGNN TDAGNN+TF TDAGNN+TF+µ ETDAGNN

#Weights 1,730 1,730 1,730 416

Table 2: Number of trainable weights of the ML controllers for decentralized
flocking.

18 Taos Transue, Bao Wang

Training: All ML controllers are trained for flocking control using IL with
DAgger for E = 400 epochs and then tested in flocking, leader following,
and obstacle avoidance scenarios. We initialize β0 = βinit = 0.993, and set
βe = max{βe−1βinit, 0.5}. Tuples are generated and added to the training set
by running flocking simulations for T = 2/∆t time steps with ∆t = 10−2.
The initial condition for each simulation is sampled from a dataset of initial
conditions. The training set of tuples is capped at 10,000 examples, and the
oldest examples are discarded first after reaching the cap. After the flocking
simulation of each epoch, we sample 200 batches of 20 tuples with replacement
from the training set. For each batch, we compute the loss averaged over the
batch and update the ML controller’s weights. The loss function for one tuple
is

L(X, Ẋ, {Hi}Ni=1) =
1

N

N∑
i=1

∥ai(X, Ẋ)− ϕ(Hi)∥2. (9)

The trainable parameters are initialized using Xavier uniform initialization
with gain 1, and optimized using the Adam optimizer with learning rate 5 ×
10−5, β1 = 0.9, and β2 = 0.999.

Initial conditions: The dataset of flock initial conditions is randomly gener-
ated following the procedure described in [37]. We refer to this dataset as the
RandomDisk dataset. Each initial condition composes N agents whose posi-
tions are distributed in a 2D disk of radius

√
N . Having radius

√
N implies

that the ratio of the number of agents to the disk’s area is the constant π. The
agents are placed in the disk uniformly randomly such that three conditions
are met: the agents are not too close (for j ∈ Ni(0), Rmin ≤ ∥rij∥ ≤ Rcomm);
the agents have enough neighbors (|Ni(0)| ≥ degmin ≥ 0); and, the flock’s
communication graph is connected. The agents’ velocities are initialized to
Ẋ(0) = Vinit + vbias1

⊤
N where the entries of Vinit and vbias are uniformly ran-

domly sampled from [−vmax, vmax] for vmax ∈ [0,∞). Fig. 2 shows example
initial conditions of this dataset. Following [37], we choose the RandomDisk
dataset parameters as N = 100, Rmin = 0.1, Rcomm = 1, degmin = 2, and
vmax = 3.

Metrics: We quantify the performance of the ML controllers using the two
metrics:

– Velocity variance: The variance of velocities is var(ẋ) = 1
N

∑N
i=1∥ẋi −

mean(ẋ)∥2 where mean(ẋ) := 1
N

∑N
i=1 ẋi. Lower variance implies the flock

is closer to a limiting velocity of asymptotic flocking.
– Mean acceleration norm: The mean acceleration norm of the agents

is 1
N

∑N
i=1∥ẍi(tn)∥. A lower mean acceleration norm means the controller

uses a smaller control input to achieve its objective. This metric measures
the controller’s efficiency because less acceleration implies less energy ex-
penditure for the flock.

Title Suppressed Due to Excessive Length 19

Fig. 2: Examples from the RandomDisk dataset of flock initial conditions.
There are N = 100 agents (orange dots) with at least degmin = 2 neighbors
(indicated by light blue edges connecting them). The distance between an
agent and its neighbors is between Rmin = 0.1 and Rcomm = 1. The agents’
velocities (dark blue arrows) have magnitudes no larger than 2vmax = 6.

6.1 Flocking

In this task, we observe significant performance gaps between TannerEtAl, the
ML controllers using sum aggregation (TDAGNN and TDAGNN+TF+µ), and
the ML controllers using mean aggregation (TDAGNN+TF+µ and ETDAGNN).
When presenting these results, we will compare these groups, and then com-
pare the controllers within these groups when necessary. Keep in mind that
ETDAGNN has 75% fewer trainable weights than other controllers (see Ta-
ble 2).

For training, Fig. 3 shows the median Integral of the Velocity Variance
(IVV) and the median Integral of the Mean Acceleration Norm (IMAN) on
validation set of the RandomDisk dataset with N = 100 and ∆t = 10−2. The
mean-aggregation ML controllers achieve a lower median IVV and IMAN by
epoch 80 than the sum-aggregation ML controllers do by epoch 400. Further-
more, at epoch 400, the IVV and IMAN IQRs of the best sum-aggregation
ML controllers and worst mean-aggregation ML controllers do not overlap.

100 200 300 400
Epoch

100

2 × 10 1

3 × 10 1
4 × 10 1

6 × 10 1

Ve
lo

cit
y

Va
r.

100 200 300 400
Epoch

101

4 × 100

6 × 100

2 × 101

M
ea

n
Ac

ce
l.

No
rm

TDAGNN TDAGNN+TF TDAGNN+TF+ ETDAGNN

100 200 300 400
Epoch

100

2 × 10 1

3 × 10 1
4 × 10 1

6 × 10 1

Ve
lo

cit
y

Va
r.

100 200 300 400
Epoch

101

4 × 100

6 × 100

2 × 101

M
ea

n
Ac

ce
l.

No
rm

Fig. 3: Performance of ML controllers in flocking as they train. They are
evaluated on the RandomDisk validation set with 100 agents. Each simulation
is run for T = 2/∆t time steps where ∆t = 10−2. The curves show the median
values of the respective metrics’ integrals and the colored areas show their
corresponding interquartile ranges.

20 Taos Transue, Bao Wang

For the sum-aggregation ML controllers, TDAGNN+TF has a lower me-
dian IVV than TDAGNN for all epochs. TDAGNN+TF has a higher IMAN
than TDAGNN at epoch 40, and is over double compared to TDAGNN from
epoch 80 to epoch 160. It takes until epoch 320 for it to become lower than
TDAGNN. For the mean-aggregation ML controllers, at epoch 40, TDAGNN+TF+µ
has a median IVV less than half that of ETDAGNN, but ETDAGNN matches
TDAGNN+TF+µ by epoch 120. By epoch 400, the IVV of TDAGNN+TF+µ
is only larger than ETDAGNN by a few hundredths. At epoch 40, TDAGNN+TF+µ
also has a lower IMAN than ETDAGNN, but by epoch 80 and for the rest of
the epochs, the IVV of TDAGNN+TF+µ and ETDAGNN remain within that
gap, both increasing at the same rate.

After training, we test each ML controller’s ability to achieve asymptotic
flocking with separation on 50 RandomDisk initial conditions not used for
training or hyperparameter tuning. We use N ∈ {50, 100, 200, 400} and ∆t =
10−3. Fig. 4 shows the median velocity variance over time. For all N , the
mean-aggregation controllers reduce the velocity variance from about 4 to
below 0.2 faster than the sum-aggregation controllers. When N ≤ 100, the
mean-aggregation ML controllers also reach a lower velocity variance at the
last time step, but when N ≥ 200, the sum-aggregation ML controllers reach
a lower velocity variance. Surprisingly, when N = 50, the velocity variances
of TDAGNN+TF and the mean-aggregation ML controllers are below that of
TannerEtAl for the majority of the simulation. The exception is from times
tn∆t ∈ [0.1, 0.3] where TDAGNN+TF has a larger velocity variance than
TannerEtAl. When N = 100, ETDAGNN reaches a lower velocity variance
than TannerEtAl at the end of the simulation. Fig. 5 shows the median mean
acceleration norm over time. The sum-aggregation ML controllers’ median
mean acceleration norm at the last time step matches or is a few hundredths
smaller than the mean-aggregation ML controllers.

0.0 0.5 1.0 1.5 2.0
Time (tn t)

10 2

10 1

100

Ve
lo

cit
y

Va
r.

0.0 0.5 1.0 1.5 2.0
Time (tn t)

0.0 0.5 1.0 1.5 2.0
Time (tn t)

0.0 0.5 1.0 1.5 2.0
Time (tn t)

Tanner et al. 2003 TDAGNN TDAGNN+TF TDAGNN+TF+ ETDAGNN

0.0 0.5 1.0 1.5 2.0
Time (tn t)

10 2

10 1

100

Ve
lo

cit
y

Va
r.

0.0 0.5 1.0 1.5 2.0
Time (tn t)

0.0 0.5 1.0 1.5 2.0
Time (tn t)

0.0 0.5 1.0 1.5 2.0
Time (tn t)

Fig. 4: Velocity variance of the controllers in flocking over the simulation time
with time step size ∆t = 10−3. They are evaluated on the RandomDisk test
set with the number of agents N ∈ {50, 100, 200, 400}. The lines show the me-
dian metric values and the colored areas show the corresponding interquartile
ranges.

In summary, there is no best-performing ML controller for all tested flock
sizes. For all tests, the mean-aggregation ML controllers reduce the velocity

Title Suppressed Due to Excessive Length 21

0.0 0.5 1.0 1.5 2.0
Time (tn t)

10 2

10 1

100

101

102

M
ea

n
Ac

ce
l.

No
rm

0.0 0.5 1.0 1.5 2.0
Time (tn t)

0.0 0.5 1.0 1.5 2.0
Time (tn t)

0.0 0.5 1.0 1.5 2.0
Time (tn t)

Tanner et al. 2003 TDAGNN TDAGNN+TF TDAGNN+TF+ ETDAGNN

0.0 0.5 1.0 1.5 2.0
Time (tn t)

10 2

10 1

100

101

102

M
ea

n
Ac

ce
l.

No
rm

0.0 0.5 1.0 1.5 2.0
Time (tn t)

0.0 0.5 1.0 1.5 2.0
Time (tn t)

0.0 0.5 1.0 1.5 2.0
Time (tn t)

Fig. 5: Mean acceleration norm of the controllers in flocking over the simula-
tion time with time step size ∆t. They are evaluated on the RandomDisk test
set with the number of agents N ∈ {50, 100, 200, 400}. The lines show the me-
dian metric values and the colored areas show the corresponding interquartile
ranges.

variance of the flock faster than the sum-aggregation ones when the variance
is large. The ML controller that reaches the smallest velocity variance by
the last time step depends on N . When N ≤ 100, ETDAGNN reaches the
lowest variance at the last time step than other ML controllers. For larger
N , TDAGNN+TF reaches the smallest velocity variance. The ML controllers
have approximately the same mean acceleration norm. Animations of flocking
are available on GitHub.2

6.2 Leader following

In leader following, the leader agents are selected from the flock and instructed
to move along some predefined path (e.g., a line), and the other agents are
followers. We test the ability of ML controllers, already trained for flocking,
in conducting leader following using 50 RandomDisk initial conditions. Two
agents from each initial condition are randomly selected to be leaders of the
flock and the leaders’ velocities are set equal. To prevent the followers from
changing the leaders’ trajectories, the leaders ignore all messages from the
followers, i.e., the leaders only have directed edges from them to other agents.
Consequently, the leaders do not pass on summaries of the messages they
receive to their neighbors. In addition, the ML controllers only control the
followers, and since the ML controllers are trained to maintain communication
graph connectivity, the controllers are compelled to have the followers match
the velocity of the leaders. The leader following simulations are run for T =
3/∆t time steps. In addition to the flocking validation metrics, leader following
adds this validation metric:

– Mean leader velocity distance (MLVD): Let vldr be the velocity of
the leaders in the flock. We measure how close the flock is to the limiting
velocity with 1

N

∑N
i=1∥ẋi(tn)− vldr∥.

2 Flocking animations: github.com/Utah-Math-Data-Science/

Equivariant-Decentralized-Controllers/tree/main/misc/animations/flocking

github.com/Utah-Math-Data-Science/Equivariant-Decentralized-Controllers/tree/main/misc/animations/flocking
github.com/Utah-Math-Data-Science/Equivariant-Decentralized-Controllers/tree/main/misc/animations/flocking

22 Taos Transue, Bao Wang

Fig. 6 shows the median MLVD and median mean acceleration norm over
time. By the last time step, TDAGNN+TF+µ has the lowest median MLVD.
The medians of ETDAGNN and TDAGNN are nearly double and triple that of
TDAGNN+TF+µ. The ML controllers have approximately the same mean ac-
celeration norm. Based on the performance of the ML controllers for the leader
following task, we recommend TDAGNN+TF+µ for the best performance;
however, ETDAGNN provides comparable performance with 75% fewer train-
able parameters. Animations of leader following are available on GitHub.3

0 1 2 3
Time (tn t)

10 1

100

M
ea

n
Le

ad
er

 V
el

. D
ist

0 1 2 3
Time (tn t)

10 1

100

101

102
M

ea
n

Ac
ce

l.
No

rm
Tanner et al. 2003 TDAGNN TDAGNN+TF TDAGNN+TF+ ETDAGNN

0 1 2 3
Time (tn t)

10 1

100

M
ea

n
Le

ad
er

 V
el

. D
ist

0 1 2 3
Time (tn t)

10 1

100

101

102

M
ea

n
Ac

ce
l.

No
rm

Fig. 6: Performance of controllers in leader following at each time step of the
simulation. They are evaluated on the RandomDisk test set with N = 100
agents where two agents are leaders.

6.3 Obstacle avoidance

When a flock is intercepting an obstacle, the ML controllers should have the
flock circumnavigate it. For centralized flocking controllers, the primary re-
quirement is that the agents do not collide with the obstacle. The centralized
flocking controllers discussed can guarantee agent separation, which is read-
ily extendable to obstacle collision avoidance if each agent can compute its
distance from the obstacle. Decentralized flocking controllers, however, face
the significant challenge of managing communication graph connectivity. An
obstacle’s diameter can be larger than the communication radius Rcomm of
the agents, preventing agents on opposite sides of the obstacle from com-
municating. Decentralized flocking controllers have two options for successful
circumnavigation – ensure that all agents move around the obstacle in the
same direction, or devise a scheme that will guarantee communication graph
connectivity is restored if groups of agents go around in different directions.
We present a technique for helping decentralized flocking controllers conduct
obstacle avoidance inspired by Fig. 2 of [30]. The technique is tested using
disk-shaped obstacles with diameters up to nearly half of the flock’s diameter.

3 Leader following animations: github.com/Utah-Math-Data-Science/

Equivariant-Decentralized-Controllers/tree/main/misc/animations/leader_

following

github.com/Utah-Math-Data-Science/Equivariant-Decentralized-Controllers/tree/main/misc/animations/leader_following
github.com/Utah-Math-Data-Science/Equivariant-Decentralized-Controllers/tree/main/misc/animations/leader_following
github.com/Utah-Math-Data-Science/Equivariant-Decentralized-Controllers/tree/main/misc/animations/leader_following

Title Suppressed Due to Excessive Length 23

The obstacle avoidance dataset is built upon the RandomDisk dataset. For
each initial condition, we construct a disk-shaped obstacle as follows. First,
we place the center of a regular polygon with s sides of length Rmin relative
to the flock such that two conditions are met:

1. Polygon is in the middle: Let xi∗ and xj∗ be agents whose distance
is the diameter of the flock: ∥ri∗j∗∥ = maxi,j∥rij∥. The polygon’s center
is on the line passing through mean{xi∗ ,xj∗} that is perpendicular to the
line passing through xi∗ and xj∗ .

2. Polygon is in front: At time zero, the minimum distance between the
polygon center and the flock agents is greater than the polygon’s circum-
radius plus Rcomm.

The obstacle is the circumscribed circle of the polygon. Next, the agents
need a mechanism to compute their position relative to the obstacle. In our
simulation, we utilize the existing communication mechanism by placing ad-
ditional obstacle agents on the vertices of the polygon. The obstacle agents
only send their position to the flock agents. Moreover, the obstacle agents do
not receive any messages from the flock agents; that is, the obstacle agents
only have directed edges from them to the flock agents in the communication
graph.

The final step is to randomly select two agents in the flock to be leaders
(see section 6.2). Without leaders, the flock will not attempt to circumnavigate
the obstacle; instead, the flock will turn around or simply halt in front of
the obstacle. Leaders force the flock to continue past the obstacle. Leaders
do not receive any messages from the obstacle agents. The leaders’ velocity
is fixed, so we select leaders that will always be at least Rmin away from
the obstacle boundary. We set the initial velocity of leaders and followers to
the unit vector pointing from mean{xi∗ ,xj∗} to the center of the obstacle.
Examples are shown in Fig. 7.

Fig. 7: Examples from the Obstacle Avoidance RandomDisk dataset of initial
conditions of agents with degmin = 2, Rmin = 0.1, Rcomm = 1, initial velocity
(dark blue arrows) with magnitude 1, 98 agent followers (yellow), two leaders
(green), and obstacles (purple) of perimeter 12, 48, and 96 (all multiplied by
Rmin).

24 Taos Transue, Bao Wang

Instead of terminating the obstacle avoidance simulations after some fixed
number of time steps T , the simulations are run until any of the following
three termination conditions are met:

1. Disconnected communication graph: First, check if the minimum dis-
tance between the flock and the obstacle is greater than Rcomm, implying
that the flock is unaware of the obstacle. If so, terminate the simulation if
the communication graph containing leaders and followers is disconnected.
Otherwise, terminate the simulation if the graph containing leaders, fol-
lowers, and obstacle agents is disconnected.

2. Collision: Terminate the simulation if any flock agents are closer than
Rmin to each other or any obstacle agents, or the distance of any flock
agent to the center of the obstacle is less than or equal to the radius of the
obstacle.

3. Obstacle passed: Terminate the simulation if the minimum distance
between the flock and obstacle agents has been less than Rcomm for at
least one step, and that distance has been larger than Rcomm for the past
Tpassed ≥ 1 time steps. This termination condition indicates successful ob-
stacle avoidance.

The obstacle avoidance validation metric is the fraction of terminations not
due to passing the obstacle.

Now, we describe our obstacle avoidance technique. At a high level, we
have the followers orbit the obstacle, and then we use the leaders to draw
the followers away from the obstacle and terminate the followers’ orbits. The
technique influences the acceleration of a follower i by formulating the relative
velocity −ṙij = ṙji between it and an obstacle agent j. Notice that we wrote
the relative velocity vector so that it is rooted at the velocity of the follower
i. This lets us work from the reference frame of the follower.

The technique defines the interaction between a follower agent and a single
obstacle agent. As we will later show empirically, all these pairwise interac-
tions culminate in the flock’s obstacle-avoidance capability. To implement our
technique, we define a parametrized linear discriminant to make two classifi-
cations about a follower: (1) whether the follower is moving towards or away
from an obstacle agent, and (2) whether the obstacle agent is on the left or
right side of the follower’s heading. The parameterized linear discriminant is

γ(r,v, θ) =
r⊤

∥r∥
R(θ)

v

∥v∥
, (10)

for r,v ̸= 0 and rotation matrix R(·). Fixing ẋi, the linear discriminant
rji 7→ γ(rji, ẋi, 0) classifies whether the follower is moving toward (positive
value) or away (negative value) from the obstacle agent. Moreover, the linear
discriminant rji 7→ γ(rji, ẋi,

π
2) classifies whether the obstacle agent is to

the left (positive value) or right (negative value) of the follower’s heading.
These linear discriminants are assembled to determine how the follower should
accelerate when receiving the position of an obstacle agent. When the follower
accelerates, ẋi changes, and so do the outputs of the linear discriminants. To

Title Suppressed Due to Excessive Length 25

reduce the linear discriminants sensitivity to ẋi, we replace ẋi with the mean
velocity of the follower and its neighbors: vi(t) = mean{ẋj(t) : j ∈ Ni(t)∪{i}}.

Finally, our technique formulates the relative velocity as

−ṙij(t) =

{
α1(∥rji∥, ∥vi∥) rji

∥rji∥ if − α2 ≤ γ(rji,vi, 0) ≤ 0,

α1(∥rji∥, ∥vi∥)(−sgn[γ(rji,vi,
π
2)]R(αθ))

rji

∥rji∥ else,
(11)

where α1 : R2
+ → R+ is a rescaling function, α2 ∈ [0, 1], and αθ ∈ (0, π2]. A

follower may have multiple obstacle agent neighbors, but we limit the follower
to only process the relative velocity computed from the position of the closest
obstacle agent.

We explain the relative velocity formulation considering a follower i, its
flock agent neighbors, and the obstacle agent j that it is closest to. From
the definition, when γ(rji,vi, 0) > 0, the follower is roughly heading toward
the obstacle agent, so the relative velocity accelerates the follower to the left
or right of the obstacle agent (depending on the sign of γ(rji,vi,

π
2)). When

moving left or right, eventually γ(rji,vi, 0) ∈ [−α2, 0], meaning the follower
either is heading tangent to a disk of radius ∥rji∥ centered at the obstacle agent
or is heading away from the obstacle agent. In this case, the relative velocity
accelerates the follower toward the obstacle agent, initiating an orbit about
the obstacle agent. The orbit helps the follower reunite with the followers that
moved around the obstacle agent the opposite way. When α2 = 1, the relative
velocity accelerates the follower toward the obstacle agent even when its flock
agent neighbors are moving away from the obstacle agent. The follower can
get stuck in the “gravity” of the obstacle agent, so setting α2 ∈ [0, 1) can help
the follower terminate its orbit. When γ(rji,vi, 0) < −α2 and αθ = π/2, the
relative velocity accelerates the followers in the direction tangent to a disk of
radius ∥rji∥ centered at the obstacle agent.

The followers are drawn away from the obstacle agents by the leaders
because the leaders will always eventually head away from all of the obstacle
agents. The followers try to align their velocity with the leaders’ velocity, and
if they can, γ(rji,vi, 0) will become negative. How closely the followers need
to align their velocity with the leaders in order to move away from the obstacle
agents depends on α2. In our experiment, we choose α2 = 0.5, αθ = π/2, and
α1 as α1(r, v) = e−r + e−v. We offer an intuition for our choice of α1. The
e−∥rji∥ term amplifies the acceleration supplied by the relative velocity when
the follower and obstacle agent are closer. The e−∥vi∥ term strengthens the
acceleration if the follower slows down to avoid colliding with the obstacle. This
helps the follower maintain the magnitude of its velocity prior to detecting the
obstacle, allowing the flock to circumnavigate the obstacle faster. Attenuating
the signal when the follower’s velocity is small would allow it to stall in front
of the obstacle and fall behind the leaders.

Fig. 8 shows the failure rate of ML controllers on the test simulations
when they do not use our technique. Their failure rate is near 100% with over
95% of failures due to disconnected communication graphs. Using our obstacle
avoidance technique makes obstacle avoidance possible for ML controllers, as

26 Taos Transue, Bao Wang

shown in Fig. 9. When the obstacle perimeter is 24Rmin or smaller, the failure
fraction decreases by at least 80% for all ML controllers. It decreases by 55%
for perimeter 48Rmin and at least 10% for perimeter 96Rmin.

6 12 24 48 96
Perimeter (×Rmin)

0.00

0.25

0.50

0.75

1.00

6 12 24 48 96
Perimeter (×Rmin)

6 12 24 48 96
Perimeter (×Rmin)

TDAGNN TDAGNN+TF TDAGNN+TF+ ETDAGNN

6 12 24 48 96
Perimeter (×Rmin)

0.00

0.25

0.50

0.75

1.00

(a)

6 12 24 48 96
Perimeter (×Rmin)

(b)

6 12 24 48 96
Perimeter (×Rmin)

(c)

Fig. 8: Performance of ML controllers in obstacle avoidance varying the perime-
ter of the regular polygon inscribed in the obstacle when our obstacle avoidance
technique is not used. The obstacle is a disk, and the regular polygon has s
sides of length Rmin whose vertices are on the boundary of the disk. They are
evaluated on the RandomDisk test set with N = 100 agents where two agents
are leaders. (a) Fraction of simulations that failed. (b) Fraction of failures due
to a disconnected communication graph. (c) Fraction of failures due to a col-
lision.

6 12 24 48 96
Perimeter (×Rmin)

0.00

0.25

0.50

0.75

1.00

6 12 24 48 96
Perimeter (×Rmin)

6 12 24 48 96
Perimeter (×Rmin)

TDAGNN TDAGNN+TF TDAGNN+TF+ ETDAGNN

6 12 24 48 96
Perimeter (×Rmin)

0.00

0.25

0.50

0.75

1.00

(a)

6 12 24 48 96
Perimeter (×Rmin)

(b)

6 12 24 48 96
Perimeter (×Rmin)

(c)

Fig. 9: Performance of ML controllers in obstacle avoidance using our obstacle
avoidance technique varying the perimeter of the regular polygon inscribed
in the obstacle. The obstacle is a disk, and the regular polygon has s sides
of length Rmin whose vertices are on the boundary of the disk. They are
evaluated on the RandomDisk test set with N = 100 agents where two agents
are leaders. (a) Fraction of simulations that failed. (b) Fraction of failures
due to a disconnected communication graph. (c) Fraction of failures due to a
collision.

Title Suppressed Due to Excessive Length 27

Communication graph disconnection is still the dominant cause of fail-
ure. Failures due to collisions with the obstacle only occur when the obstacle
perimeter is 24Rmin, representing less than 5% of failures. ETDAGNN has a
failure rate at least 10% lower than other controllers when the obstacle perime-
ter is 48Rmin, and 20% lower for perimeter 96Rmin. For perimeter 48Rmin and
96Rmin, the other ML controllers’ failure rates are within 10% of each other.
For obstacles a perimeter 6Rmin or smaller, all ML controllers have a failure
rate of less than 10%. For larger obstacles, we recommend ETDAGNN since its
failure fraction is up to 20% smaller than other ML controllers. Rotation equiv-
ariance provides a significant performance advantage in this obstacle avoidance
experiment. Animations of obstacle avoidance are available on GitHub.4

6.4 Generalization gap

We verify the generalization bound in Eqn. (8) for each ML controller with
respect to its FFBC dataset. Each dataset has 80,400 tuples with 30,150 for
training and 50,250 for testing. We train the ML controllers on their training
sets with C = 2, and evaluate them on their test sets. The constant C helps
avoid the loss gradients being zero due to the min{1, ·} function. We compute
the generalization bound in Eqn. (8) with δ = 10−3 and the empirical bound.
The empirical generalization bound is the difference of the empirical risk over
the test set minus the empirical risk over the training set

R̂Btest,B,L(f) =
1

Btest

Btest∑
b=1

L(f(xtestb), ytest)− 1

B

B∑
b=1

L(f(xb), y).

Fig. 10 and 11 show that the empirical generalization gap is near zero for all
controllers. Here, the training and the test sets are sampled from the same
probability distribution induced by FFBC.

100 200 300 400
Epoch

0.090

0.095

0.100

0.105 TDAGNN

100 200 300 400
Epoch

TDAGNNTF

100 200 300 400
Epoch

TDAGNNTFMu

100 200 300 400
Epoch

ETDAGNN
Training Loss Testing Loss

100 200 300 400
Epoch

0.090

0.095

0.100

0.105 TDAGNN

100 200 300 400
Epoch

TDAGNNTF

100 200 300 400
Epoch

TDAGNNTFMu

100 200 300 400
Epoch

ETDAGNN

Fig. 10: The losses on the behavior cloning training and test sets as the flocking
ML controllers train.

4 Obstacle avoidance animations: github.com/Utah-Math-Data-Science/

Equivariant-Decentralized-Controllers/tree/main/misc/animations/obstacle_

avoidance

github.com/Utah-Math-Data-Science/Equivariant-Decentralized-Controllers/tree/main/misc/animations/obstacle_avoidance
github.com/Utah-Math-Data-Science/Equivariant-Decentralized-Controllers/tree/main/misc/animations/obstacle_avoidance
github.com/Utah-Math-Data-Science/Equivariant-Decentralized-Controllers/tree/main/misc/animations/obstacle_avoidance

28 Taos Transue, Bao Wang

100 200 300 400
Epoch

0
20
40
60
80

100
120
140
160

Ga
p

100 200 300 400
Epoch

100 200 300 400
Epoch

100 200 300 400
Epoch

TDAGNN TDAGNN+TF TDAGNN+TF+ ETDAGNN

100 200 300 400
Epoch

0
20
40
60
80

100
120
140
160

Ga
p

100 200 300 400
Epoch

100 200 300 400
Epoch

100 200 300 400
Epoch

Fig. 11: The generalization bound and empirical generalization gap over
epochs. The generalization bound improves with the ML controllers from left
to right, and adding equivariance lowers the generalization gap the most.

The generalization bound reduces as we add the improvements (described
in section 4.3) to TDAGNN. Enforcing equivariance significantly reduces the
generalization gap, as ETDAGNN’s bound is about half that of TDAGNN+TF+µ.
The term in the generalization bound that varies between ML controllers is
48d/

√
B multiplied by the square root term

√
·. Fig. 12 gives insight into

how these terms influence the generalization bound. The plot of 48d/
√
B ex-

plains why the generalization bound of ETDAGNN is about half of the non-
equivariant controllers’ – ETDAGNN has d = 16 whereas the non-equivariant
ML controllers have d = 33. Next, β is an order of magnitude smaller for
mean-aggregation controllers compared to sum-aggregation; however, it only
introduces a 10-point difference between the bounds of TDAGNN+TF and
TDAGNN+TF+µ seen in the square root term

√
·. The summation depend-

ing on the Frobenius norm of the weight matrices is remarkably similar for
the non-equivariant controllers and ETDAGNN. ETDAGNN has about 75%
fewer weights (see Table 2), so its weights tend to be larger than that of the
non-equivariant controllers. Though these bounds are much larger than the
empirical generalization gap, Fig. 13 shows that they have a high correlation
(ρ ≥ 0.95) with the empirical generalization gap.

7 Conclusion

In response to the challenges in building decentralized flocking controllers, we
presented an enhanced ML-based decentralized flocking controller that lever-
ages a rotation equivariant and translation invariant GNN. We demonstrated
the advantages of the proposed decentralized controller over existing non-
equivariant ML-based controllers and other flocking controllers using three
representative case studies – flocking, leader following, and obstacle avoid-
ance. We also analyzed the generalization gap of the proposed decentralized
flocking controller. Our numerical results show that the proposed decentral-
ized controller achieves comparable performance compared to non-equivariant
ML-based controllers with 70% less training data, 75% fewer trainable weights
and a 50% smaller generalization bound.

Title Suppressed Due to Excessive Length 29

100 200 300 400
Epoch

4.0

4.5

5.0

5.5

L =
1ln

(m
ax

{1
,|

|W
|| F

})

100 200 300 400
Epoch

16.5

17.0

TDAGNN TDAGNN+TF TDAGNN+TF+ ETDAGNN

105528.86

2321634.962321634.96

105528.86

(a)

4.42

9.129.129.12

48
d/

B
(b)

100 200 300 400
Epoch

4.0

4.5

5.0

5.5

L =
1ln

(m
ax

{1
,|

|W
|| F

})

(c)

100 200 300 400
Epoch

16.5

17.0

(d)

Fig. 12: Select terms of the generalization bound for each ML controller as
it trains on its FFBC dataset. (a) The FFBC data bound. (b) The coeffi-
cient to the large square root term in the generalization bound. These terms
are constant with respect to epochs. The data bound of TDAGNN+TF+µ
and ETDAGNN (mean-aggregation ML controllers) is an order of magnitude
smaller compared to TDAGNN and TDAGNN+TF (sum-aggregation ML con-
trollers). The coefficient term of ETDAGNN is less than half that of the other
ML controllers. The terms in the generalization gap bound that depend on
the Frobenius norm of the ML controllers’ weight matrices when represented
as MLPs are (c) the summation and (d) the large square root term containing
that summation.

100 200 300 400
Epoch

2

1

0

1

Ga
p

= 0.992

100 200 300 400
Epoch

= 0.996

100 200 300 400
Epoch

= 0.976

100 200 300 400
Epoch

= 0.961

TDAGNN TDAGNN+TF TDAGNN+TF+ ETDAGNN

100 200 300 400
Epoch

2

1

0

1

Ga
p

= 0.992

100 200 300 400
Epoch

= 0.996

100 200 300 400
Epoch

= 0.976

100 200 300 400
Epoch

= 0.961

Fig. 13: The correlation of generalization bound and empirical generalization
gap. We plot each of these sequences over epochs with their mean subtracted
and divided by their standard deviation.

Declarations

Data availability

Code and animations are available at github.com/Utah-Math-Data-Science/
Equivariant-Decentralized-Controllers.

Funding

This material is based on research sponsored by National Science Foundation
(NSF) grants DMS-2152762, DMS-2208361, DMS-2219956, and DMS-2436344,
and Department of Energy grants DE-SC0023490, DE-SC0025589, and DE-
SC0025801. Taos Transue received partial financial support from the NSF
under Award 2136198.

github.com/Utah-Math-Data-Science/Equivariant-Decentralized-Controllers
github.com/Utah-Math-Data-Science/Equivariant-Decentralized-Controllers

30 Taos Transue, Bao Wang

Competing interets

All authors certify that they have no affiliations with or involvement in any
organization or entity with any financial interest or non-financial interest in
the subject matter or materials discussed in this manuscript.

A Proofs

A.1 Preliminaries

Lemma 2 (Frobenius norm upper bounds spectral norm) Let A ∈ Rm×n, and then
∥A∥2 ≤ ∥A∥F .

Proof Let A = UΣV ⊤ be the singular value decomposition of A where U ∈ Rm×m and
V ∈ Rn×n are orthogonal matrices. Let σi and σmax denote the i-th and the largest singular
value, respectively. Then,

∥A∥2 = ∥UΣV ⊤∥2 = ∥Σ∥2 = σmax ≤
min{m,n}∑

i=1

σi = ∥Σ∥F = ∥UΣV ⊤∥F = ∥A∥F

This bound is sharp since, for c ∈ R1×1, ∥c∥2 = |c| = ∥c∥F .

A.2 Generalization gap

Lemma 3 Let ϕ be either TDAGNN, TDAGNN+TF, or TDAGNN+TF+µ. Then,

∥ϕ(Hi,1)∥ = ∥Φ(HMLP
i,1)∥ ≤ (

Lϕ∏
ℓ=1

Kσ∥Wℓ∥F)∥HMLP
i,1 ∥F ,

where Φ is the MLP representation of ϕ, HMLP
i,1 is from Definition 6, Kσ ≥ 1 bounds the

largest Lipshitz constant of the activations used by ϕ, and {Wℓ}
Lϕ

ℓ=1 are the weight matrices
of Φ.

Proof The activations of ϕ are either σℓ(x) = tanh(x) or σℓ(x) = x for ℓ ∈ {1, . . . , Lϕ}.
Both have Lipshitz constant Kσ = 1 and satisfy σ(0) = 0. By lemma 8, ϕ can be expressed
as an MLP Φ. Adapting Lemma B.1 of [18],

∥ΦL
ϕ
(HMLP

i,1)∥2 = ∥σL
ϕ
(ΦL

ϕ
−1(H

MLP
i,1)WL

ϕ
)∥2 = ∥σL

ϕ
(ΦL

ϕ
−1(H

MLP
i,1)WL

ϕ
)− σL

ϕ
(0)∥2

≤ Kσ∥ΦL
ϕ
−1(H

MLP
i,1)WL

ϕ
∥2 ≤ Kσ∥WL

ϕ
∥2∥ΦL

ϕ
−1(H

MLP
i,1)∥2

≤ · · · ≤ (

Lϕ∏
ℓ=1

Kσ∥Wℓ∥2)∥HMLP
i,1 ∥2

= (

Lϕ∏
ℓ=1

Kσ∥Wℓ∥2)∥HMLP
i,1 ∥F by Definition 6

≤ (

Lϕ∏
ℓ=1

Kσ∥Wℓ∥F)∥HMLP
i,1 ∥F by Lemma 2

Title Suppressed Due to Excessive Length 31

Lemma 4 Let ϕ be an ETDAGNN. Then,

∥ϕ(Hi,1)∥ = ∥Φ(HMLP
i,1)∥ ≤ (

Lϕ∏
ℓ=1

Kσ∥Wℓ∥F)∥HMLP
i,1 ∥F ,

where Φ is the MLP representation of ETDAGNN, HMLP
i,1 is defined in Definition 7, Kσ ≥ 1

bounds the largest Lipshitz constant of the activations in ETDAGNN, and {Wℓ}
Lϕ

ℓ=1 are the
weight matrices of Φ.

Proof ϕ uses the O(n) equivariant activations σℓ ∈ {σln,σtanh,x 7→ x} for ℓ ∈ {1, . . . , Lϕ}.
Let Kσ be the maximum of their Lipshitz constants. By Lemma 13, 14, and 15, σℓ is an
O(2) equivariant activation with global Lipshitz Kσ in the Frobenius norm, and σℓ(0) = 0
by Lemma 10. Next, by Lemma 9, ϕ can be expressed as an MLP Φ. Adapting Lemma B.1
of [18],

∥ΦL
ϕ
(HMLP

i,1)∥2 = ∥σL
ϕ
(ΦL

ϕ
−1(H

MLP
i,1)WL

ϕ
)∥2 = ∥σL

ϕ
(ΦL

ϕ
−1(H

MLP
i,1)WL

ϕ
)− σL

ϕ
(0)∥2

≤ Kσ∥ΦL
ϕ
−1(H

MLP
i,1)WL

ϕ
∥2 ≤ Kσ∥WL

ϕ
∥2∥ΦL

ϕ
−1(H

MLP
i,1)∥2

≤ · · · ≤ (

Lϕ∏
ℓ=1

Kσ∥Wℓ∥2)∥HMLP
i,1 ∥2

≤ (

Lϕ∏
ℓ=1

Kσ∥Wℓ∥F)∥HMLP
i,1 ∥F by Lemma 2

Lemma 5 Let the scoring model hG be as given in Eqn. (7) equivalently written to take
an FFBC tuple as input. Using assumption 4,

hG(X, Ẋ, {Hi}Ni=1) ≤ w2 + (1 + (

Lϕ∏
ℓ=1

Kσ∥Wℓ∥F)2)β2.

Proof Using Assumption 4, and Lemma 3 and 4,

hG(X, Ẋ, {Hi}Ni=1) ≤ w2 +
1

N

N∑
i=1

∥ai(X, Ẋ)∥2 + ∥ϕ(Hi,1)∥2

= w2 +
1

N

N∑
i=1

∥ai(X, Ẋ)∥2 + ∥Φ(HMLP
i,1)∥2

≤ w2 +
1

N

N∑
i=1

∥ai(X, Ẋ)∥2F + (

Lϕ∏
ℓ=1

Kσ∥Wℓ∥F)2∥HMLP
i,1 ∥2F

≤ w2 +
1

N

N∑
i=1

β2 + (

Lϕ∏
ℓ=1

Kσ∥Wℓ∥F)2β2

≤ w2 + (1 + (

Lϕ∏
ℓ=1

Kσ∥Wℓ∥F)2)β2.

The ML controllers are parameterized by weight matrices, which have a bounded cover-
ing number (Lemma 8 of [6]). Using Lemma G.1 of [18], if we can show the ML controllers
are Lipshitz with respect to the weight matrices, then we can bound the covering number
of the ML controllers. Next, we show that the ML controllers and their scoring function are
Lipshitz.

32 Taos Transue, Bao Wang

Lemma 6 (Lipshitz continuity of TDAGNN) Let ϕ be either TDAGNN, TDAGNN+TF,
TDAGNN+TF+µ, or ETDAGNN with an MLP representation Φ. Take two functions
Φ(HMLP

i,1 ;W) and ϕ(HMLP
i,1 ; W̃) with Lϕ layers where W and W̃ are collections of weight

matrices. Let βℓ ≥ 1 s.t. max{∥Wℓ∥F , ∥W̃ℓ∥F } ≤ βℓ. Then,

∥Φ(HMLP
i,1 ;W)− Φ(HMLP

i,1 ; W̃)∥ ≤ ∥HMLP
i,1 ∥F (

Lϕ∏
ℓ=1

Kσβℓ)

Lϕ∑
ℓ=1

∥Wℓ − W̃ℓ∥F ,

where Kσ ≥ 1 bounds the largest Lipshitz constant of the activations used by Φ.

Proof The proof follows the proof of Lemma B.2 of [18] where ∥ · ∥ = ∥ · ∥F .

Lemma 7 Let Φ be the MLP representation of ϕ and hG be as defined in Eqn. (7). Consider
two parameterizations of Φ and hG : {w,W}, {W̃, w̃}. Let βℓ ≥ 1 and βhG ≥ 1 where

max{∥Wℓ∥F , ∥W̃ℓ∥F } ≤ βℓ and max{|w|, |w̃|} ≤ βhG . By Assumption 4,

|hG(X, Ẋ, {Hi}Ni=1;W, w)− hG(X, Ẋ, {Hi}Ni=1; W̃, w̃)|

≤ 2βhG |w − w̃|+ 2(1 + Ψ)β2Ψ

Lϕ∑
ℓ=1

∥Wℓ − W̃ℓ∥F .

where Ψ =
∏Lϕ

ℓ=1 Kσβℓ.

Proof

|hG(·;W)− hG(·; W̃)|

= |w2 +
1

N

N∑
i=1

∥ai(X, Ẋ)− Φ(HMLP
i,1 ;W)∥2 − w2 −

1

N

N∑
i=1

∥ai(X, Ẋ)− Φ(HMLP
i,1 ; W̃)∥2|

≤ |w2 − w̃2|+
1

N

N∑
i=1

|∥ai(X, Ẋ)− Φ(HMLP
i,1 ;W)∥2 − ∥ai(X, Ẋ)− Φ(HMLP

i,1 ; W̃)∥2|.

Using the fact |∥x− a∥2 − ∥x− b∥2| ≤ (2∥x∥+ ∥a∥+ ∥b∥)∥a− b∥, ∥ai(X, Ẋ)∥ ≤ β by As-

sumption 4, and ∥Φ(HMLP
i,1)∥ ≤ (

∏Lϕ

ℓ=1 Kσ∥Wℓ∥F)∥HMLP
i,1 ∥F ≤ Ψ∥HMLP

i,1 ∥F by Lemma 3
or 4,

|hG(·;W)− hG(·; W̃)| ≤ 2βhG |w − w̃|+
2

N

N∑
i=1

(β + Ψ∥HMLP
i,1 ∥F)∥Φ(HMLP

i,1 ;W)− Φ(HMLP
i,1 ; W̃)∥.

By Lemma 6,

|hG(·;W)− hG(·; W̃)|

≤ 2βhG |w − w̃|+
2

N

N∑
i=1

(β + Ψ∥HMLP
i,1 ∥F)∥HMLP

i,1 ∥FΨ

Lϕ∑
ℓ=1

∥Wℓ − W̃ℓ∥F .

Using that ∥HMLP
i,1 ∥F ≤ β by Assumption 4,

|hG(·;W)− hG(·; W̃)| ≤ 2βhG |w − w̃|+
2

N

N∑
i=1

(β + Ψβ)βΨ

Lϕ∑
ℓ=1

∥Wℓ − W̃ℓ∥F

= 2βhG |w − w̃|+ 2(1 + Ψ)β2Ψ

Lϕ∑
ℓ=1

∥Wℓ − W̃ℓ∥F .

Title Suppressed Due to Excessive Length 33

With the above supporting lemmas, we are ready to prove the following result:

Proposition 2 (Generalization bound of TDAGNN) Let P be the probability distri-
bution over tuples (X, Ẋ, {Hi}Ni=1) induced by FFBC. Let L(y) = min{1, y/C} for C > 0

be the loss function. Let {Wℓ}
Lϕ

ℓ=1 be the weights of the MLP representation Φ of ϕ given

by Lemma 8 or 9, and let w of hG in Eqn. (7) such that w ∈ [0,
√
C]. For any δ > 0, with

probability at least 1− δ over choosing a batch B of B tuples sampled from P , the following
bound holds:

RB,L(hG) ≤
8

B

+
48d
√
B

√√√√√(3Lϕ + 1) ln(10LϕβKσ
L

ϕ
√
dBC) + (2Lϕ + 3)

L
ϕ∑

ℓ=1

ln(max{1, ∥Wℓ∥F }) + 3

√
ln(2

δ
)

2B
.

Proof Let F = {hG(·;W, w) : W = {Wℓ}
Lϕ

ℓ=1, ∥Wℓ∥F ≤ βℓ, |w| ≤ βhG}, where βhG =
√
C.

Define the set of datum-to-loss functions FL = {(X, Ẋ, {Hi}Ni=1) 7→ L(hG(X, Ẋ, {Hi}Ni=1)) :
hG ∈ F}. We follow the steps from proof of Proposition 4.1 from [18]. Applying these steps

requires that we find an f̂0 ∈ F̂L where

F̂L = {(X, Ẋ, {Hi}Ni=1) 7→ 1− L(hG(X, Ẋ, {Hi}Ni=1)) : hG ∈ F},

and f̂0(X, Ẋ, {Hi}Ni=1) = 0 for all (X, Ẋ, {Hi}Ni=1) satisfying Assumption 4. By definition

of L, we can construct f̂0 by finding hG s.t. hG(X, Ẋ, {Hi}Ni=1) ≥ C for all (X, Ẋ, {Hi}Ni=1).
This can be achieved by setting the kernel weights and bias weights (if present) of ϕ to

zero, and setting w of hG in Eqn. (7) to w =
√
C. Therefore, we choose f̂0(·) = 1 −

L(hG(·; {0}
Lϕ

ℓ=1,
√
C)). With f̂0 found, we follow [18] to obtain

R̂B(FL) ≤
4

B
+

24

B

√
lnN (F ,

1

2
√
B

, ∥ · ∥F).

Next, we adapt the steps in [18] to bound lnN (F , 1

2
√
B
, ∥ · ∥∞). Using Lemma 7, we bound

the supremum distance between functions in F by a function of the distance between their
weight matrices:

∥hG(·;W, w)− hG(·; W̃, w̃)∥∞
= sup

(X,Ẋ,{Hi}Ni=1)∈D
|hG(X, Ẋ, {Hi}Ni=1;W)− hG(X, Ẋ, {Hi}Ni=1; W̃)|

≤ 2βhG |w − w̃|+ 2(1 + Ψ)β2Ψ

Lϕ∑
ℓ=1

∥Wℓ − W̃ℓ∥F

≤ 2(βhG + (1 + Ψ)β2Ψ)︸ ︷︷ ︸
:=KhG

(|w − w̃|+
Lϕ∑
ℓ=1

∥Wℓ − W̃ℓ∥F).

Using that bound, Lemma G.1 from [18] bounds the covering number of F by the covering
number of the weight matrices.

lnN (F , r, ∥ · ∥∞) ≤ lnN (w ∈ [0,
√
C],

r

LϕKhG

, | · |) +
Lϕ∑
ℓ=1

lnN (Wℓ,
r

LϕKhG

, ∥ · ∥F),

where Wℓ is the set of possible matrices for Wℓ. Using Lemma 3.2 from [6],

lnN (Wℓ,
r

LϕKhG

, ∥ · ∥F) ≤ d2 ln(1 + 2
LϕKhGβℓ

√
d

r
),

34 Taos Transue, Bao Wang

where d = maxℓ dim(Wℓ). Choosing r = 1

2
√
B
,

lnN (F ,
1

2
√
B

, ∥ · ∥∞) ≤ ln(1 + 4LϕKhGβhG

√
B) + d2

Lϕ∑
ℓ=1

ln(1 + 4LϕKhGβℓ

√
dB)

≤ ln(5LϕKhGβhG

√
B) + d2

Lϕ∑
ℓ=1

ln(5LϕKhGβℓ

√
dB)

≤ d2 ln(5LϕKhGβhG

√
B) + d2

Lϕ∑
ℓ=1

ln(5LϕKhGβℓ

√
dB).

Plugging into the bound for empirical Rademacher complexity,

R̂B(FL) ≤
4

B
+

24d
√
B

√√√√√√√ln(5LϕKhGβhG

√
B) +

Lϕ∑
ℓ=1

ln(5LϕKhGβℓ

√
dB)︸ ︷︷ ︸

:=Σ

.

Next, we simplify the bound. Using logarithm identities,

Σ =
Lϕ

2
ln(d) + (Lϕ + 1)[ln(5Lϕ

√
B) + ln(KhG)] + ln(βhG) +

Lϕ∑
ℓ=1

ln(βℓ).

Finding an upper bound for ln(KhG),

ln(KhG) = ln(2) + ln(βhG + (1 + Ψ)β2Ψ)

≤ ln(2) + ln(βhG + βhG (1 + Ψ)β2Ψ)

≤ ln(2) + ln(βhG) + ln(2(1 + Ψ)β2Ψ)

= 2 ln(2) + ln(βhG) + ln(1 + Ψ) + 2 ln(β) + ln(Ψ)

≤ 2 ln(2) + ln(βhG) + ln(2Ψ) + 2 ln(β) + ln(Ψ)

= 3 ln(2) + ln(βhG) + 2 ln(Ψ) + 2 ln(β)

= 3 ln(2) + ln(βhG) + 2 ln(

Lϕ∏
ℓ=1

Kσβℓ) + 2 ln(β)

= 3 ln(2) + ln(βhG) + 2 ln(β) + 2 ln(Kσ
Lϕ) + 2

Lϕ∑
ℓ=1

ln(βℓ).

Combining these expressions, we find an upper bound for Σ:

Σ ≤
Lϕ

2
ln(d) + (Lϕ + 1)[ln(5Lϕ

√
B) + 3 ln(2) + 2 ln(β) + 2 ln(Kσ

Lϕ)]+

(Lϕ + 2) ln(βhG) + (2Lϕ + 3)

Lϕ∑
ℓ=1

ln(βℓ)

≤
Lϕ

2
ln(d) + 3(Lϕ + 1)[ln(5Lϕ

√
B) + ln(2) + ln(β) + ln(Kσ

Lϕ)]+

(Lϕ + 2) ln(βhG) + (2Lϕ + 3)

Lϕ∑
ℓ=1

ln(βℓ)

≤ 3(Lϕ + 1) ln(10LϕβKσ
LϕβhG

√
dB) + (2Lϕ + 3)

Lϕ∑
ℓ=1

ln(βℓ).

Title Suppressed Due to Excessive Length 35

Using that βhG =
√
C, βℓ ≤ max{1, ∥Wℓ∥F }, and Theorem 3, we attain the bound for

RB,L(hG).

A.2.1 Convolutional layers as linear layers

Lemma 8 (Conv1dℓ as a linear layer) Assume that all input channels to Conv1dℓ :
RCℓ×Fℓ → RCℓ+1×Fℓ+1 are of length Fℓ, then Conv1dℓ is expressible as a matrix multipli-
cation with a fixed-dimension weight matrix.

Proof Conv1dℓ : RCℓ×Fℓ → RCℓ+1×Fℓ+1 has Cℓ input channels that are row vectors of the
form

Hi,ℓ[cin] = [(Hi,ℓ)cin,1, . . . , (Hi,ℓ)cin,Fℓ
].

Arranging each input channel row vector end to end and appending 1⊤
Fℓ+1

to account for

the bias term, an output channel cout ∈ {1, . . . , Cℓ+1} is the row vector

Hi,ℓ+1[cout] = Conv1dℓ(Hi,ℓ)[cout] = [Hi,ℓ[1], . . . , Hi,ℓ[Cℓ], 1⊤
Fℓ+1

]


W (1, cout)

...
W (Cℓ, cout)
wbias(cout)

 .

If ℓ < Lϕ, then all of the output channels may be computed with one matrix multiplication

by

[Hi,ℓ[1], . . . , Hi,ℓ[Cℓ], 1⊤
Fℓ+1

]


W (1, 1) . . . W (1, Cℓ+1) 0

...
. . .

...
W (Cℓ, 1) . . . W (Cℓ, Cℓ+1) 0
wbias(1)I . . . wbias(Cℓ+1)I M


= [Conv1dℓ(Hi,ℓ)[1], . . . , Conv1dℓ(Hi,ℓ)[Cℓ+1], 1⊤

Fℓ+2
],

where M ∈ RFℓ+1×Fℓ+2 maps 1⊤
Fℓ+1

to 1⊤
Fℓ+2

. If Fℓ+1 = Fℓ+2, then M = IFℓ+1×Fℓ+1
. If

Fℓ+1 < Fℓ+2, then

M =

[
I(Fℓ+1−1)×(Fℓ+1−1) 0Fℓ+1

0(Fℓ+1−1)×(Fℓ+2−Fℓ+1)

0⊤
Fℓ+1−1 1 1⊤

Fℓ+2−Fℓ+1

]
.

If Fℓ+1 > Fℓ+2, then

M =

[
I(Fℓ+1−Fℓ+2)×Fℓ+2

0Fℓ+2×Fℓ+2

]
.

If ℓ = Lϕ, then all of the output channels may be computed with one matrix multiplication

by

[Hi,ℓ[1], . . . , Hi,ℓ[Cℓ], 1⊤
Fℓ+1

]


W (1, 1) . . . W (1, Cℓ+1)

...
. . .

...
W (Cℓ, 1) . . . W (Cℓ, Cℓ+1)
wbias(1)I . . . wbias(Cℓ+1)I


= [Conv1dℓ(Hi,ℓ)[1], . . . , Conv1dℓ(Hi,ℓ)[Cℓ+1]]

.

Lemma 9 (EqConvℓ as a linear layer) Assume that all input channels to EqConvℓ :
RCℓ×Fℓ → RCℓ+1×Fℓ+1 are of length Fℓ, then EqConvℓ is expressible as a matrix multipli-
cation with a fixed-dimension weight matrix.

Proof EqConvℓ : RCℓ×Fℓ → RCℓ+1×Fℓ+1 has Cℓ/2 input channels that are two-row matri-
ces of the form

Hi,ℓ[cin] = [gcin,1, . . . , gcin,Fℓ
] .

36 Taos Transue, Bao Wang

Arranging each input channel matrix end to end, an output channel cout ∈ {1, . . . , Cℓ+1/2}
is

Hi,ℓ+1[cout] = EqConvℓ(Hi,ℓ)[cout] = [Hi,ℓ[1], . . . , Hi,ℓ[Cℓ/2]]

 W (1, cout)
..
.

W (Cℓ/2, cout)

 .

All of the output channels may be computed with one matrix multiplication by

[Hi,ℓ[1], . . . , Hi,ℓ[Cℓ/2]]

 W (1, 1) . . . W (1, Cℓ+1/2)
...

. . .
...

W (Cℓ/2, 1) . . . W (Cℓ/2, Cℓ+1/2)


= [EqConvℓ(Hi,ℓ)[1], . . . , EqConvℓ(Hi,ℓ)[Cℓ+1/2]].

A.2.2 Equivariant functions

Lemma 10 O(n) equivariant functions F satisfy F (0) = 0.

Proof By Proposition 1 in [21], there exists a function σ̃ such that

F (G) = Gσ̃(G⊤G),

where the output of σ̃ has the appropriate shape. Then, F (0) = 0σ̃(0⊤0) = 0.

A.2.3 Lipshitz O(n) equivariant functions

We derive a sufficient condition for an O(n) equivariant function to be Lipshitz.

Lemma 11 Let f : Rn → Rn be an O(n) equivariant function. By Proposition 1 in [21],
f(x) = xσ̃(∥x∥) where σ̃ is scalar-valued. If σ̃ is continuously differentiable, limx→∞ σ̃(x) <
∞, and limx→∞ xσ̃′(x) < ∞, then f(x) is Lipshitz. Moreover, f(x) has Lipshitz constant
L = maxx≥0 σ̃(x) + xσ̃′(x).

Proof We start by bounding the derivative of f(x) in the spectral norm:∥∥∥∥ d

dx
f(x)

∥∥∥∥
2

=

∥∥∥∥σ̃(∥x∥)I + x
d

dx
σ̃(∥x∥)

∥∥∥∥
2

=

∥∥∥∥σ̃(∥x∥)I +
σ̃′(∥x∥)
∥x∥

xx⊤
∥∥∥∥
2

≤ ∥σ̃(∥x∥)I∥2 +

∥∥∥∥ σ̃′(∥x∥)
∥x∥

xx⊤
∥∥∥∥
2

≤ σ̃(∥x∥) +
σ̃′(∥x∥)
∥x∥

∥x∥2

= σ̃(∥x∥) + ∥x∥σ̃′(∥x∥)

.

By the assumptions on σ̃,∥∥∥∥ d

dx
f(x)

∥∥∥∥
2

≤ σ̃(∥x∥) + ∥x∥σ̃′(∥x∥) < ∞ .

Since σ̃ is continuously differentiable, L = supx≥0 σ̃(x) + xσ̃′(x) < ∞. Finally, f(x) is
Lipshitz with constant L since, for a, b ∈ Rn,

∥f(a)− f(b)∥ ≤ ∥a− b∥ sup
x

∥∥∥∥dfdx (x)

∥∥∥∥
2

≤ L∥a− b∥.

Title Suppressed Due to Excessive Length 37

Next, we show that the block-wise application of a Lipshitz O(n) equivariant function
is Lipshitz.

Lemma 12 Let F : Rn×Fℓ+1 → Rn×Fℓ+1 be given by

F (G) = G⊙ 1n[σ̃(∥g1∥), . . . , σ̃(∥gFℓ+1
∥)],

where f(x) = xσ̃(∥x∥) is O(2) equivariant and Lipshitz with constant L. F (G) is Lipshitz
with constant L:

∥F (A)− F (B)∥F ≤ L∥A−B∥F .

Proof This is proven using the definition of the Frobenius norm:

∥F (A)− F (B)∥2F =

Fℓ+1∑
f=1

∥∥f(af)− f(bf)
∥∥2 ≤ L2

Fℓ+1∑
f=1

∥∥af − bf
∥∥2 ≤ L2∥A−B∥2F ,

Taking the square root of both sizes gives the result.

Lemma 13 Let F : R(nCℓ+1/n)×Fℓ+1 such that Cℓ+1/n ∈ N. For cout ∈ {1, . . . , Cℓ+1/n}
and G where G[cout] = [gcout,1, . . . , gcout,Fℓ+1

] ∈ Rn×Fℓ+1 , suppose

F (G)[cout] = G[cout]⊙ 1n[σ̃(∥gcout,1∥), . . . , σ̃(∥gcout,Fℓ+1
∥)].

If f : Rn → Rn is as defined in Lemma 12 with Lipshitz constant L, then

∥F (A)− F (B)∥F ≤ L∥A−B∥F .

Proof By Lemma 12 and the definition of the Frobenius norm,

∥F (A)− F (B)∥2F =

Cℓ+1/n∑
cout=1

∥F (A)[cout]− F (B)[cout]∥2F

≤ L2

Cℓ+1/n∑
cout=1

∥A[cout]−B[cout]∥2F = L2∥A−B∥2F .

Taking the square root of both sizes gives the result.

Using Lemmas 11, 12, and 13, we show that the activations σln and σtanh in ϕEqConv

are Lipshitz.

Lemma 14 O(n) equivariant activation σln is Lipshitz.

Proof Define

σ̃ln(x) =

{
1 x = 0
ln(1+x)

x
x ̸= 0

with derivative

σ̃′
ln(x) =

{
0 x = 0

1
x(1+x)

− ln(1+x)

x2 x ̸= 0
.

In order to apply Lemma 11, we compute the following limits:

lim
x→∞

σ̃ln(x) = lim
x→∞

ln(1 + x)

x
L’Hôpital

= lim
x→∞

1

1 + x
= 0 < ∞,

lim
x→∞

xσ̃′
ln(x) = lim

x→∞

1

1 + x
−

ln(1 + x)

x

= 0− lim
x→∞

ln(1 + x)

x
L’Hôpital

= 0− lim
x→∞

1

1 + x
= 0− 0 = 0.

By Lemma 11, f(x) = xσ̃ln(∥x∥) is Lipshitz with constant L = maxx≥0 σ̃ln(x) + xσ̃ln(x).
Applying Lemmas 12 and 13, σln(G) is Lipshitz with constant L.

38 Taos Transue, Bao Wang

Lemma 15 O(n) equivariant activation σtanh is Lipshitz.

Proof Define σ̃tanh(x) = tanh(x), and then σ̃′
tanh(x) = 1 − tanh2(x). In order to apply

Lemma 11, we compute the following limits:

lim
x→∞

σ̃tanh(x) = lim
x→∞

tanh(x) = 1 < ∞,

lim
x→∞

xσ̃′
tanh(x) = lim

x→∞
x(1− tanh2(x)) L’Hôpital

= lim
x→∞

1
2 tanh(x)

1−tanh2(x)

= lim
x→∞

1− tanh2(x)

2 tanh(x)
= 0.

By Lemma 11, f(x) = xσ̃tanh(∥x∥) is Lipshitz with constant L = maxx≥0 σ̃tanh(x) +
xσ̃tanh(x). Applying Lemmas 12 and 13, σtanh(G) is Lipshitz with constant L.

A.3 Obstacle avoidance

Lemma 16 γ(r, v, θ) from Eqn. (10) is invariant with respect to SO(2).

Proof Let R ∈ SO(2).

γ(Rr,Rv, θ) =
(Rr)⊤

∥Rr∥
R(θ)

Rv

∥Rv∥
=

r⊤R⊤R(θ)Rv

∥r∥∥v∥

=
r⊤R⊤RR(θ)v

∥r∥∥v∥
since matrices of SO(2) commute

=
r⊤IR(θ)v

∥r∥∥v∥
= γ(r, v, θ).

Therefore, γ is invariant with respect to SO(2).

Proposition 3 The relative velocity in Eqn. (11) is equivariant with respect to SO(2).

Proof Let R ∈ SO(2). First, vi is equivariant with respect to SO(2) since

mean{Rẋj(t) : j ∈ Ni(t)} = Rmean{ẋj(t) : j ∈ Ni(t)} = Rvi(t).

We check each case of the relative velocity formula. When −α2 ≤ γ(rji, vi, 0) ≤ 0,

α1(∥Rrji∥, ∥Rvi∥)
Rrji

∥Rrji∥
= α1(∥rji∥, ∥vi∥)

Rrji

∥rji∥

= Rα1(∥rji∥, ∥vi∥)
rji

∥rji∥
= R(−ṙij(t)).

For the other case,

α1(∥Rrji∥, ∥Rvi∥)(−sgn[γ(Rrji,Rvi,
π

2
)]R(αθ))

Rrji

∥Rrji∥

=α1(∥rji∥, ∥vi∥)(−sgn[γ(rji, vi,
π

2
)]R(αθ))

Rrji

∥rji∥

=Rα1(∥rji∥, ∥vi∥)(−sgn[γ(rji, vi,
π

2
)]R(αθ))

rji

∥rji∥
since matrices of SO(2) commute

=R(−ṙij(t)).

Therefore, the relative velocity is SO(2) equivariant.

Title Suppressed Due to Excessive Length 39

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor net-
works. IEEE Communications magazine 40(8), 102–114 (2002). DOI https://doi.org/
10.1109/MCOM.2002.1024422

2. Baker, J., Wang, S.H., de Fernex, T., Wang, B.: An explicit frame construction for nor-
malizing 3d point clouds. In: Forty-first International Conference on Machine Learning
(2024). URL https://openreview.net/forum?id=SZ0JnRxi0x

3. Bartlett, P.L., Foster, D.J., Telgarsky, M.J.: Spectrally-normalized margin bounds for
neural networks. In: I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, R. Garnett (eds.) Advances in Neural Information Processing Sys-
tems, vol. 30. Curran Associates, Inc. (2017). URL https://proceedings.neurips.cc/

paper_files/paper/2017/file/b22b257ad0519d4500539da3c8bcf4dd-Paper.pdf
4. Brandstetter, J., Hesselink, R., van der Pol, E., Bekkers, E.J., Welling, M.: Geometric

and physical quantities improve E(3) equivariant message passing. In: International
Conference on Learning Representations (2022). URL https://openreview.net/forum?

id=_xwr8gOBeV1
5. Camazine, S. (ed.): Self-Organization in Biological Systems, 2. print., and 1. paperback

print edn. Princeton Studies in Complexity. Princeton Univ. Press. DOI https://doi.
org/10.2307/j.ctvzxx9tx

6. Chen, M., Li, X., Zhao, T.: On generalization bounds of a family of recurrent neural
networks (2019). URL https://openreview.net/forum?id=Skf-oo0qt7

7. Choi, Y.P., Ha, S.Y., Li, Z.: Emergent Dynamics of the Cucker–Smale Flocking Model
and Its Variants, pp. 299–331. Springer International Publishing, Cham (2017). DOI
https://doi.org/10.1007/978-3-319-49996-3 8

8. Choi, Y.P., Kalise, D., Peszek, J., Peters, A.A.: A collisionless singular cucker–smale
model with decentralized formation control. SIAM Journal on Applied Dynamical Sys-
tems 18(4), 1954–1981 (2019). DOI https://doi.org/10.1137/19M1241799

9. Choi, Y.P., Oh, D., Tse, O.: Controlled pattern formation of stochastic cucker–smale
systems with network structures. Communications in Nonlinear Science and Numerical
Simulation 111, 106474 (2022). DOI https://doi.org/10.1016/j.cnsns.2022.106474

10. Cohen, T.S., Welling, M.: Steerable CNNs. In: International Conference on Learning
Representations (2017). URL https://openreview.net/forum?id=rJQKYt5ll

11. Cucker, F., Dong, J.G.: Avoiding Collisions in Flocks 55(5), 1238–1243. DOI https:
//doi.org/10.1109/TAC.2010.2042355. URL http://ieeexplore.ieee.org/document/

5406110/
12. Cucker, F., Smale, S.: Emergent Behavior in Flocks 52(5), 852–862. DOI https://doi.

org/10.1109/TAC.2007.895842
13. Fuchs, F., Worrall, D., Fischer, V., Welling, M.: Se (3)-transformers: 3d roto-translation

equivariant attention networks. Advances in neural information processing sys-
tems 33, 1970–1981 (2020). URL https://papers.neurips.cc/paper/2020/file/

15231a7ce4ba789d13b722cc5c955834-Paper.pdf
14. Garg, V., Jegelka, S., Jaakkola, T.: Generalization and representational limits of graph

neural networks. In: International Conference on Machine Learning, pp. 3419–3430.
PMLR (2020). URL https://proceedings.mlr.press/v119/garg20c/garg20c.pdf

15. Gu, D., Wang, Z.: Leader–Follower Flocking: Algorithms and Experiments 17(5), 1211–
1219. DOI https://doi.org/10.1109/TCST.2008.2009461. URL http://ieeexplore.

ieee.org/document/4895844/
16. Hua, Y., Miller, K., Bertozzi, A.L., Qian, C., Wang, B.: Efficient and reliable overlay

networks for decentralized federated learning. SIAM Journal on Applied Mathematics
82(4), 1558–1586 (2022). DOI https://doi.org/10.1137/21M1465081

17. Hua, Y., Pang, J., Zhang, X., Liu, Y., Shi, X., Wang, B., Liu, Y., Qian, C.: To-
wards practical overlay networks for decentralized federated learning. arXiv preprint
arXiv:2409.05331 (2024). DOI https://doi.org/10.48550/arXiv.2409.05331

18. Karczewski, R., Souza, A.H., Garg, V.: On the generalization of equivariant graph neural
networks. In: R. Salakhutdinov, Z. Kolter, K. Heller, A. Weller, N. Oliver, J. Scarlett,
F. Berkenkamp (eds.) Proceedings of the 41st International Conference on Machine
Learning, Proceedings of Machine Learning Research, vol. 235, pp. 23159–23186. PMLR.
URL https://proceedings.mlr.press/v235/karczewski24a.html

https://openreview.net/forum?id=SZ0JnRxi0x
https://proceedings.neurips.cc/paper_files/paper/2017/file/b22b257ad0519d4500539da3c8bcf4dd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/b22b257ad0519d4500539da3c8bcf4dd-Paper.pdf
https://openreview.net/forum?id=_xwr8gOBeV1
https://openreview.net/forum?id=_xwr8gOBeV1
https://openreview.net/forum?id=Skf-oo0qt7
https://openreview.net/forum?id=rJQKYt5ll
http://ieeexplore.ieee.org/document/5406110/
http://ieeexplore.ieee.org/document/5406110/
https://papers.neurips.cc/paper/2020/file/15231a7ce4ba789d13b722cc5c955834-Paper.pdf
https://papers.neurips.cc/paper/2020/file/15231a7ce4ba789d13b722cc5c955834-Paper.pdf
https://proceedings.mlr.press/v119/garg20c/garg20c.pdf
http://ieeexplore.ieee.org/document/4895844/
http://ieeexplore.ieee.org/document/4895844/
https://proceedings.mlr.press/v235/karczewski24a.html

40 Taos Transue, Bao Wang

19. Kondor, R., Trivedi, S.: On the generalization of equivariance and convolution in neural
networks to the action of compact groups. In: J. Dy, A. Krause (eds.) Proceedings
of the 35th International Conference on Machine Learning, Proceedings of Machine
Learning Research, vol. 80, pp. 2747–2755. PMLR (2018). URL https://proceedings.

mlr.press/v80/kondor18a.html
20. Lawrence, H., Georgiev, K., Dienes, A., Kiani, B.T.: Implicit bias of linear equivariant

networks. In: K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, S. Sabato (eds.)
Proceedings of the 39th International Conference on Machine Learning, Proceedings of
Machine Learning Research, vol. 162, pp. 12096–12125. PMLR (2022). URL https:

//proceedings.mlr.press/v162/lawrence22a/lawrence22a.pdf
21. Ma, C., Ying, L.: Why self attention is natural for sequence-to-sequence problems?

a perspective from symmetries (2023). URL https://openreview.net/forum?id=

dNdOnKy9YNs
22. Minakowski, P., Mucha, P.B., Peszek, J., Zatorska, E.: Singular Cucker–Smale Dy-

namics, pp. 201–243. Springer International Publishing, Cham (2019). DOI https:
//doi.org/10.1007/978-3-030-20297-2 7

23. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning. Adap-
tive Computation and Machine Learning. The MIT Press. URL https://mitpress.

mit.edu/9780262039406/foundations-of-machine-learning/
24. Oh, D.: Flocking Behavior in Stochastic Cucker-Smale Model with Formation Control

on Symmetric Digraphs. URL http://www.riss.kr/link?id=T15771814
25. Omotuyi, O., Kumar, M.: Learning Decentralized Controllers for Segregation of Hetero-

geneous Robot Swarms with Graph Neural Networks. In: 2022 International Conference
on Manipulation, Automation and Robotics at Small Scales (MARSS), pp. 1–6. IEEE.
DOI https://doi.org/10.1109/MARSS55884.2022.9870482

26. Park, J., Kim, H.J., Ha, S.Y.: Cucker-Smale Flocking With Inter-Particle Bonding
Forces 55(11), 2617–2623. DOI https://doi.org/10.1109/TAC.2010.2061070

27. Parrish, J.K., Viscido, S.V., Grünbaum, D.: Self-Organized Fish Schools: An Examina-
tion of Emergent Properties 202(3), 296–305. DOI https://doi.org/10.2307/1543482.
URL https://www.journals.uchicago.edu/doi/10.2307/1543482

28. Perea, L., Gómez, G., Elosegui, P.: Extension of the cucker-smale control law to space
flight formations. Journal of guidance, control, and dynamics 32(2), 527–537 (2009).
DOI https://doi.org/10.2514/1.36269

29. van der Pol, E., Worrall, D., van Hoof, H., Oliehoek, F., Welling, M.: MDP homomorphic
networks: Group symmetries in reinforcement learning. Advances in Neural Information
Processing Systems 33, 4199–4210 (2020). URL https://proceedings.neurips.cc/

paper/2020/file/2be5f9c2e3620eb73c2972d7552b6cb5-Paper.pdf
30. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model 21(4),

25–34. DOI https://doi.org/10.1145/37402.37406. URL https://dl.acm.org/doi/10.

1145/37402.37406
31. Ross, S., Gordon, G., Bagnell, D.: A reduction of imitation learning and structured pre-

diction to no-regret online learning. In: G. Gordon, D. Dunson, M. Dud́ık (eds.) Proceed-
ings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
Proceedings of Machine Learning Research, vol. 15, pp. 627–635. PMLR, Fort Laud-
erdale, FL, USA (2011). URL https://proceedings.mlr.press/v15/ross11a.html

32. Santos, V.G., Pimenta, L.C.A., Chaimowicz, L.: Segregation of multiple heterogeneous
units in a robotic swarm. In: 2014 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1112–1117. IEEE. DOI https://doi.org/10.1109/ICRA.2014.
6906993

33. Satorras, V.G., Hoogeboom, E., Welling, M.: E(n) equivariant graph neural networks.
In: International conference on machine learning, pp. 9323–9332. PMLR (2021). URL
https://proceedings.mlr.press/v139/satorras21a/satorras21a.pdf

34. Sun, T., Li, D., Wang, B.: Decentralized federated averaging. IEEE Transactions on
Pattern Analysis and Machine Intelligence 45(4), 4289–4301 (2023). DOI https://doi.
org/10.1109/TPAMI.2022.3196503

35. Tanner, H., Jadbabaie, A., Pappas, G.: Stable flocking of mobile agents. I. Fixed topol-
ogy. In: 42nd IEEE International Conference on Decision and Control (IEEE Cat.
No.03CH37475), vol. 2, pp. 2010–2015. IEEE. DOI https://doi.org/10.1109/CDC.2003.
1272910

https://proceedings.mlr.press/v80/kondor18a.html
https://proceedings.mlr.press/v80/kondor18a.html
https://proceedings.mlr.press/v162/lawrence22a/lawrence22a.pdf
https://proceedings.mlr.press/v162/lawrence22a/lawrence22a.pdf
https://openreview.net/forum?id=dNdOnKy9YNs
https://openreview.net/forum?id=dNdOnKy9YNs
https://mitpress.mit.edu/9780262039406/foundations-of-machine-learning/
https://mitpress.mit.edu/9780262039406/foundations-of-machine-learning/
http://www.riss.kr/link?id=T15771814
https://www.journals.uchicago.edu/doi/10.2307/1543482
https://proceedings.neurips.cc/paper/2020/file/2be5f9c2e3620eb73c2972d7552b6cb5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/2be5f9c2e3620eb73c2972d7552b6cb5-Paper.pdf
https://dl.acm.org/doi/10.1145/37402.37406
https://dl.acm.org/doi/10.1145/37402.37406
https://proceedings.mlr.press/v15/ross11a.html
https://proceedings.mlr.press/v139/satorras21a/satorras21a.pdf

Title Suppressed Due to Excessive Length 41

36. Tanner, H., Jadbabaie, A., Pappas, G.: Stable flocking of mobile agents. II. Dynamic
topology. In: 42nd IEEE International Conference on Decision and Control (IEEE Cat.
No.03CH37475), vol. 2, pp. 2016–2021. IEEE. DOI https://doi.org/10.1109/CDC.2003.
1272911

37. Tolstaya, E., Gama, F., Paulos, J., Pappas, G., Kumar, V., Ribeiro, A.: Learning de-
centralized controllers for robot swarms with graph neural networks. In: Conference
on robot learning, pp. 671–682. PMLR (2020). URL https://proceedings.mlr.press/

v100/tolstaya20a.html

38. Wang, S.H., Hsu, Y.C., Baker, J., Bertozzi, A.L., Xin, J., Wang, B.: Rethinking
the benefits of steerable features in 3d equivariant graph neural networks. In: The
Twelfth International Conference on Learning Representations (2024). URL https:

//openreview.net/forum?id=mGHJAyR8w0

39. Weiler, M., Cesa, G.: General e(2)-equivariant steerable cnns. Advances in neural infor-
mation processing systems 32 (2019). URL https://proceedings.neurips.cc/paper_

files/paper/2019/file/45d6637b718d0f24a237069fe41b0db4-Paper.pdf

40. Weimerskirch, H., Martin, J., Clerquin, Y., Alexandre, P., Jiraskova, S.: Energy saving
in flight formation 413(6857), 697–698. DOI https://doi.org/10.1038/35099670. URL
https://www.nature.com/articles/35099670

41. Yarotsky, D.: Universal approximations of invariant maps by neural networks.
Constructive Approximation 55(1), 407–474 (2022). DOI https://doi.org/10.1007/
s00365-021-09546-1

https://proceedings.mlr.press/v100/tolstaya20a.html
https://proceedings.mlr.press/v100/tolstaya20a.html
https://openreview.net/forum?id=mGHJAyR8w0
https://openreview.net/forum?id=mGHJAyR8w0
https://proceedings.neurips.cc/paper_files/paper/2019/file/45d6637b718d0f24a237069fe41b0db4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/45d6637b718d0f24a237069fe41b0db4-Paper.pdf
https://www.nature.com/articles/35099670

	Introduction
	Our contributions
	Background
	Equivariant controllers for learning decentralized flocking
	Generalization analysis
	Experiments
	Conclusion
	Proofs

